# A Simple Parallel/Distributed Sampling Technique: Local Glauber Dynamics

### Manuela Fischer

ETH Zurich, Switzerland

joint work with Mohsen Ghaffari Sampling Proper Colorings





Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



t = 2

Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



t = 3

Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



t = 4

Markov chain

- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing



 $t \geq t_{mix}$ 

update color of a random node to a random color, if proper

update color of a random node to a random color, if proper



#### update color of a random node to a random color, if proper

pick node v uniformly at random



#### update color of a random node to a random color, if proper

pick node v uniformly at random pick color c uniformly at random



#### update color of a random node to a random color, if proper

pick node v uniformly at random pick color c uniformly at random



#### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



#### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



t + 1

#### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



t + 1

#### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



t + 1

#### update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c



[Jerrum 1995] Single-Site Glauber

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

[Jerrum 1995] Single-Site Glauber

#### $O(n\log n)$ steps

 $q \ge 2\Delta + 1$ 

**Decentralized** 

[Jerrum 1995] Single-Site Glauber

#### **O**(**n log n**) steps

 $q \geq 2\Delta + 1$ 

### **Decentralized**

# [Feng, Sun, Yi 2017] What can be sampled locally?

local/decentralized sampling techniques? local/decentralized transition rules for Markov chain?

[Jerrum 1995] Single-Site Glauber

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] LubyGlauber

 $O(\Delta \log n)$  steps

 $q \geq lpha \Delta$  for lpha > 2

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] LubyGlauber

 $O(\Delta \log n)$  steps

 $q\geq lpha\Delta$  for lpha>2

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] update an independent set

 $O(\Delta \log n)$  steps

 $q\geq lpha\Delta$  for lpha>2

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] $O(\Delta \log n)$  steps $q \ge \alpha \Delta$  for  $\alpha > 2$ [Feng, Sun, Yi 2017] $O(\log n)$  steps $q \ge \alpha \Delta$  for  $\alpha > 2 + \sqrt{2}$ 

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] $O(\Delta \log n)$  steps $q \ge \alpha \Delta$  for  $\alpha > 2$ [Feng, Sun, Yi 2017] $O(\log n)$  steps $q \ge \alpha \Delta$  for  $\alpha > 2 + \sqrt{2}$ 

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

| [Feng, Sun, Yi 2017]<br>update an independent set | $O(\Delta \log n)$ steps        | $q\geq lpha \Delta$ for $lpha>2$          |
|---------------------------------------------------|---------------------------------|-------------------------------------------|
| [Feng, Sun, Yi 2017]<br><b>update all nodes</b>   | <b>O</b> ( <b>log n</b> ) steps | $q\geq lpha \Delta$ for $lpha>2+\sqrt{2}$ |
| [F., Ghaffari 2018]<br><b>Local Glauber</b>       | <b>O</b> ( <b>log n</b> ) steps | $q\geq lpha \Delta$ for $lpha>2$          |

[Jerrum 1995] update a single node

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

| [Feng, Sun, Yi 2017]<br><b>update an independent set</b>       | $O(\Delta \log n)$ steps               | $q\geq lpha \Delta$ for $lpha>2$          |
|----------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| [Feng, Sun, Yi 2017]<br><b>update all nodes</b>                | <b>O</b> (log n) steps                 | $q\geq lpha \Delta$ for $lpha>2+\sqrt{2}$ |
| [F., Ghaffari 2018]<br><b>update an almost independent set</b> | <b>O</b> ( <b>log</b> <i>n</i> ) steps | $q\geq lpha \Delta$ for $lpha>2$          |

**Local Glauber Dynamics**
update colors of a small-degree node set to random colors, if still proper

update colors of a small-degree node set to random colors, if still proper



#### update colors of a small-degree node set to random colors, if still proper

each node  $\boldsymbol{v}$ 

independently marks itself with probability  $\gamma \in (0,1)$ 



#### update colors of a small-degree node set to random colors, if still proper

each node  $\boldsymbol{v}$ 

independently marks itself with probability  $\gamma \in (0,1)$ 



#### update colors of a small-degree node set to random colors, if still proper

 ${\hbox{each node } v}$ 

independently marks itself with probability  $\gamma \in (0,1)$ if marked, picks a proposal  $c_v$  uniformly at random



#### update colors of a small-degree node set to random colors, if still proper

 ${\hbox{each node } v}$ 

independently marks itself with probability  $\gamma \in (0,1)$ if marked, picks a proposal  $c_v$  uniformly at random



