Improved Deterministic Distributed Matching via Rounding

Manuela Fischer

ETH Zurich

LOCAL Model Linial [FOCS'87]

- undirected graph G = (V, E), n nodes, maximum degree Δ
- synchronous message-passing rounds
- unbounded message size
- unbounded computation
- Round Complexity:

number of rounds to solve the problem

round complexity of a problem characterizes its locality

LOCAL Model Linial [FOCS'87]

- undirected graph G = (V, E), n nodes, maximum degree Δ
- synchronous message-passing rounds
- unbounded message size
- unbounded computation
- Round Complexity:

number of rounds to solve the problem

round complexity of a problem characterizes its locality

LOCAL Model Linial [FOCS'87]

- undirected graph G = (V, E), n nodes, maximum degree Δ
- synchronous message-passing rounds
- unbounded message size
- unbounded computation
- Round Complexity: number of rounds to solve the problem

round complexity of a problem characterizes its locality

Classic LOCAL Graph Problems

Question from the 1980s by Linial:

Are there efficient (poly log *n* rounds) **deterministic** algorithms for these problems?

Ghaffari, Kuhn, Maus [STOC'17] **Completeness of Deterministic Rounding**

Ghaffari, Kuhn, Maus [STOC'17] Completeness of Deterministic Rounding

Efficient **deterministic rounding** is **the only obstacle** for efficient deterministic LOCAL graph algorithms.

Rounding:

Turning fractional values into integral ones while approximately preserving some linear constraints.

Our Contribution: **Deterministic Rounding for Matching**

Our Contribution: Deterministic Rounding for Matching

Matching admits an **efficient deterministic algorithm** because matching admits **efficient deterministic rounding**.

- first deterministic LOCAL rounding method
- not only improving over state of the art of matching algorithms, but (hopefully) step in direction of solving all classic LOCAL problems
- extension led to first efficient $(2\Delta 1)$ -edge-coloring algorithm *F., Ghaffari, Kuhn* [FOCS'17]

Our Results

- Maximal Matching
- Randomized Maximal Matching
- $(2 + \varepsilon)$ Approximate Maximum Matching
- $(2 + \varepsilon)$ Approximate Maximum Weighted Matching

 $\begin{array}{l}O(\log^2 \Delta \cdot \log n)\\O(\log^3 \log n + \log \Delta)\end{array}$

$$\begin{split} &O\left(\log^2\Delta\cdot\log\,\frac{1}{\epsilon}+\log^*n\right)\\ &O\left(\log^2\Delta\cdot\log\,\frac{1}{\epsilon}+\log^*n\right) \end{split}$$

- $(2 + \varepsilon)$ Approximate Maximum (Weighted) **B-Matching** $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- ε Maximal Matching
- $(2 + \varepsilon)$ Approximate Minimum Edge Dominating Set
- $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$ $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$

Our Results

O(log⁴ *n*) *Hańćkowiak, Karoński, Panconesi* [SODA'98, PODC'99] $O(\Delta + \log^* n)$ Panconesi, Rizzi [DIST'01]

- Maximal Matching
- Randomized Maximal Matching
- $(2 + \varepsilon)$ Approximate Maximum Matching
- $(2 + \varepsilon)$ Approximate Maximum Weighted Matching

 $O(\log^2 \Delta \cdot \log n)$ $O(\log^3 \log n + \log \Delta)$

$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$
$$O\left(\log^2 \Delta \cdot \log \frac{1}{\epsilon} + \log^* n\right)$$

- $(2 + \varepsilon)$ Approximate Maximum (Weighted) **B-Matching** $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- ε Maximal Matching
- $(2 + \epsilon)$ Approximate Minimum Edge Dominating Set
- $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$ $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$

 $O(\log^2 \Delta)$ rounds

 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching

 $O(\log^2 \Delta)$ rounds, O(1) loss

 $O(\log \Delta)$ rounds

$O(\log \Delta)$ rounds

Fractional Maximum Matching
$$\max \sum_{e \in E} x_e$$

 $value of v$ $s.t.$ $\sum_{e \in E(v)} x_e \leq 1$
 $x_e \in [0,1]$ for all $v \in V$ $x_e \in [0,1]$

LOCAL Greedy Algorithm $x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$ repeat until all edges are blocked mark half-tight nodes block its edges double value of unblocked edges

