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ABSTRACT

Let E be a finite set and let A be an m x|E| real
matrix having A® as the column of A indexed by e ¢ E. For
each vector x e]RE, S(x) denotes the sign vector of x, that
is, S(x) ¢ {+,0,-}% ana S(x), is the sign of X . The set
CA of signed vectors of vectors in the row space R(A)- of
A represents the partition of nﬂ‘by polyhedral cones
induced by the subspaces (A e®R™ : X 2% = 0} (e ¢ E),
and also represents the facial incidence relations of the

polyhedral cones.

An oriented matroid (OM) is a set C of signed
vectors satisfying certain axioms that are trivially satisfied
by CA. Hence oriented matroids abstract the incidence
properties of the partitioning polyhedral cones induced by

the matrix A.

In Part I (Chapter 2 - Chapter 8) we consider an
abstraction (Oriented Matroid Programming) of linear prog-
ramming by oriented matroids. Fundamental results in linear
programming are generalized with this setting. From the
algorithmic point of view, it is shown that designing a finite
pivot method for finding an optimal solution is much more
difficult in this general setting than in linear programming,

because of the existence of a cycling of nondegenerate pivots.



Chapter 9 considers the geometry of oriented
matroids, which generalize well known geometric properties of
C(A). Chapter 10 studies an oriented matroid generalization
of convex polytopes.

In Chapter 11 we shall develop the shellability
of OM polytopes, which abstracts the shellability of convex
polytopes. As a consequence,we obtain the Euler's relation
for OM polytopes.

Chapter 12 presents a systematic way of transforminc
an OM to another OM, which is useful for constructing
OM's with special properties.

In Chapter 13 a new class (BOM) of OM's is
introduced. This class is important in the sense that this
class properly contains the class of linear OM's and yet
certain theorem proving procedures for linear OM's generalize

to this class directly.



ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor Professor
Jack Edmonds, who introduced me to oriented matroids,
stimulated me constantly with his fertile mind, and gave
tireless support which I will never forget.

I would'like to thank Professor Robert Bland
of Cornell University, whose work motivated me to undertake
the present study, for several iliuminating and fruitful
discussions. Also I wish to thank Professor Bill Pulleyblank
for reading this thesis and having made helpful suggestions
which improved the presentation of this work considerably.

Appreciative thanks to Arnaldo Mandel, with whom
I had many valuable discussions on oriented matroids.

It was fortunate to have the friendship of my
colleagues Mustafa Akgul, Kathie Cameron and Ephraim Korach,
and with their families Nurcan Akgul and Malka Korach.

My warmest thanks to my wife Vera, who helped
and encouraged me through hard times. Without her I
would never have completed this work.

I would like to express my gratitude to the
Canadian Government for their continued financial support
under the Cultural Exchange Programme. Also the financial
aid extended by the University of Waterloo is greatly apprec-

iated.






TABLE OF CONTENTS

PAGE
ABSTRACT i
ACKNOWLEDGEMENTS ii
CHAPTER
1. INTRODUCTION. 1
A. Axioms and Preliminaries. 3
B. Summary of Results (Part I). 12
C. Summary of Results (PartII). 18
D. Conformal Elimination Property and 23
Vertex Axioms.
E. Deletion, Contraction and Sign Reversal. 27
PART I. ORIENTED MATROID PROGRAMMING.,
2. Affine Oriented Matroids, Polyhedra and 30
Optimization.
A. Affine Oriented Matroids. 31
B. Optimization. 34
3. Oriented Matroid Programming. 38
A. Definitions. 39
B. The Fundamental Theorem. 40
C. Inductive Proof. 42
D. The Feasibility Theorem. 46
E. The Strong Duality Theorem (Primal 48

Statement).

F. The Optimal Face and Full Complementality. 50



PAGE

Bases 54
A. Elementary Properties. 54
B. Sign Properties. 59
Basis Form of the Fundamental Theorem. 6l
A. Standard oOP, 63
B. Basic Properties. 66
C. The Theorem. 69
D. Phase I. ) 70
Pivot Methods. 73
A. Pivot Operations. 74
B. A Feasible Method : The Simplex Method. 75
C. A Finite Method : The Algorithm A. 79

Nondegenerate Cycling of the Simplex Method. 87

A. A Starter. 88
B. The Vertex Perturbation. 94
C. The Construction. 96
D. Further Results on Cycling. 98
Duality 111
A. Orthogonality. 112
B. The Dual OM. 115
C. Dual Bases. 118
D. Duality in Oriented Matroid Programming. 120

- vi -



PAGE

PART II. GEOMETRY OF ORIENTED MATROIDS.

9. Flats. 126
A. Posets. 126
B. Matroids. 128
C. Flats of Oriented Matroids. i 132
10. Cells. 135
A. Face Lattices and J-D property. 135
B. Facets. 139
C. Edges. 144
D. Supercells. 146
11. Shelling. ' 148
A. PM Posets. 150
B. Shelling of PM Posets. 153
C. Euler's Relation. 156
D. Shellability of OM Cells. 159
12. Perturbations. 175
A. General Perturbation Theorem. 178
B. Proof of General Perturbation Theorem. 181

- Vii -



13.

REFERENCES.

BOP's and BOM's.

A.

B.

C.

D.

Definitions.
Characterizations.
Duality.

Nondegenerate Cycling of the Simplex
Method and Non-BOP's.

- vii -

PAGE

194

195
197
204

207

209



1. INTRODUCTION

Let E be a finite set and let A be an m x|E| real
matrix having A% as the column of A indexed by e ¢ E. for
each vector x eIRE, S(x) denotes the signed vector of x, that

E

is, S8(x) ¢ {+,0,-} and S(x)e is the sign of X,. The set

CA of signed vectors of vectors in the row space R(A) of

A represents the partition of If‘by polyhedral cones
induced by the subspaces {A ¢ R® : » A° = 0} (e ¢ E), and
also represents the facial incidence relations of the

polyhedral cones.

An oriented matroid (OM) is a set C of signed
vectors satisfying certain axioms that are trivially
satisfiéd by CA' Hence oriented matroids abstract the
incidence properties of the partitioning polyhedral cones

induced by the matrix A.

In a very natural way, the notion of linear
programming, convex polytopes or arrangements of hyper-
planes has an abstraction by oriented matroids. It has been
shown in recent years that many of their fundamental
properties are still valid in the oriented matroidal

generalization.

On the other hand in Folkman and Lawrence [OM]
and in the doctoral dissertation of Mandel [TO] an extremely
significant result has been obtained: an oriented matroid is

a topological abstraction of the partition of Rr™ by the



subspaces induced by the matrix A, as well as a combinatoria:
abstraction. This result has brought in a new insight into
the subject, and lead us to understand oriented matroids as

more concrete objects which can be visualized.

