
The Locality of Maximal Matching

Manuela Fischer
ETH Zurich

Locality

Locality

Locality

Locality

Locality

LOCAL Model Linial [FOCS’87]

LOCAL Model Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation

• sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

every problem is trivially solvable in 𝑶 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds

Classic LOCAL Graph Problems

Maximal Independent Set

Classic LOCAL Graph Problems

(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

Maximal Matching

(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

Easy centralized problems: greedy solutions.

Maximal Matching

Maximal Matching

Maximal Matching

Maximal Matching

Matching:
set of non-incident edges

Maximal Matching

Matching:
set of non-incident edges

Maximal:
no edge can be added

Maximal Matching

Matching:
set of non-incident edges

Maximal:
no edge can be added

greedy property!

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

can take 𝛀 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds
in worst case

LOCAL Algorithm Mimicking Sequential Algorithm

can take 𝛀 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds
in worst case

Random Numbers:

𝑶 𝐥𝐨𝐠𝒏 rounds w.h.p.
Luby [STOC’85]
F., Noever [SODA’18]

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

𝔼 #removed edges per round ≥ 𝑐|𝐸𝑖|

LOCAL Algorithm: Luby’s Randomized Algorithm

𝔼 #removed edges per round ≥ 𝑐|𝐸𝑖| 𝑂 log 𝑛 rounds w.h.p.

Our Result

Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

improving over

Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

improving over

𝑂 log4 𝑛
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]

Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

improving over

𝑂 Δ + log∗ 𝑛
Panconesi, Rizzi [DIST’01]

𝑂 log4 𝑛
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]

Overview of Results

Maximal Matching

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching O log3 log n + log Δ

Approximate Matching

• (2 + ε) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• ε - Maximal Matching O log2Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2Δ ⋅ log
1

ε

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 4 - Approximate Fractional Matching

𝑂 log Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 4 - Approximate Fractional Matching

𝑂 log Δ rounds

II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

I) 4-Approximate Fractional Matching

𝑂 log Δ rounds

II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Ω
1

Δ

1

Direct Rounding

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Ω
1

Δ

1

Direct Rounding

Gradual Rounding

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

1

Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

≥
1

d
≥
2

d

1

Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
using Locally Balanced Splitting,
inspired by
Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99]

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

≥
1

d
≥
2

d

Iterated Factor-2-Rounding using Locally Balanced Splitting

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

bipartite graph!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

small technicality.

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

small technicality.

Suppose that bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

* bipartite and even degree!

*

* by Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99] in 𝑂 log 𝛥

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

Over all O(𝐥𝐨𝐠 𝚫) rounding iterations, total loss still constant! * bipartite and even degree!

*

* by Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99] in 𝑂 log 𝛥

I) 4-Approximate Fractional Matching

𝑂 log Δ rounds

II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant-Approximate
Bipartite Matching

𝑶 𝐥𝐨𝐠𝟐𝜟 rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant-Approximate
Bipartite Matching

𝑶 𝐥𝐨𝐠𝟐𝜟 rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

Constant-Approximate
Bipartite Matching

𝑶 𝐥𝐨𝐠𝟐𝜟 rounds

Maximal Matching
in Degree-2-Graph
𝑶(𝟏) rounds,

𝑶(𝟏)-factor loss

Panconesi, Rizzi
[DIST’01]

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

maximum matching size in remainder graph decreases by constant factor

𝑶 𝐥𝐨𝐠𝟐 𝜟 ⋅ 𝐥𝐨𝐠𝒏

Constant - Approximate Matching 𝑂 log2 Δ rounds

Maximal

maximum matching size in remainder graph decreases by constant factor

after 𝑶(𝐥𝐨𝐠𝒏) iterations, maximum matching size is 0, hence graph empty

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

Lower bound: Ω min
log 𝑛

log log 𝑛
,

log Δ

log log Δ

Kuhn, Moscibroda, Wattenhofer [PODC’04]

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

Lower bound: Ω min
log 𝑛

log log 𝑛
,

log Δ

log log Δ

Open Question: 𝑂 log Δ ⋅ log 𝑛 ?

Kuhn, Moscibroda, Wattenhofer [PODC’04]

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

Lower bound: Ω min
log 𝑛

log log 𝑛
,

log Δ

log log Δ

Open Question: 𝑂 log Δ ⋅ log 𝑛 ?

What is Locality of Maximal Matching?

Kuhn, Moscibroda, Wattenhofer [PODC’04]

Open Question: 𝑂 log Δ ⋅ log 𝑛 ?

What is Locality of Maximal Matching?

Open Question: 𝑂 log Δ ⋅ log 𝑛 ?

What is Locality of Maximal Matching?

Thank you!

