
Improved

Deterministic Distributed Matching
via

Rounding

Manuela Fischer
ETH Zurich

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• synchronous message-passing rounds

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem characterizes its locality

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• synchronous message-passing rounds

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem characterizes its locality

LOCAL Model Linial [FOCS’87]

• undirected graph 𝐺 = 𝑉, 𝐸 ,
n nodes, maximum degree Δ

• synchronous message-passing rounds

• unbounded message size

• unbounded computation

• Round Complexity:
number of rounds to solve the problem

round complexity of a problem characterizes its locality

(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

Question from the 1980s by Linial:
Are there efficient (poly log 𝑛 rounds) deterministic algorithms for these problems?

Ghaffari, Kuhn, Maus [STOC’17]

Completeness of Deterministic Rounding

Efficient deterministic rounding is the only obstacle
for efficient deterministic LOCAL graph algorithms.

Rounding:
Turning fractional values into integral ones
while approximately preserving some linear constraints.

Ghaffari, Kuhn, Maus [STOC’17]

Completeness of Deterministic Rounding

Our Contribution:

Deterministic Rounding for Matching

Matching admits an efficient deterministic algorithm
because matching admits efficient deterministic rounding.

• first deterministic LOCAL rounding method

• not only improving over state of the art of matching algorithms,
but (hopefully) step in direction of solving all classic LOCAL problems

• extension led to first efficient (2Δ − 1)-edge-coloring algorithm
F., Ghaffari, Kuhn [FOCS’17]

Our Contribution:

Deterministic Rounding for Matching

Our Results

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching O log3 log n + logΔ

• (𝟐 + 𝛆) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum (Weighted) B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• 𝛆 - Maximal Matching O log2 Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2 Δ ⋅ log
1

ε

Our Results

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching O log3 log n + logΔ

• (𝟐 + 𝛆) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum (Weighted) B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• 𝛆 - Maximal Matching O log2 Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2 Δ ⋅ log
1

ε

𝑂 Δ + log∗ 𝑛
Panconesi, Rizzi [DIST’01]

𝑂 log4 𝑛
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 4 - Approximate Fractional Matching

𝑂 log Δ rounds

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 4 - Approximate Fractional Matching

𝑂 log Δ rounds

II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

Fractional Maximum Matching

max

𝑒∈𝐸

𝑥𝑒

s.t. for all 𝑣 ∈ 𝑉

𝑥𝑒 ∈ [0,1] for all 𝑒 ∈ 𝐸

𝑒∈𝐸(𝑣)

𝑥𝑒 ≤ 1

LOCAL Greedy Algorithm

𝑥𝑒 = 2−⌈log Δ⌉ for all 𝑒 ∈ 𝐸

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

1

16

1

8

1

4

v is half-tight if its value is ≥
𝟏

𝟐

I) 𝟒-Approximate Fractional Matching 𝑂 log Δ rounds

value of v

I) 4-Approximate Fractional Matching

𝑂 log Δ rounds

II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss

Constant - Approximate Bipartite Matching 𝑂 log2 Δ rounds

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

1

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Ω
1

Δ

1

Direct Rounding

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Ω
1

Δ

1

Direct Rounding

Gradual Rounding

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

1

Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

≥
1

d
≥
2

d

1

Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
using Locally Balanced Splitting,
inspired by
Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99]

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

O(logΔ) iterations

Ω
1

Δ

≥
1

d
≥
2

d

Iterated Factor-2-Rounding using Locally Balanced Splitting

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Iterated Factor-2-Rounding

for i = log Δ ,… , 1

𝐸𝑖 = 𝑒 ∈ 𝐸 ∶ 𝑥𝑒 = 2−𝑖

splitting of 𝐸𝑖 into

increase to 2−𝑖+1

decrease to 0

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

bipartite graph!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

small technicality.

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Perfect Splitting not possible in case of…

… odd cycles

… odd-degree vertices

bipartite graph!

small technicality.

Suppose that bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

* bipartite and even degree!

*

* by Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99] in 𝑂 log 𝛥

II) Rounding Fractional Bipartite Matching 𝑂 log2 Δ rounds, 𝑂(1) loss

LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length 𝑂 logΔ
alternate

B) Long cycles
chop at length Θ(logΔ)
set boundary to 0
alternate in between

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

Θ
1

log Δ
loss

Over all O(𝐥𝐨𝐠 𝚫) rounding iterations, total loss still constant! * bipartite and even degree!

*

* by Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99] in 𝑂 log 𝛥

Summary Open Problems

Deterministic LOCAL Complexity of Matching
• O log2 Δ ⋅ log n for Maximal Matching

• O log2 Δ + log∗ 𝑛 for constant-approximate Matching

• exponentially improving over O Δ + log∗ 𝑛

Panconesi, Rizzi [DIST’01]

• close to Ω
log Δ

log log Δ
+ log∗ 𝑛

Kuhn, Moscibroda, Wattenhofer [PODC’04]

Linial [FOCS’87]

Deterministic Rounding
• First efficient deterministic rounding method

• Rounding as the only obstacle for

efficient deterministic LOCAL graph algorithms.

Ghaffari, Kuhn, Maus [STOC’17]

• First efficient deterministic 𝟐𝜟 − 𝟏 -Edge-Coloring

using rounding for hypergraph matching

F., Ghaffari, Kuhn [FOCS’17]

• Prove or disprove Ω log n for Maximal Matching.

• Conjecture Göös, Hirvonen, Suomela [PODC’14]

No o Δ + O log∗ n algorithm for Maximal Matching.

• Rounding in O logΔ instead of O log2 Δ ?

• Devise a more general deterministic rounding method.

• Linial’s Question from the 1980s:

Is there an efficient deterministic algorithm for MIS?