In this thesis we do not use any topology, howeve
we try to present results in such a way that one can easily
interpret the meanings topologically. The first part of
the thesis studies the abstraction of linear programming
and establishes the fundamental results. The second part

mainly considers the geometric properties of oriented matroi

The summary of results will be given in Section B
and Section C of this chapter, while Section A furnishes

definitions and preliminary concepts of oriented matroids.

The reader is assumed to be familier with
matroid theory. Appropriate references are Welsh [MT] ,

and Crapo and Rota [FC].



A. Axioms and Preliminaries

Let E be a finite set. A signed vector X on E is a

vector (Xe: e ¢ E) such that each component Xq (e ¢ E) is
either +, 0, or - . The negatives of each sign +, 0, - and
the negative -X of an signed vector X are defined in the
obvious way. We say that an element e ¢ E separates signed
vectors X and X' if xe='—xé z 0. The composition X 0 X' of

signed vectors X and X' is defined to be the signed vector

Z on E such that

e
(1.1) 7z = (e ¢ E).
x'e otherwise

X if Xe z 0

For example if E = {1,2,3} and X= (Xl,Xz,X3) = (0, 0,+),

xl

X'=(X, 27

1’ xé) = (OI =7 -)I then

(a) -X = (0, 0, =), -X' = (0, + ,+) ;

(b) the only element separates X and X' is 3 ;

(C)XOX'-(OI —l+)l X.OX=(OI ~r -)-X'.

Note that the composition is associative but not commutative.
We may simply use vectors (on E) for signed vectors (on E),
whenever there is no confusion with real vectors. Also we use
capital letters X, Y, 2, W etc for signed vectors, and x, y,
z, w etc for real vectors. The signed vector of all zero's is

denoted by 0 .



(1.2) An oriented matroid’ (abbreviated by OM) on a finite

set E is a set C of signed vectors on E satisfying the

following axioms:

(OM-0) 0 ¢ C (Existence of 0 ) ;

(OM-1) X ¢ ¢ =>-X ¢ C (Symmetry) ;

(OM-2) xl, X2 e C =>)g'o X2 e C (Closedness under
Compositiont*) ;
(OM—B)/’Xl, X2 e C and an element f ¢ E separates
\ Xl and x2 . >
3X3 e C such that
Xg =0 and
- 3 1 2
X, = (X~ 0o X )e for all e ¢« E not
| separating Xl and X%

(Elimination Property) .

An oriented matroid we define here is what Bland [ALl,

and Bland and Las Vergnas 'OR] call the span of cocircuits

of an oriented matroid.

The notation of composition was first introduced by

Bland ALl [OT] and Bland and Las Vergnas [OR].



(1.3) An OM can be considered as an abstract structure

undirlying a vector subspace V of ]RE as follows: For each

X = (xe: e € E) e]RE, let S(x) denote the signed vector of x,

that is, the signed vector (S(x)e: e ¢ E) on E with S(x)e
being the sign of Xy for each e ¢ E. Then the set S(V) of
signed vectors of vectors in V is easily shown to be an OM

on E. The properties of V corresponding to the axioms (OM-0)
~(OM-3) for C = S(V) are just the properties of being closed

under taking linear combinations of very special types.

An oriented matroid arising this way is said to be
linear. Let A be an m x E matrix with the row space R(A) =
{AA : A ¢IR"} being V then the matrix A is said to be a

matrix representation of S(V), and conversely S(V) is the

OM obtained from the row space V of A.

It should be clear that one can take any ordered
field F instead of IR above. An oriented matroid arising

from a vector subspace of FE is often called representable

over the ordered field F. However, Mandel pointed out that
any representable OM over an ordered field is linear, i.e.,
representable over IR, by using the similar argument as in

Lindstrdm [RC] .

There are non-linear oriented matroids and some

such examples will be constructed later.



(1.4) Our axioms (1.2) (OM-1) (OM-3) of oriented matroids
are far from standard. In fact several authors, Bland and
Las Vergnas [OR], Bland [AL] , Folkman and Lawrence [OM]

gave different axiomatizationsof oriented matroids based

on quite different points of view.

Bland and Las Vergnas [OR] used axioms defining a dual
pair of oriented matroids. Two signed vectors X and Y are said

to be orthogonal (denoted by X xY) if either

(i) Xe = 0 or Ye = 0 for all e € E; or
(ii) 3 e, £f e E s.t. X =Y = 0 and
e e
Xf=-Yfz 0.

The dual C~ of an OM C is defined by

C*= {Y : X » Y for all X ¢ C}.

It can be shown that C* is an oriented matroid on E and the dual

% %
C of C* is C (see Chapter 8). Bland [AL] used primal-dual axioms

of oriented matroids to emphasize the mutual relationship between
a primal and a dual OM's and to prove theorems concerning
a dual pair of OM's, in particular a generalization of the

strong duality theorem of linear programming forseen by

Rockafeller [EV].

Bland and Las Vergnas fOR] also gave an axoimatization of
oriented matroids which defines the "minimal"” members of an

OM's in the following sence. The support X of a signed vector X



on E is the set {e ¢ E : Xe # 0} of indices of nonzero com-
ponents of X. For an OM C on E, let V = V(C) be the set of

vectors in C having minimal nonzero supports, i.e.,
V= {Xe C\{0} : X' ¢ C\{0} and X'c X implies X = X} .

The set V will be called the vertices (or cocircuits) of C .

Bland and Las Vergnas gave axioms defining the vertices of an
oriented matroid and showed that an oriented matroid is
characterized by its vertices. (Actually they gave axioms
defining the vertices of C* (or the circuits of C ). However
this axiomatization is equivalent to vertex axioms by the
duality.) We shall show the equivalence between our axiom-

atization and that of Bland and Las Vergnas in Section D.

The approach originally taken by the late Folkman
and later continued by Lawrence [OM] differs considerably
from Bland and Las Vergnas [OR]. However it is easy to see

the equivalence between the two different axiomatizations.

A variety of works which initiated the study of
oriented matroids can be seen in Camion [MU] , Fulkerson [NT]

Minty [AFJ] and Rockafellar [EV] .

’



(1.5) One of the most significant results on oriented

matroid theory is the topological repvresentation of oriented
matroid studied by Lawrence [OM] and by Edmonds and Mandel
(see Mandel [TO]). The idea is to represent an oriented

matroid C on E bv a unit sphere § in IRWM together

[¢)

with the collection S = {(s;, Sq

' S; ): e € E} of parti-

tions of S such that for each e ¢ E, either

(a) sg=Sands;'=s;=¢;or

(o)

(b) (S;, Sev S;) is a homeomorphic image of a

(o]

linear partition (s', s°, §7) of S where

= ()¢S : A= 0}

Y= {XxeS: A,>0)

wn
]

S = {) e S : A< 0} .

