= A
M EZIN

0\0_00
The Locality of Maximal Matching

Manuela Fischer
ETH Zurich



Locality






Locality

.

A




Locality




Locality

zp

% [~
1
I
1

g

A




LOCAL Model iinial [Focs's7]



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

-

™

-

‘I 1

/

™

B

i

L

/

/

AALi'_

-
-

VA

A N




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

undirected graph ¢ = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem




LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality



LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
every problem is trivially solvable in O(diameter) rounds
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Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Maximal Matching
./-0 ? o 90

Tyt
“

(2A — 1)-Edge-Coloring

Easy centralized problems: greedy solutions.




Maximal Matching



N
»%m

J
ﬂwﬂ |

)



X2

S

.’/«r
N/

)




N

9
WL

)



I\

Maximal Matching

NE

awms

)



i
£
>

> o)
v
. o)
d - 0
5 =
S
0 Q
c o
© o)
° c S
py o
oo >
. o) . o)
v v
o @
c b0




Centralized (Sequential) Algorithm



R

R rAS




R

R rAS













Centralized (Sequential) Algorithm




Centralized (Sequential) Algorithm




Centralized (Sequential) Algorithm




LOCAL Algorithm Mimicking Sequential Algorithm



LOCAL Algorithm Mimicking Sequential Algorithm

N




LOCAL Algorithm Mimicking Sequential Algorithm

38
O .
1 a
25 21
35

()
® 33 19
34 32
) 9
10 X 30 31 .
£\ . ()
3 1 6 R 26
24 11 15
12
(D 5 14 O

i



LOCAL Algorithm Mimicking Sequential Algorithm

38
) .
1 a
25 21
35

()
@ 33 19
34 32
) 9
10 X 30 31 .
£\ . ()
3 1 6 R 26
24 11 15
12
O W 14 O




LOCAL Algorithm Mimicking Sequential Algorithm

38

28

9
10

2
O 3

'
./

1
7
13
M
4
24
16

C

6




LOCAL Algorithm Mimicking Sequential Algorithm

38




LOCAL Algorithm Mimicking Sequential Algorithm

38




LOCAL Algorithm Mimicking Sequential Algorithm

38




LOCAL Algorithm Mimicking Sequential Algorithm

38




LOCAL Algorithm Mimicking Sequential Algorithm
? 10 20 O 30 31 17

: 3 . 4 8 6 :8
36
24 11 15
12

i 18 / 26
29
22
%3 = cf)



LOCAL Algorithm Mimicking Sequential Algorithm
? 10 20 O 30 31 17

: 3 . 4 8 6 :8
36
24 11 15
12

C\ 14
18 26
16
27 29
22
C% 24 f
can take Q(diameter) rounds
in worst case



LOCAL Algorithm Mimicking Sequential Algorithm

38
28 N
| 37
25 21
7 35
33 .
13 . 34 32
2
10 30 31
o O 17

: 3 : 4 B} 6 : 3
36
11 15
12

24

<:L\£i-(:) 14

16 18 26
C%j 2 Random Numbers:
U 94 f
. O(log n) rounds w.h.p.
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In worst case F., Noever [SODA’18]



LOCAL Algorithm: Luby’s Randomized Algorithm



LOCAL Algorithm: Luby’s Randomized Algorithm

N




LOCAL Algorithm: Luby’s Randomized Algorithm

-
SIFS
AN

O

T~



LOCAL Algorithm: Luby’s Randomized Algorithm




LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
b |
"~

O—0



LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
4]
O\Oo—o

E[#removed edges per round] > c|E;]



LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
4]
O\Oo—o

E[#removed edges per round] = c|E;] O(logn) rounds w.h.p.
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Our Result

deterministic O(log? A - logn)-round Maximal Matching

Improving over

0 (log* n)
Hanckowiak, Karonski, Panconesi [SODA’98, PODC'99]

O(A + log* n)
Panconesi, Rizzi [DIST'01]



Overview of Results

Maximal Matching
* Maximal Matching O(log? A -logn)
* Randomized Maximal Matching O(log3 logn + log A)

Approximate Matching

(24 ¢) - Approximate Maximum Matching log? A - log %+ log™ n

0
(2 + €) - Approximate Maximum Weighted Matching O (log? A - log %+ log™ n
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0(log? A) rounds, 0(1) loss

Factor-2-Rounding
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using Locally Balanced Splitting,
inspired by
Hanckowiak, Karonski, Panconesi [SODA’98 PODC’99]
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Over all O(log A) rounding iterations, total loss still constant!

* bipartite and even degree!



Constant - Approximate Bipartite Matching 0(log2 A) rounds
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Il) Rounding Fractional Bipartite Matching
O(log? A) rounds, 0(1) loss
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Bipartite Matching
0(log? A) rounds
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Maximal Matching
in Degree-2-Graph
O(1) rounds,
O(1)-factor loss

Panconesi, Rizzi
[DIST’01]
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after O(log n) iterations, maximum matching size is 0, hence graph empty
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