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Classic LOCAL Graph Problems

Maximal Independent Set (A + 1)-Vertex-Coloring
Maximal Matching (2A — 1)-Edge-Coloring
./o I O
N

Question from the 1980s by Linial:
Are there efficient (poly log n rounds) deterministic algorithms for these problems?
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Ghaffari, Kuhn, Maus [STOC’17]
Completeness of Deterministic Rounding

Efficient deterministic rounding is the only obstacle
for efficient deterministic LOCAL graph algorithms.

Rounding:
Turning fractional values into integral ones
while approximately preserving some linear constraints.
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Our Contribution:

Deterministic Rounding for Matching

Matching admits an efficient deterministic algorithm
because matching admits efficient deterministic rounding.

e first deterministic LOCAL rounding method

 notonly improving over state of the art of matching algorithmes,
but (hopefully) step in direction of solving all classic LOCAL problems

* extension led to first efficient (2A — 1)-edge-coloring algorithm
F., Ghaffari, Kuhn [FOCS 17]



Our Results
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Il) Rounding Fractional Bipartite Matching
O(log? A) rounds, O(1) loss
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Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Factor-2-Rounding
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using Locally Balanced Splitting,
inspired by
Hanckowiak, Karonski, Panconesi [SODA’98 PODC’99]
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| O(logA) iterations
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Summary

Deterministic LOCAL Complexity of Matching

O(log? A - log n) for Maximal Matching

O(log? A + log* n) for constant-approximate Matching

» exponentially improving over O(A + log™ n)
Panconesi, Rizzi [DIST'01]

log A % )
loglog A + log n
Kuhn, Moscibroda, Wattenhofer [PODC’04]
Linial [FOCS'87]

e closeto () (

Deterministic Rounding

First efficient deterministic rounding method
Rounding as the only obstacle for

efficient deterministic LOCAL graph algorithms.
Ghaffari, Kuhn, Maus [STOC'17]

First efficient deterministic (24 — 1)-Edge-Coloring

using rounding for hypergraph matching
F., Ghaffari, Kuhn [FOCS’ 17]

Open Problems

* Prove or disprove Q(log n) for Maximal Matching.
* Conjecture Giés, Hirvonen, Suomela [PODC’14]

No o(A) + O(log™ n) algorithm for Maximal Matching.

 Rounding in O(log A) instead of 0(log? A)?

* Devise a more general deterministic rounding method.

e Linial’s Question from the 1980s:

Is there an efficient deterministic algorithm for MIS?