For example if C is a linear OM on E having a matrix
representation A as in (1.3) then we can represent C by

a system (S, E,S) where

sg={xes:AAe=o}
s;={xes:er>o}
- e .

Se={)\eS:>\A < 0} .

A system (S, E, S) associates the set C of signed vectors

on E as

C={T(M) = X e s} v {0}



where T : § =~ {+,0,—}E defined by

. +
+ if A€ Se
= i o

T()\)e 0 if A e Se for e e E .
- if A€ Se

Mandel [TOJ] gave simple conditions on (S, E, 8) such that a
resulting restricted system is equivalent to an OM. Such a

system is called a sphere system (see Mandel [TO]).

It should be stressed that our discussion on oriented
matroids can always have the corresponding topological
counterpart which is very useful in the deveiopment of

our theory.

(1.6) Before we give a brief introduction to the results -«
presented in this thesis, we shall explain how the matroid

structure is enbodied in oriented matroids.
Let C be an OM on E and let
M(C) ={E\NX : XeC} .

The set M((C) is a matroid on E, or more precisely, the set
of flats of a matroid for M = M((C) satisfies the flat axioms

(M-0)~(M-2) of matroids:

(M-0) Ee¢ M ;
(M-1) F,, FpeM=>F; nF, ¢ M
(M-2) < Fy, F,eM, a ¢ Fy uF, , be F,\ F>

< F.>

=> < HF3eM s.t. aeFy; Pb and Fy n F, 3



Given subset S of E, the closure c¢l(S) in M (in C) is the

smallest flat containing S i.e.,

cl(S) =n {F : S € F ¢ M} .

A subset S of E is said to be independent in M (or C) if
there is no proper subset S' of S with cl(S') = cl(S). A
maximal independent subset S of T € E is said to be a basis.

of T in M (or C). It is well-known that

Given T ¢ E, every basis of T has the same

cardinality, called the rank r(T) of T.

A basis of E is also called a basis of M (or C). The rank
r(M) (or r(C)) of M (oxr C) is the rank r(E) of E. It is also
well-known that the poset L(M) of flats of M ordered by
inclusion is a geometric lattice, and the height function

of L(M) is the rank function r of M restricted to the flats

of M. The greatest flat of M is lL(M) = E and the smallest

flat of M is 0 =cl .
at o is L () cl(¢)

(1.7) Any partial order =son {+,0,-} induces a partial
order < on signed vectors on E in the obvious way:
< X ©X'> <= < Xe S'Xé for all e ¢ E > .

In this thesis we are interested in two kinds of

partial ordering on {+,0,-} . One is the natural linear

order < defined by - < 0 < + . The second one is the

conformal relation < defined by 0 < - and 0 < + (+ and - are

incomparable). Roughly speaking, the thesis is devided into

—10-—



1.11

two parts, Part I concerning properties of oriented matroids
associated with the linear order < and Part II mostly
concérning the geometric properties of oriented matroids
associated with the conformal relation. We present

here the major results in each part separately.

—11—



B. Summary of Results (Part I)

Since the simplex method for linear programming
was introduced by G.B. Dantzig, the theory of linear programming
has been studies in many different directions. One of the
most significant and interesting direction is the study of
combinatorial theory underlying linear programming initiated
by A.W. Tucker. In particular the schema (or basis) form of
fundamental theorems in linear programming and the constructive
proofs using elegant combinétorial pivot methods gave a new
insight into the subject (see Tucker [CL], Balinski [cal).
Later, R.T. Rockafellar [EV] suggested that many properties
concerning orthogonal subspaces of IRn, including the strong
duality theorem of linear programming, can be stated in
purely combinatorial fashion and one should be able to
axiomatize a broader structure (namely a system of oriented
matroids) in which those properties generalize. Bland [O0T],
Las Vergnas [MO], Folkman and Lawrence [OM] and Lawrence [OMI
independently gave different but eguivalent axiomatizations
of oriented matroids. In the thesis [OT] of Bland, he
succeeded in proving all the results suggested by Rockafellar
except for the oriented matroid generalization of the strong
duality theorem. The first proof of the theorem, a non-
constructive one, was given by Lawrence [OM]. Immediately
after this Bland [AL] gave a finite pivot algorithm which
abstracts Dantzig's simplex method of linear programming and

provided a constructive proof of the "schema" form of the theorem.

12—



Although all the results suggested by Rockafellar
were settled, wé do not think that our understanding of the
results is sufficient, or at least not as deep as our under-
standing of linear programming theory. One of the reasons
is that in both Bland [AL] and Lawrence [OM] the primal-dual
mechanism of oriented matroids was heavily emphasized and
the proof of the results are very hard to understand
geometrically even for the special setting of linear prog-
ramming, while any statement on oriented matroids using
duality can be stated without duality. Secondly, the geometric
terms used in linear programming such as polyhedra, cones,
feasible directions are completely lost in Lawrence [OM]

or implicit in Bland [AL] .

Hence we shall develop the theory of oriented matroid
programming using our elementary axioms and without duality.
Our purely primal treatment of the subject will be particularly
interesting when statements are interpreted in terms of the
topological representation of oriented matroids in (1.5).

A brief description of our approach and results is in order.

An affine oriented matroid (C:g) is an oriented

matroid C on E together with a fixed element g ¢ E called

the infinite element. Two subsets of C :

A= {XeC; xg > 0}

oo- X C' =
A {X e Xg 0}

—13 —



are called the affine space and the infinite space of (C;qg),

respectively. A vector X ¢ C 1is called a solution if X ¢ A ,

and a direction if X eAm. For a subset F of E \ {g}, the

subset of A :

P(F)"{XeA:XF

v

0}

is called a polyhedron. For a vector X in a polyhedron P ,

a direction Z ¢ A" is said to be a feasible direction at X in P
if X0 2 ¢ P . For £f e E\ {gl, a solution X ¢ A is said to

maximize f over a polyhedron P if X ¢ P and there is no

feasible direction Z at X in P with Zf > 0.

For two elements g, £ in E, an oriented matroid

program (OP} P =(C; g, f) is to find X €A which

maximizes £ over the polyhedron (the feasible region) P(El),

where El is the set E \ {g,f} of constraint elements.
An OP P = ((C; g, f) is feasible if P(El)x ¢ , and unbounded
if in addition there exists a direction Ze A® such that

ZEl 2 0 and Z_ > 0.

f
We shall give a simple inductive proof of the following

theorem in Chapter 3:

Theorem (3.4) (Fundamental Theorem) [Lawrence [OM] and Bland [AL]]

Every feasible OP is either unbounded or has an
optimal solution.

Using (3.4) we shall show:

— 14—



Theorem (3.15) (Feasibility Theorem)[cf. Bland [AL}, Corollary 3.4.

