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• unbounded message size 

• unbounded computation

• Round Complexity: 
number of rounds to solve the problem

round complexity of a problem characterizes its locality
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(Δ + 1)-Vertex-ColoringMaximal Independent Set

Classic LOCAL Graph Problems

(2Δ − 1)-Edge-ColoringMaximal Matching

Question from the 1980s by Linial:
Are there efficient (poly log 𝑛 rounds) deterministic algorithms for these problems?  



Ghaffari, Kuhn, Maus [STOC’17]

Completeness of Deterministic Rounding 



Efficient deterministic rounding is the only obstacle
for efficient deterministic LOCAL graph algorithms.

Rounding: 
Turning fractional values into integral ones 
while approximately preserving some linear constraints.

Ghaffari, Kuhn, Maus [STOC’17]

Completeness of Deterministic Rounding 



Our Contribution:

Deterministic Rounding for Matching



Matching admits an efficient deterministic algorithm 
because matching admits efficient deterministic rounding.

• first deterministic LOCAL rounding method

• not only improving over state of the art of matching algorithms, 
but (hopefully) step in direction of solving all classic LOCAL problems

• extension led to first efficient (2Δ − 1)-edge-coloring algorithm
F., Ghaffari, Kuhn [FOCS’17]

Our Contribution:

Deterministic Rounding for Matching



Our Results

• Maximal Matching O log2 Δ ⋅ log n

• Randomized Maximal Matching O log3 log n + logΔ

• (𝟐 + 𝛆) - Approximate Maximum Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum Weighted Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• (2 + ε) - Approximate Maximum (Weighted) B-Matching O log2 Δ ⋅ log
1

ε
+ log∗ n

• 𝛆 - Maximal Matching O log2 Δ ⋅ log
1

ε

• 2 + ε - Approximate Minimum Edge Dominating Set O log2 Δ ⋅ log
1

ε
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𝑂 Δ + log∗ 𝑛
Panconesi, Rizzi [DIST’01]

𝑂 log4 𝑛
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]
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II) Rounding Fractional Bipartite Matching

O log2 Δ rounds, O 1 loss
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Gradual Rounding
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Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
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1

Factor-2-Rounding

Direct Rounding

Gradual Rounding

⊇
using Locally Balanced Splitting,
inspired by 
Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99]
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Iterated Factor-2-Rounding using Locally Balanced Splitting
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Summary  Open Problems

Deterministic LOCAL Complexity of Matching
• O log2 Δ ⋅ log n for Maximal Matching 

• O log2 Δ + log∗ 𝑛 for constant-approximate Matching 

• exponentially improving over O Δ + log∗ 𝑛

Panconesi, Rizzi [DIST’01]

• close to Ω
log Δ

log log Δ
+ log∗ 𝑛

Kuhn, Moscibroda, Wattenhofer [PODC’04]

Linial [FOCS’87]

Deterministic Rounding
• First efficient deterministic rounding method

• Rounding as the only obstacle for 

efficient deterministic LOCAL graph algorithms.

Ghaffari, Kuhn, Maus [STOC’17]

• First efficient deterministic 𝟐𝜟 − 𝟏 -Edge-Coloring

using rounding for hypergraph matching 

F., Ghaffari, Kuhn [FOCS’17] 

• Prove or disprove Ω log n for Maximal Matching.

• Conjecture Göös, Hirvonen, Suomela [PODC’14]

No o Δ + O log∗ n algorithm for Maximal Matching. 

• Rounding in O logΔ instead of  O log2 Δ ?

• Devise a more general deterministic rounding method. 

• Linial’s Question from the 1980s:

Is there an efficient deterministic algorithm for MIS?