#### update colors of a small-degree node set to random colors, if still proper

 ${\rm each}\; {\rm node}\; v$ 



#### update colors of a small-degree node set to random colors, if still proper

#### ${\rm each}\; {\rm node}\; v$





#### update colors of a small-degree node set to random colors, if still proper

#### each node v





#### update colors of a small-degree node set to random colors, if still proper

#### each node v



#### update colors of a small-degree node set to random colors, if still proper

#### each node v



update colors of a small-degree node set to random colors, if still proper

each node v



update colors of a small-degree node set to random colors, if still proper

each node v



update colors of a small-degree node set to random colors, if still proper

 ${\hbox{each node } v}$ 



#### update colors of a small-degree node set to random colors, if still proper

 ${\rm each}\; {\rm node}\; v$ 

independently marks itself with probability  $\gamma \in (0,1)$ if marked, picks a proposal  $c_v$  uniformly at random if  $c_v$  does not lead to (potential) conflicts, updates color

[*F., Ghaffari 2018*] **Theorem** Local Glauber converges to uniform distribution over proper q-colorings in  $O(\log n)$  steps if  $q \ge \alpha \Delta$  for  $\alpha > 2$ . **Proof Sketch** 

## Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states

## Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states



## Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states



## Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states



# Reviewing Path Coupling for Single-Site Glauber Dynamics

# Reviewing Path Coupling for Single-Site Glauber Dynamics

update color of a random node to a random color, if proper

# Reviewing Path Coupling for Single-Site Glauber Dynamics

update color of a random node to a random color, if proper

- pick node v uniformly at random
- pick color c uniformly at random
- if none of v's neighbors has color c, update v's color to c









naïve coupling:

- same vertex
- same color









naïve coupling:

- same vertex
- same color









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0]$$








naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0]$$









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

expected number of differing nodes:

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$



 $v_0$ 







naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

expected number of differing nodes:

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$



 $v_0$ 







naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$









naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$





naïve coupling:

- same vertex
- same color

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \qquad [neighbors \ of \ v_0]$$















flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$







flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$









flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$









flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node \ v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q} \qquad [neighbors \ of \ v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q} \qquad [neighbors of v_0]$$





flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q} \qquad [neighbors of v_0]$$









flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q} \qquad [neighbors of v_0]$$




### Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:

- same node v
- same color for  $v \notin N(v_0)$
- flipped color for  $v \in N(v_0)$

$$1 - \frac{1}{n} \left( 1 - \frac{\Delta}{q} \right) \qquad [node v_0] \\ + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q} \qquad [neighbors of v_0]$$









Sketch of Path Coupling for Local Glauber Dynamics

# Sketch of Path Coupling for Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

# Sketch of Path Coupling for Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v

independently marks itself with probability  $\gamma \in (0,1)$ 

- if marked, picks a proposal  $c_v$  uniformly at random
- if  $c_v$  does not lead to (potential) conflicts, updates color





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors



- mark same nodes
- flipped colors iff there is a neighbor with flipped colors



- mark same nodes
- flipped colors iff there is a neighbor with flipped colors





- mark same nodes
- flipped colors iff there is a neighbor with flipped colors









flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors









flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]

flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]



flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]



flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]



flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]









flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]

flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ ]





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

#### Main Observation:

to have different colors, node needs to be on a **red-blue**-path starting from  $v_0$ 





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

#### Main Observation:

to have different colors, node needs to be on a  ${\rm red}{\rm -blue}{\rm -path}$  starting from  $v_0$ 





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

#### Main Observation:

to have different colors, node needs to be on a **red-blue**-path starting from  $v_0$ 




flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

### Main Observation:

to have different colors, node needs to be on a **red-blue**-path starting from  $v_0$ 





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

### Main Observation:

to have different colors, node needs to be on a **red-blue**-path starting from  $v_0$ 





flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta}$$
 [node  $v_0$ 

### Main Observation:

to have different colors, node needs to be on a **red-blue**-path starting from  $v_0$ 







flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta} \qquad [node \ v_0] + \sum_{l=1}^n \Delta^l \left(\frac{2\gamma}{q}\right)^{l-1} \cdot \frac{\gamma}{q}$$









flipped coupling:

- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^{\Delta} \quad [node \ v_0] + \sum_{l=1}^n \Delta^l \left(\frac{2\gamma}{q}\right)^{l-1} \cdot \frac{\gamma}{q}$$









< 1

### **Centralized**

[Jerrum 1995] Single-Site Glauber

#### **O**(**n log n**) steps

 $q \ge 2\Delta + 1$ 

### **Decentralized**

| [Feng, Sun, Yi 2017]<br><b>LubyGlauber</b>     | $oldsymbol{O}(\Delta \log n)$ steps    | $q\geq lpha \Delta$ for $lpha>2$          |
|------------------------------------------------|----------------------------------------|-------------------------------------------|
| [Feng, Sun, Yi 2017]<br><b>LocalMetropolis</b> | <b>O</b> ( <b>log</b> <i>n</i> ) steps | $q\geq lpha \Delta$ for $lpha>2+\sqrt{2}$ |
| [F., Ghaffari 2018]<br><b>Local Glauber</b>    | <b>O</b> ( <b>log</b> <i>n</i> ) steps | $q\geq lpha \Delta$ for $lpha>2$          |

#### **Centralized**

[Jerrum 1995] Single-Site Glauber

#### $O(n\log n)$ steps

 $q \geq 2\Delta + 1$ 

### **Decentralized**

[Feng, Sun, Yi 2017] **LubyGlauber** 

[Feng, Sun, Yi 2017] **LocalMetropolis** 

[F., Ghaffari 2018] Local Glauber  $O(\Delta \log n)$  steps  $q \ge \alpha \Delta$  for  $\alpha > 2$  $O(\log n)$  steps  $q \ge \alpha \Delta$  for  $\alpha > 2 + \sqrt{2}$ 

almost independent set suffices $O(\log n)$  steps $q \ge \alpha \Delta$  for  $\alpha > 2$ 

#### **Centralized**

| [F., Ghaffari 2018]<br><b>Local Glauber</b>                                 | almost independent set suffices<br>$O(\log n)$ steps $q \ge \alpha \Delta$ for $\alpha > 2$ |                                                         |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|
| [Feng, Sun, Yi 2017]<br><b>LocalMetropolis</b>                              | <b>O</b> ( <b>log n</b> ) steps                                                             | $q\geq lpha \Delta$ for $lpha>2+\sqrt{2}$               |
| Decentralized<br>[Feng, Sun, Yi 2017]<br>LubyGlauber                        | <b>Ο</b> ( <b>Δ log n</b> ) steps                                                           | fewer colors?<br>$q \ge \alpha \Delta$ for $\alpha > 2$ |
| [Vigoda 2000],<br>[Chen, Moitra 2018],<br>[Delcourt, Perarnau, Postle 2018] | <b>poly</b> ( <i>n</i> ) steps                                                              | $q\geq lpha \Delta$ for $lpha>rac{11}{6}$              |
| [Jerrum 1995]<br>Single-Site Glauber                                        | <b>O</b> ( <b>n log n</b> ) steps                                                           | $q \geq 2\Delta + 1$                                    |

### **<u>Centralized</u>**

| Centralized                       |                                 | Thank you!                                     |
|-----------------------------------|---------------------------------|------------------------------------------------|
| [Jerrum 1995]                     |                                 |                                                |
| Single-Site Glauber               | $O(n\log n)$ steps              | $q \geq 2\Delta + 1$                           |
| [Vigoda 2000],                    |                                 |                                                |
| [Chen, Moitra 2018],              | <b>poly</b> ( <b>n</b> ) steps  | $q\geq lpha\Delta$ for $lpha>rac{11}{6}$      |
| [Delcourt, Perarnau, Postle 2018] |                                 | 0                                              |
| <b>Decentralized</b>              |                                 |                                                |
| [Fena, Sun, Yi 2017]              |                                 | fewer colors?                                  |
| LubyGlauber                       | $O(\Delta \log n)$ steps        | $q\geq lpha\Delta$ for $lpha>2$                |
| [Feng, Sun, Yi 2017]              |                                 |                                                |
| Local Metropolis                  | <b>O</b> (log n) steps          | $q \geq lpha \Delta$ for $lpha > 2 + \sqrt{2}$ |
| [F., Ghaffari 2018]               | almost independent set suffices |                                                |
| Local Glauber                     | <b>O</b> (log n) steps          | $q\geq lpha\Delta$ for $lpha>2$                |