For a subset F ¢ E\ {g} , the polyhedron P(F) = ¢
iff either A = ¢ or there exists a subset Fl of F,
an element h ¢ F \ Fl and X e¢ A such that X maximizes

h over P(Fl) and xh <0 .

Let B be the set of bases of C . The set Bl of bases of an
op P = (C; g, £f) is defined to be the set {B \ g : g ¢ B ¢ B

and £ ¢ B} . It can be shown that for every basis B of P,

(a) there is a unique solution X = X(B) such that

Xg = 0 , called a basic solution; and

(b) for each j ¢ B, there exists a unique feasible
direction Z = zJ(B) at X(B) in P(B) such that

called a basic feasible direction.

Proposition (5.9): For any basis B ¢ B1 and any element
i e E\ (B u{gl}) the following statements are

equivalent:

(a) X(B) maximizes i over P(B) ;

) z3(B), <0 for all j ¢ B.

The following definitions follows naturally from

Theorem (3.15) and (5.9).

—-15 -



We say that a basis B ¢ Bl is feasible if X(B) e P(El),
optimal if it is feasible and ZJ(B)f < 0 for all j € B,
unbounded if it is feasible and 27 (B)g, 2 0 and 23 (B); > 0

for some j ¢ B, and inconsistent if 3 i ¢ El\ B s.t. X(B)i <0

and 23 (B), < 0 for all j ¢ B.

An OP P is said to be standard if Bl 20 .

Theorem (5.16) (Basis Form of the Fundamental Theorem)

Every standard OP has either an optimal, unbounded
or inconsistent basis.

This theorem can be viewed as two statements:

(a) Every standard OP has either a feasible or

inconsistent basis;

{(b) Every standard OP having a feasible basis has

either an unbounded or optimal basis.

For linear programming the statement (b) can be proved
constructively by using the simplex method with a finite
pivot rule, and the statement (a) follows immediately by

the idea of Phase I of the simplex method. It turns out that
this proof for the linear case cannot be extended to the
broader setting of oriented matroids, although pivot methods
generalize very naturally. The main reason is that the
natural abstraction of the simplex method can produce a
nondegenerate cycling , that is, a sequence of feasible basis

o gl, g2, ..,8¥ k

B such that B® = B® andg X(Bi'l) = X(Bi) for

at least one 1 < i < k, which cannot be detected by any known

—16 -



pivot methods for the simplex method. This peculiar phenomenon
explains the necessity of a new approach to the subject. In
fact Bland [AL] gave a pivot method for OP's whose finiteness

is guranteed by purely combinatorial argument.

In Chapter 6 a new finite pivot method for OP's is
given. The statement (b) is a straightforward consequence of
the élgorithm. The statement (a) follows easily from (b)
(This is shown in Section D of Chapter 5). Some examples of
OP's for which the simplex produces nondegenerate cycling
will be constructed in Chapter 7 and it will be shown

that Bland's pivot method produces an infeasible basis for
one of the examples. This answers the two open problems
raised by Bland [AL] . The discovery of the examples is due
to our purely primal treatment of oriented matrocid and

the topological representation of oriented matroids.

The duality of oriented matroids and programming
will be studied in Chapter 8. The generalization of the LP
strong duality theorem is immediate from the fundamental

theorem, once the basic properties of duality are proved.

17~



C. Summary of Results (Part II)

For a subset F of E let

C(F)"{XEC:XF=Q} .

Clearly C(F) = C(cl(F)) for any subset F of E. Consider the

poset L(C) of flats (or subspaces) of ¢ :

L(C) = {C(F) : F < E}

ordered by reversed inclusion. We have

LM(C)) = L(C).

The greatest flat of C is lL(C) = {0} and the smallest
flat of C is OL(C) = € . The dimension d(t) of a flat t ¢ LI(()
is defined to be the coheight of t in L(C) minus one. It is

easy to verify

d(C(F)) = n - r(F) -1 for F

n

E,
where n = r(C) = r(M(C)).

The flats of dimension 0 are called the points of C , the
flats of dimension 1 are the lines of C and the flats of
dimension n-2 are the hyperplanes of C . Unique flats of
dimension (-1) and .(n-1) are the maximal flat {0} and the
smallest flat C , respectively. Some of the basic properties
are

(a) The points of C are the flats of the form

{v, -v, 0} for some vertex V of C ;

18—



1.19

(b) The hyperplanes of C are the flats of the form

C({e}) for some e ¢ E \ cl(¢);

(c) If 2 is a line, h is a hyperplane and n 2 3 then

either £ € h or 2 intersects with h at a point.

Let C be an OM on E. For two vectors X and X' of C ,
we say that X is a face of X' if X L X' i.e., X conforms to
X'. Any subset t of C ordered by the conformal relation A is

a poset, denoted by L[t] . For X ¢« C , let

CIX] = {X'" € C : X' 4 X} .

A subset t of C is said to be a cell (or polytope) if
t = C[X] for some X ¢ (. Members of a cell are called faces
of t. For a cell t in C , LI[t]) is a lattice, called the

face lattice of t.

It is clear that the face lattice of a convex poly-
tope is isomorphic to the face lattice of a cell in a linear
OM.

For each X ¢ C, we define the dimension d4(X) of X
to be the dimension of the minimal subspace C (E\X) containing
X, or equivalently the number n-r(E\X) - 1. The dimension

d(t) of a cell t is the dimension d(1 ]) of the greatest

Lt
face. It will be shown in Chapter 10 that the face lattice

LLt] of a cell t satisfies:

(a) The height function of L[t] is the dimension

function 4 restricted to the faces of t minus 1.

—~19—



1.20

(b) Jordan-Dedekind Property: for ordered X, X'e t,

< X' covers X in t > <= < d(X")= 4X) + 1 >
(c) PM property :

<X, X'e t, X4 X' and. d(X') = 4(x) + 2 >

=> < g exactly two faces of t between X and X' > .

Las Vergnas [CV] previously studied various properties
of the polar of face lattices of cells. It is well-known that
the polar of thg face lattice of a convex polytope is iso-
morphic to the face lattice of some convex polytope. This
polarity does not extend to OM cells, since it has been
recentlv shown by Munson and Billera (see Munson [FL]) that ther«
exists an 0! cell such that the polar of its face lattice cannot
be realized by the face lattice of any OM cell. Hence the vprope
ties of the face lattice of an OM cell cannot be directly extend
for the polar. One of the properties known to be satisfied for
the face lattices of OM cells and not known for the polar is

"shellability", which will be studied in Chapter 11.