Fractional Maximum Matching
$$\max \sum_{e \in E} x_e$$

value of v $s.t.$ $\sum_{e \in E(v)} x_e \leq 1$
 $x_e \in [0,1]$ for all $v \in V$ $x_e \in [0,1]$

LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

Fractional Maximum Matching
$\max \sum_{e \in E} x_e$ value of v
s.t. $\sum_{e \in E(v)} x_e \le 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

Fractional Maximum Matching
$\max \sum_{e \in E} x_e$ value of v
s.t. $\sum_{e \in E(v)} x_e \le 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

Fractional Maximum Matching
$\max \sum_{e \in E} x_e$ value of v
s.t. $\sum_{e \in E(v)} x_e \le 1$ for all $v \in V$
$x_e \in [0,1]$ for all $e \in E$
v is half-tight if its value is $\geq \frac{1}{2}$
LOCAL Greedy Algorithm
$x_e = 2^{-\lceil \log \Delta \rceil}$ for all $e \in E$
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching

 $O(\log^2 \Delta)$ rounds, O(1) loss

 $O(\log^2 \Delta)$ rounds

II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, O(1) loss

using Locally Balanced Splitting, inspired by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99]

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:

2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:

2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:

2-edge-coloring so that every node roughly balanced

(i.e., **perfect rouding**)

no constraint violated & no loss in total value (i.e., **perfect rouding**)

no constraint violated & no loss in total value (i.e., **perfect rouding**)

(i.e., **perfect rouding**)

no constraint violated & no loss in total value (i.e., **perfect rouding**)

(i.e., **perfect rouding**)

no constraint violated & no loss in total value (i.e., **perfect rouding**)

no constraint violated & no loss in total value (i.e., **perfect rouding**)

Perfect Splitting not possible in case of...

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **I** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **I** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **I** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

alternate 🔳

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **I** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **I** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

alternate 🔳

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

alternate **E**

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles
 - chop at length $\Theta(\log \Delta)$
 - set boundary to 0
 - alternate **E** in between

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle

alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **<u>Short cycles</u>** of length $O(\log \Delta)$
 - alternate
- B) Long cycles

loss

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

- A) **Short cycles** of length $O(\log \Delta)$
 - alternate
- B) Long cycles

chop^{*}at length $\Theta(\log \Delta)$ loss set boundary to 0

* by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99] in $O(\log \Delta)$

Sequential Perfect Splitting*

Repeat until all edges colored pick arbitrary cycle alternate

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles In parallel, for all cycles

A) **<u>Short cycles</u>** of length $O(\log \Delta)$

alternate

set boundary to 0 $\Theta\left(\frac{1}{\log \Delta}\right)$ loss alternate \square in between

* by Hańćkowiak, Karoński, Panconesi [SODA'98,PODC'99] in $O(\log \Delta)$

Over all $O(\log \Delta)$ rounding iterations, total loss still constant!

Summary

Deterministic LOCAL Complexity of Matching

- $0(\log^2 \Delta \cdot \log n)$ for Maximal Matching
- $O(\log^2 \Delta + \log^* n)$ for constant-approximate Matching
 - exponentially improving over $O(\Delta + \log^* n)$ Panconesi, Rizzi [DIST'01]
 - close to $\Omega\left(\frac{\log \Delta}{\log \log \Delta} + \log^* n\right)$ Kuhn, Moscibroda, Wattenhofer [PODC'04]

Linial [FOCS'87]

Deterministic Rounding

- First efficient deterministic rounding method
- Rounding as the only obstacle for efficient deterministic LOCAL graph algorithms. *Ghaffari, Kuhn, Maus* [STOC'17]
- First efficient deterministic (2Δ 1)-Edge-Coloring using rounding for hypergraph matching
 F., Ghaffari, Kuhn [FOCS'17]

Open Problems

- Prove or disprove $\Omega(\log n)$ for Maximal Matching.
- **Conjecture** *Göös, Hirvonen, Suomela* [PODC'14] No $o(\Delta) + O(\log^* n)$ algorithm for Maximal Matching.

- Rounding in $O(\log \Delta)$ instead of $O(\log^2 \Delta)$?
- Devise a more general deterministic rounding method.
- Linial's Question from the 1980s: Is there an efficient deterministic algorithm for MIS?