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Our Results

The Randomized Parallel Greedy MIS algorithm
w.h.p. takes O(log n) rounds on any n-node graph.

On average, Deterministic Parallel Greedy MIS is fast.

As fast as Luby’s algorithm, but simpler.

This is tight: It takes Q(log n) rounds.

Also appliesto (A + 1)-Vertex-Coloring,
Maximal Matching, and
(24 — 1)-Edge-Coloring
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# rounds < dependency chain length = O(log n)
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Recap of Proof

# rounds < dependency chain length = O(log n)

bound probability that (2(log n) positions form dependency chain

OO T e T T T TS T

reserve disjoint set of positions for each position

use these positions to bound continuation probability of position

probability of dependency chain is product of continuation probabilities

union bound over all choices of positions



Summary and Open Questions



Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes ®@(log n) rounds on n-node graphs.



Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes ®@(log n) rounds on n-node graphs.

As fast as Luby’s algorithm, but simpler.



Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes ®@(log n) rounds on n-node graphs.

As fast as Luby’s algorithm, but simpler.

On average, Deterministic Parallel Greedy MIS algorithm is fast.



Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes ®@(log n) rounds on n-node graphs.

As fast as Luby’s algorithm, but simpler.

On average, Deterministic Parallel Greedy MIS algorithm is fast.

Which algorithms can be replaced by simpler ones, on average?



Summary and Open Questions

The Parallel Randomized Greedy MIS algorithm
w.h.p. takes ®@(log n) rounds on n-node graphs.

As fast as Luby’s algorithm, but simpler.

On average, Deterministic Parallel Greedy MIS algorithm is fast.

Which algorithms can be replaced by simpler ones, on average?

What about same process on directed graphs?



What about same process on directed graphs?



Summary and Open Questions 2 »
16 913

® 019

12K 2 4
4
27 ,
26 25
23 31 6 >4
32 O30
D X
()
15 & 30 ‘ 14
~ 18
35 )

21
22@—(/

What about same process on directed graphs?



Summary and Open Questions 2

16

Thank you!
23 26 31
32 A
28
15O 30
10 35

6
@

25

2

21
22()&——(?4.

T

019
34

27
()

249

18

What about same process on directed graphs?

9 -

29