Bruggesser and Mani [SD] first proved the shell-
ability of a convex polytope: the facets of a convex poly-
tope can be arranged in a sequence Fl,Fz,...;Fr {r = number
of facgts) in such a way that for each i with 2 < i< r,

Fi n (;;1 Fj) is a topological ball of dimension 2 less
than the polytope. This result completed the Schlafli's

calculation of the Euler characteristic for convex polytopes.
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It turns out that we can abstract the notion of
shellability for cell complexes combinatorially to posets,
using two kinds of shellable posets namely a shellable

d-ball and a shellable d-sphere. We shall prove:

Theorem (11.15.a): The face lattice L[t] of every d-dimensional
OM cell t is a shellable d-ball and its boundary

3L[t] = LIt] \ {1 ]} is a shellable {(d-1)-sphere.

Lit

Using the above theorem, we can show:

Corollary Every OM cell t of dimension d satisfies

Euler's relation:

d i
I (-1)" f£.(t) =1
. i
i=0
where fi(t) denotes the number of i-dimensional

faces of t.

In Chapter 12 we introduce some operations (called

perturbations) by which one can transform an OM with certain

properties to another OM on the same elements. This operation
is very useful to systematically construct nonlinear OM;s

from linear OM's. It can be easily shown that many of
well-known nonlinear OM's such as the non-Pappus, non-Desarques
can be constructed from appropriate linear OM's using perturba-
tions. Also, the examples of nonlinear OM's used in Chapter 7
in order to show the possibility of nondegenerate cycling in

the simplex method are constructed in a similar way.
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In Chapter 13 we define and investigate a new class
of OM's, called the BOM's. This class includes all lineéar
OM's, all OM's with rank < 3 and excludes all OM's C for
which the simplex method generates no nondegenerate cycling
for the OP (C; g, f) for any pair g, f of elements. It will
be shown that this class is closed under taking dual i.e.,

the dual of a BOM is a BOM.
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D. Conformal Elimination Property and Vertex Axioms

It is pointed out in Section A that there are several
different axiomatizations of oriented matroids used in the
literature. Here we shall derive axioms defining the vertices
of an oriented matroid , and show that an oriented matroid
is characterized by its vertices. This axiomatization are
equivalent by duality to the circuit axioms used by Bland and

Las Vergnas [OR].

First of all, we shall obtain a very powerful property
of oriented matroids, which will be often used thoughout this

thesis. This property is in fact equivalent to the elimination

property (1.2 OM-3), and will be called the conformal elimination

Erogertz .

(1.8) Proposition Let C be a set of signed vectors on E.
Then C satisfies the elimination property (1.2 OM-3)

iff C satisfies:

Xl,Xze C and I is a nonempty subset of E

1 2

(OM=-3"')
and X

such that every i ¢ I separates X

9 JeIand g X3eC such that

w

X.'O,

1 . .
X; or 0 for all i ¢ I (i.e., x%ﬁ.x;)

W u

(Xl o} Xz)e. for all e ¢ E not separating

1

0w

X~ and x2 .
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Proof Clearly (OM-3') implies (OM-3).

We shall prove the implication (OM=3) => (OM-3') by induction.
Let (OM-3')k be the statements obtained from (OM-3') by imposing
the condition that a set I is chosen with |I| < k. Thus

(0M—3')1 is equivalent to (OM-3).

Assume by induction that (OM-3) implies (OM-3'), , and

we shall show that (OM-3) implies (OM-3')k. This will prove

1 2

the result. Let X*, X“¢C , let I be a subset of E such that

1 and Xz. Take any j ¢ I.

By (OM-3), there exists x3 ¢ such that Xg = 0 and

|I| = k and every i ¢ I separates X

XZ = (X1 0 xz)e for all e ¢ E not separating x1 and Xz. if
Xi = Xi or 0 for all i € I we are done. Otherwise let I' be
the set {i ¢ I : i separates x! ana X3} - Since j £ 1',

0<|I'| <|I] =k. By the inductive hypothesis (OM-3')

applies to xl, x3 and I'. It follows that there exists

£ ¢ I' <« I and X4eC such that x: =0, xi = Xi or 0 for

all i ¢ I' and x: = (xl o X3)e for all e ¢ E not separating
xl and X3. It is clear that Xg = Xi or 0 for all i ¢ I \ I',
2

k-1

and that (xl ) X3)e = (Xl o X for all e ¢ E not separating

e

Xl and x2, and further every element e ¢ E that separates xl
and X3 separates x1 and xz. This implies that x: =0, xg = Xi

or 0 for all i ¢ I, and xg = x! o x2)e for all e ¢ E not

separating x1 and x2. Thus (0M-3')k follows and the proof is

complete O
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Recall that the set V = V(C) of vertices (or
cocircuits) of an OM C is the set of nonzero vectors in C

which have minimal supports over C\ {0} i.e.,

(1.9) V={VeC\{0} :XeC\I{Q) and

X ¢V implies X =V} .

(1.10) Proposition If X is a nonzero vector in an OM
C then for each j € X there exists a vertex V ¢ V

such that Vj= xj and V conforms to X.

Proof If X ¢ V there is nothing to prove. Let X ¢ C \ V
and X # 0 . Then there exists Z ¢ V with ¢ =22 < X. Let

J € X. It is enough to show that there exists W ¢ C such
that j ¢ W ¢ X and W comforms to X. If j eZcX then we

are done. If not there are two cases to consider.

Case 1: j4 2.

Let Z' be 2 if Z X X, and -Z otherwise. Let
I = {ie E: i separates X and 2'} . Clearly I #¢ , and using

2 3

(OM-3') with xl = X and X = Z' we obtain W(= X~ in (OM-3'))

s.t. j e Wec X and W< X.
Case 2: jeZ2Z and 2z EX.

If -Z £ X, then there is nothing to prove.
Suppose -Z X X. Let 2' be Z if zj =Xy and ..zj ='Xj
The proof continues similarly to Case 1. 0
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(1.11) Theorem If X is a nonzero vector .in an OM C then there

(1.12)

(1.13)

exist vertices Vl, Vz,...,Vk of C such that vt £ X

for i = 1,2,...,k and X = V! o v2 0-..0 VK .

Corollary An oriented matroid is determined by its

vertices.

Using (1.11) one can easily show:

Suppose V is the set of vertices of an OM C . Then the

following two conditions hold:

(OV-1) For all Ve V, V= 0 and -V ¢ V; and for all

vi,v2e v, vl ¢ v? implies V! = v2 or -v? ;

2 1

(oV-2) Vl,V e V , £ ¢ E separates V 2

and V

1 2

and g ¢ E does not separate V- and V

HV3e V such that
3 _ 3 _ 1 2

Vf o , Vg (V- o V )g , and
3

Ve = Vi R Vi , Or 0 for all e ¢ E

In fact it is not difficult to show the following:

(1.14)

Theorem A set V of signed vectors on E is the set of
vertices of an OM iff V satisfies the conditions (0OV-1)

and (OV-2).

