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Our Results

The Randomized Parallel Greedy MIS algorithm
w.h.p. takes 𝐎 𝐥𝐨𝐠 𝒏 rounds on any 𝑛-node graph.

This is tight: It takes 𝛀 𝐥𝐨𝐠 𝒏 rounds. 

Also applies to 𝚫 + 𝟏 -Vertex-Coloring, 
Maximal Matching, and
𝟐𝜟 − 𝟏 -Edge-Coloring

As fast as Luby’s algorithm, but simpler.

On average, Deterministic Parallel Greedy MIS is fast.
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bound probability that 𝛀 𝐥𝐨𝐠 𝒏 positions form dependency chain

union bound over all choices of positions
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B) an alive neighbor of v must be at position s 
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Recap of Proof

# rounds ≤ dependency chain length = 𝐎 𝐥𝐨𝐠 𝒏

bound probability that 𝛀 𝐥𝐨𝐠 𝒏 positions form dependency chain

probability of dependency chain is product of continuation probabilities

use these positions to bound continuation probability of position

reserve disjoint set of positions for each position

union bound over all choices of positions
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Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes 𝚯 𝐥𝐨𝐠 𝒏 rounds on 𝑛-node graphs.

What about same process on directed graphs?

On average, Deterministic Parallel Greedy MIS algorithm is fast.

As fast as Luby’s algorithm, but simpler.

Which algorithms can be replaced by simpler ones, on average?
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Summary and Open Questions

What about same process on directed graphs?

Thank you!


