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• undirected graph 𝐺 = 𝑉, 𝐸 , 
n nodes, maximum degree Δ

• each round, every node
• receives messages (sent in previous round)

• performs some computation 

• sends message to all its neighbors

• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

standard synchronous message-passing model of distributed computing

every problem is trivially solvable in 𝑶 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds
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(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

Easy centralized problems: greedy solutions. 
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Maximal Matching

Matching: 
set of non-incident edges 

Maximal:
no edge can be added

greedy property!
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LOCAL Algorithm Mimicking Sequential Algorithm

can take 𝛀 𝐝𝐢𝐚𝐦𝐞𝐭𝐞𝐫 rounds 
in worst case

Random Numbers:

𝑶 𝐥𝐨𝐠𝒏 rounds w.h.p.
Luby [STOC’85]
F., Noever [SODA’18]
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𝔼 #removed edges per round ≥ 𝑐|𝐸𝑖| 𝑂 log 𝑛 rounds w.h.p.
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Our Result

deterministic 𝑂 log2 Δ ⋅ log 𝑛 -round Maximal Matching

improving over

𝑂 Δ + log∗ 𝑛
Panconesi, Rizzi [DIST’01]

𝑂 log4 𝑛
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]



Overview of Results

Maximal Matching

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching O log3 log n + log Δ

Approximate Matching

• (2 + ε) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• ε - Maximal Matching O log2Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2Δ ⋅ log
1

ε
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II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss
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Gradual Rounding
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Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
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Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
using Locally Balanced Splitting,
inspired by 
Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99]
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Locally Balanced Splitting:
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every node roughly balanced

II) Rounding Fractional Bipartite Matching             𝑂 log2 Δ rounds, 𝑂(1) loss



Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that 
every node roughly balanced

II) Rounding Fractional Bipartite Matching             𝑂 log2 Δ rounds, 𝑂(1) loss



Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that 
every node roughly balanced

II) Rounding Fractional Bipartite Matching             𝑂 log2 Δ rounds, 𝑂(1) loss

1

16

1

8

1

4

1

2



Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding
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Constant-Approximate 
Bipartite Matching

𝑶 𝐥𝐨𝐠𝟐𝜟 rounds

Maximal Matching 
in Degree-2-Graph
𝑶(𝟏) rounds, 

𝑶(𝟏)-factor loss

Panconesi, Rizzi
[DIST’01]
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Constant - Approximate Matching      𝑂 log2 Δ rounds

Maximal

maximum matching size in remainder graph decreases by constant factor

after 𝑶(𝐥𝐨𝐠𝒏) iterations, maximum matching size is 0, hence graph empty
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Open Question: 𝑂 log Δ ⋅ log 𝑛 ?

What is Locality of Maximal Matching?

Thank you!