We call the conditions (OV-1l) and (0OV-2) the vertex (or

cocircuit) axioms for OM's. Bland and Las Vergnas [OR] used

the vertex axioms to define an OM, and they characterized the

set C

unions

(what they call the span of OM) in terms of conformal

of vertices.
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E. Deletion, Contraction and Sign Reversal

Before we go to the next chapter we introduce some

standard useful operations in oriented matroids.
Let E be a finite set and let C be an OM on E.

If X is a vector on E and if S is a subset of E, SX

denotes the vector on E obtained from X by reversing signs

of the components Xs i.e.,

-Xe if e ¢ S
(X)) =
577e X if ee¢EN\ S
e
Let
SC = {SX : X e C} .

Then it is easy to verify :

(1.15) SC is an OM on E for each subset S of E, called

the OM obtained from C by reversing signes on S.

For subsets R and S of E, let

(1.16) C \ R = {xE\R : X ¢ C}

(1.17) cC /s = {XE\S : X e C and Xg = 01,

where XF denotes the subvector (Xe: e eP) of X for FcE.
It is easily seen that both C\R and (/S are OM's on

EAMR and E\S, called respectivelv the minor of ¢

obtained by deleting R and the minor of ( obtained by con-

tracting S. For disjoint subsets R and S of E, clearly

(1.18) C\R/S=C/S\R .
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PART 1

ORIENTED MATROID PROGRAMMING



2. AFFINE ORIENTED MATROIDS, POLYHEDRA,

AND OPTIMIZATION

It will be convenient to have the following definitions.

The set {+,0,-} of signs is ordered by the binary relation <

in the obvious manner : - < 0 < + , This relation < can be

extended for signed vectors on a finite set E as follows:

1 and x2 on E, Xl < x2 (xl is less than

or equal to XZ) iff xl < XZ for each e ¢ E. The relation

e
x! < %2 may be also written X% 2 x1
1

for signed vectors X

and read x2 is greater

than or equal to X". In particular if X 2 0 (X < 0 ;

respectively) holds then X is said to be nonnegative (nonpositiz

These definitions are obviously motivated by the
standard usage of these terms for real vectors. For example
(0,+,+) > (0,-,+), (0,+,+) is a nonnegative vector, and a

vector (0,-,+) is neither nonnegative nor nonpositive.
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A. Affine Oriented Matroid

Let C be an OM on a finite set E. By an affine OM

(associated with C) we mean a pair (C; g) where g is a

specified element in E called the infinite element. For an

affine OM (C; g) consider the following two subsets of C ,

the affine space A defined by

(2.1) A=1{xe C : xg > 0}

and the infinite space A" defined by

2.2) A= X eC: X
( ) {X e g

: a Iy » oo . @
In order to distinguish a vector in A from a vector in A  ,

0} .

I} «© 0 3
we may call a vector in A a direction.

2

Let E_ = E \ {g} . For subsets Fl and F? of E_ define

(2.3) P@EL,F?) = {Xe¢ A :X.220and X , < 0}

Fl F2
where xF denotes the subvector (Xe: e ¢ F) of X for F € E,.
A subset P of A such that P = P(Fl,FZ) for some subsets Fl
and F2 of E° is called a polyhedron. A pair (Fl,pz) is a

representation of P.

Let P be a polyhedron. We say that an element e ¢E

]
suppnorts P if either
(2.4) xe 2 0 for all X € P, or

(2.5) xe £ 0 for all X ¢ P.

For any subset F of Eyr let PF be the polyhedron defined by

(2.6) P ={Xe P : X, =0} .
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2.3

A face of P is a nonempty subset t of P such that t = PF
for some set F ¢ Eo of elements supporting P .

2

If P = P(Fl,Fz) for some subsets Fl, F° of Eo' then

clearly

(2.7) Every element e ¢ Fl u F2 supports P ;

(2.8) if F € FL u F? and P.= ¢ , then

PF is a face of P..

By using the fact that a polyhedron is closed under the

composition one can show the converse of (2.8):

(2.9) If t is a face of P(FY,F%) then there exists a

subset F of Fl U F2 such that t = PF.

It should be remarked that any nonempty intersectipn of
two faées of a polyhedron P is again a face of P and hence
the set FL(P) of all faces of P together with the empty set ¢
ordered by inclusion is a lattice. It can be shown that the
lattice FL(P) abstracts various properties of the face

lattice of a real polyhedron such as the Jordan-Dedekind chain

property or the PM-ness (see Chapter 9,10). However we will
not develop this theory here but later in Part II, simply
because there are more important notions to develop in order
to study the main subject in Part I. One such notion is

optimization which is to be introduced.
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Let P be a polyhedron. Given a vector X ¢ P, a

feasible direction at X in P is a direction Z ¢ A" such

that

(2.10) Xo02¢€P.
The set P of directions which are feasible at every vector

X in P is called the infinite face of P provided that

P=z¢, i.e.,

(s -]

(2.11) P ={Z ¢ A : Xo02ZeP for all X € P}.

(2.12) Proposition Let P be a polyhedron with a representa-
tion (Fl,Fz) and let X ¢ P. Then a vector z is a feasible

direction at X in P iff z ¢ Am,

(2.13) zi 20 for all ie Fl\ X , and
Zj <0 for all j € F2\ X .
Proof Easy.

The following is less trivial.

(2.14) Proposition Let P be a nonempty polyhedron with a

2

representation (Fl,F ). Then the infinite face P~ is determined

by

00

(2.15) P ={2¢€¢ A”: 2_, 20 and Z.2 <0} .

Fl
Proof Let P, denote the right hand side of (2.15). By

the definition

e ]

Po € P . Suppose there exists

Z e P°\ Pg .LetI={eeFl:Ze<0}u

{e ¢ F? : Z, >0} . since Z ¢ Po + I = ¢ .
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Let X be any vector in P . Since X 0 2 ¢ P, it follows that

xi>0forallieInF1andxj<0foralljeInF2.By

(1.8 OM-3'), setting x1 =X and X2 =%, we obtain X3 eP

and 2 ¢ I such that Xi =0 . Then X> o 2 ¢ P contradicting

2 ¢ P° . This completes the proof. 0

B. Optimization

For f ¢ Eo, we say that a vector X maximizes (minimizes

respectively) £ over A polyhedron P if

(2.16.a) X € P and

(2.16.b) there is no feasible direction Z at X in P with

Zf >0 (Zf < 0).

We may use the word optimize in the place of "maximize" or
"minimize" whenever the distinction is unnecessary. It should
noted that using the language of Bland [AL] the statement (2.
says there is no augmenting vector Z with respect to X. The
following properties are immediate.

(2.17) If P' is a polyhedron contained in P and if X ¢ P'

optimizes f over P then X optimizes f over P'.

(2.18) If the infinite face P” contains a direction Z with
Zg > 0 (respectively, Zg < 0) then there is no

maximizer (minimizer) of £ in P .

A cone is a polyhedron having a unique minimal
{nonempty) face. It follows immediately that if X is a vector
in a polyhedron P with a representation (Fl,FZ) then for

Flard\x (1=1,2
(2.19) P(Fl, F2) is a cone containing P .
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By (2.12) we obtain:

2). Then a

(2.20) Suppose P has a representation (Fl,F
vector X optimizes f over P iff it optimizes f over

the cone P(?l, F2) defined above.

It is clear that the definition of optimality is
merely an analogue of the same terminology used in the linear
case: a real vector x maximizes a linear function f over a
real convex polyhedron iff there is no direction z such
that f(x +e z) > £(x) for € > 0. In the similar way it is
very useful to abstract the notion of comparing the objective

1

values evaluated at two points. For example if X~ and X2

are two vector in a polyhedron P and if X% < x% then it is
easy to show that x! is not a maximizer of f in P(Corollary
(2.24)). However we are able to say much more than this. For
this purpose we introduce the notion of directions between

two vectors in an affine space.

2

For any two distinct vectors Xl, X“ in the affine

space A , we define the set D(Xl, X2) of directions from X1

to X2 by

(2.21) p(xt, x%) = {2 ¢ A%: x} 02 = x* 0 %2 ana

x2 0 (-2) = x%2 o x}} .
Hence, for xl, Xze A

(2.21) <z e D(xt, %%) >
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Z e A
= y2 ; 1
<=> Zi X1 for all ie¢ Eo \ X
- | . 2
Zj Xj for all j e Eo \ 5_/// .

The following proposition is straightforward from the defini-

tions and the elimination property (OM-3).

(2.22) Proposition Let X', X%c A with x! = x°.

Then the following properties hold:

(a) oxt, x?) = -p(x2, x) i.e.

Z is a direction from Xl to x2 iff -2

is a direction from x2 to X1

-

) p(xt, x%) =¢ and D(x}, x°) 3

H{=]
-~

1 and X2 are vectors in a polyhedron P

1 to X2 is a feasible

(c) If X
then every direction from X

1

direction at X" in P ;

(d) If e ¢ Eo and Xé < Xg (respectively, Xi > Xg)

then there exists Z e D(Xl,Xz) with Ze> 0 (Ze < 0)

(2.23) Proposition If a vector X in a polyhedron P maximizes
(minimizes, respectively)'f over P then for each vector
X' in P different from X, there is no direction Z from

X to X' such that Zf > 0 (Zf < 0).

Proof This follows immediately from (2.22c). ]
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(2.24) Proposition If a vector X maximizes (minimizes) £

over a polyhedron P then x% < X (x' 2 Xg) for all

X'e P with X'= X,

proof Suppose X maximizes f over a polyhedron P . Let

X'e P, X'= X and suppose Xg > X..

exists 2 ¢ D(X,X') with Zf > 0. By (2.23), thié contradicts

By (2.22.4), there

the optimality of X. Therefore X% < Xe . O

Proposition (2.24) implies:

(2.25) Corollary If vectors Xl and X2 in a polyhedron P
optimizes £ over P then X% = Xi .
(2.26) Theorem If Xl and X2 optimize f over a polyhedron
P then xlo x? also optimize f over P .
Proof  Suppose x! and x? maximize f over P . Clearly
Xlo Xze P . Suppose that xl<>x2 does not maximize f over P .
Then there exists Zle A such that X' ox% 02%¢ P and
Z% > 0. Let 22 be any direction from x1 to x2. By (2.23),
Z% = 0. Let z = 220 21, Hence Ze > 0. Since 22 « D(Xl,xz),
%2022 = x1 %% and thus x oz = x! 02202 = x}ox%0zlc P .

This together with the fact Zf > 0 contradicts the optimality

1

of X*. This completes the proof. 0

1 2

(2.27) cCorollary 1If X~ and X“ optimize f over a poly-

hedron P then every vector in the minimal face of P

1 2

containing both X~ and X“ optimizes f over P .
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3. ORIENTED MATROID PROGRAMMING

In the previous chapter we have introduced the notion
of optimization , maximization or minimization over a
polyhedron, as a natural abstraction of the same notion in
real vector case and\we have shown that various geometrical
properties of linear optimization are still valid in the

oriented matroidal abstraction.

We shall study in this chapter further results
on optimization, which specialize to well-known results in
linear programming when the associated oriented matroid is

restricted to be linear.

We assume in the chapter that C is an OM on a finite
set E , g is a fixed element of E, A and A~ are the affine

space {Xe C : Xg > 0} and the infinite space {X eC ; xg =0}

of an affine OM (C:g). Let E, = E N {g} . For a subset F of

E the polyhedron in (C:g) having a representation (F,¢) is

ol
denoted by P(F) instead of P(F,¢).
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A. Definitions

Given an element f ¢ Eo' the OM program (abbreviated

bv OP) (C;g,f) is to

(3.1) maximize f

subject to X € P(El)

where f is the objective element, E; = E N\ {g,f} = EN {f}

is the set of constraint elements, and P(El) is the feasible

region. A vector X in A is called a solution. A solution X

is feasible if X € P(El), optimal if it solves (3.1) i.e.,
X is feasible and maximizes f over P(El). An OP (3.1) is

said to be feasible 1if P(El): ¢ , and infeasible otherwise.

A vector Z in A” is said to be infinite - optimal if Zg] 2 0

and Z. > 0. We say that an OP (3.1) is bounded if it is

£
infeasible or it has no infinite - optimal vector, and
unbounded otherwise (i.e. it is feasible and has an infinite-

optimal vector).
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B. Fundamental Theorem

The following properties are obvious:

(3.2) An infeasible OP has no optimal solution.

(3.3) An unbounded OP has no optimal solution.

The main theorem of this chapter is a generalization of the

Fundamental Theorem of LP:

(3.4) Theorem (Fundamental Theorem)

Every feasible OP is either unbounded or has an

optimal solution.

This theorem was proved by Bland [AL, Section 5] in

the language of primal dual pairs of oriented matroids.
His method of proof was a natural extension of the
classical way of proving (3.4) with the linearity restric.
tion on OM using the simplex method. (Start with a
vertex of the feasible region and generate a finite
sequence of vertices until either an optimal solution

or the evidence of unboundedness is obtained.) The
equivalence of (3.4) and the Bland theorem depends on
the equivalence of the notions of unbounded (primal)
solutions and coinconsistency.(or dual inconsistency) as

described at the end of Section 3.E.



However, just as Theorem 3.4 is very simply stated
in its present all primal form, so too we can give
a "primal" proof of this theorem which does not
required the machinery of primal dual pairs of OM's
and pivot operations. 1In fact all we require is the

notion of minors introduced in Section C of Chapter 1.
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C. Inductive Proof

Let P = (C;g,f) and let El= E \ {g,f} . For sub-

sets R and S of El we denote by P \ Rand P / S the

subproblems (or minors) of the OP P defined by

(3.6) P\R (C \ R; g,f)

(3.7) P/ S (C/ 8; g,£) .

-

The following properties are straightforward:

(3.8) If h ¢ El and P \ {h} is infeasible

then P is infeasible ;

(3.9) If h ¢ E, and P / {h} is unbounded

then P is unbounded.

It is not too difficult to find that the Fundamental Theorem
(3.4) follows from the following lemma and the above remarks

(3.8) and (3.9). (A proof of (3.4) is given in (3.12).)

(3.10) Lemma (¢ f. Bland [AL], Theorem 5.1) For an OP
P=(C;g,f) and for any heEl, the following statements ho.

(a) If both P\ {h} and P / {h} have an optimal

solution then P has an optimal solution;

(b) If P\ {h} has an optimal solution and P / {h}
is infeasible then either P has an optimal

solution or P is infeasible;

(c) If P \{h} is unbounded and P / {h} has an optimal
solution then either P is unbounded or P has an

optimal solution;
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(d) If P\ {h} is unbounded and P / {h} is infeasible

then P is either unbounded or infeasible.

In order to prove the above lemma it is somewhat

easier to show the following stronger lemma.

(3.11)

where A
are the

followi

Lemma (c f. Bland [ALl, Theorem 5.1) Consider an

OP P=(C;g,f) and h €E and for the following

1

four statements (i), (ii), (i)* and (ii)*:

- 1 1 . : .
(i) X" ¢ A and XE\{h} is an optimal solution

for P \ {h} ;

1 1

(ii) Z- ¢ A and ZE\{h} is an infinite-optimal
vector for P \ {h} ;
. 2 2 _ 2 : .
(i) X“ ¢ A, Xh = 0 and xE\{h} is an optimal

solution for P / {h} ;
(i1)* P / {h} 1is infeasible ;

= {X e C : Xg > 0} and A" = {2 ¢ C : Zg = 0}

affine and the infinite spaces of (C;g). The

ng properties (a) ~ (d) hold:

(a) If (i) and (i)* are true then either Xl or

X2 is an optimal solution for P ;

(b) If (i) and (ii)* are true then either Xl

is an optimal solution for P or P is infeasible;

(c) If (ii) and (i)* are true then either Zl_is

an infinite-optimal vector or X2 is an

optimal solution for P ;
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3.7

(d) If (ii) and (ii)" are true then either zl

is an infinite-optimal vector or P is in-

feasible.

Proof (a) Assume (i) and (i)* are true and suppose neither

xl nor X2 is an optimal solution for P. Since Xé\{h} is an

optimal solution for P \{h} but x! is not an optimal solu-

1
tion for P, we know .that Xﬁ < 0. Let P' be the polyhedron

P(E;\ {(h} , {h}) = {X e A : X and X, = 0} .

E;\{h} > &
Clearly x' ¢ P' for i =1,2 and xt maximizes f over P'.

Let Z' be any direction from X2 to Xl. Then by (2.21) and

(2.23), we have 2'¢ A”  and

zl

v

o ., 0 and 2'. < 0

|
£ Ze\{h} 2 2 h

= 2 . 2 :
where F = E;\ X" . On the other hand since Xp\{n} 18
optimal for P / {h} but X° is not optimal for P, there

exists Z ¢ AT s.t.

Zf‘> o , zF\{h} 2 0 and Zh >0 .

Using the elimination property (1.2 OM-3) for Z and 2'

eliminating h, there exists Z" €A~ such that 2" > 0,

£
Zﬁ = 0 and Z; 2 Q. This contradicts the optimality of
2 ;
xE\{h} in P / {h}. Therefore the result holds.

(b) Assume that (i) and (ii)”* are true, and suppose
the conclusion is false. For the same reason as in the proof of
(a), X& < 0. Since P / {h} is infeasible and P is feasible,

there exists x°eAA s.t ~X§l 2 0 and Xﬁ > 0. Using the



3.8

Xé \{h} 20 and the elimination property for xl and X°, we
1 ~
obtain x3€ A  such that xgl 2 0 and xg = 0, contradicting

(ii)* . Therefore (b) follows.

(c) Assume (ii) and (i)* are true, and suppose the

conclusion is false. This implies that Zle A», Zl > 0,

£
1 1l . ® .
ZEl\{h} 2 0 and Zh < 0, and that there exists Z ¢A as in

the proof of (a). Using the elimination property for Zl and
7 eliminating h, we obtain a contradiction to (1)*. Thus (c)

follows.

. .
(d) Assume (ii) and (ii) are true, and suppose the contrary

1 1 1l

h <0 Zg ZE\ ()} 2

and that there exists X%¢ A such that xgl 2 0 and xg > 0.
1 and x° eliminating

conclusion. This implies that 2 >0,

By using the elimination property for 2
h, we obtain a contradiction to (ii)* . This completes the

proof. 0

(3.12) Proof of the Fundamental Theorem: Let P = (C;qg,f)

be any OP and suppose it is feasible and bounded. We must
show it has an optimal solution. We use induction on ]Ell .

If |El| = 0, any feasible solution is optimal and hence the

result is true. Suppose |E;| > 0 and the theorem is true for
smaller values of |E1| - Take any element h ¢ E,. Since P is
feasible and bounded, and by the induction and by (3.8) and

(3.9), either

(a~1) P \ {h} 4is unbounded ; or

(a-2) P \ {h} has an optimal solution,
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and either

(b-1) P/ {h} is infeasible ; or
(b-2) P / {h} has an optimal solution.
Thus we have four cases to consider, which fall into the
cases (a), (b), (c) and (d) of (3.10). By the lemma and the
assumption P must have an optimal solution. This completes
the proof. 0
In the rest of this chapter we shall see some interesting

consequences of this theorem.

D. Feasibility Theorem

An element g ¢ E is said to be a loop of an OM ¢(

if xg =0 for all X ¢ C . For any subset F € E = E \{g}

remember that P(F) denotes the polyhedron

P(F) = {X e A

XF > 0}

in the affine space A = {X ¢ C : xg >0} of (C;g). We
shall derive a necessary and sufficient condition for a

polyvhedron P(F) to be nonempty. Let F be any fixed subset

of E . It is obvious that P(F) = ¢ if

(3.13) g 4is a loop of C .

It is less trivial but follows from (2.24) that the following

condition implies P(F) = ¢ :

(3.14) There exists a proper subset F1 of F, an element

h e F \ F1 and a vector X e P(Fl) such that Xh < 0

and X maximizes h over P(Fl).



The following theorem says that if P(F) = ¢ , at least one

of (3.13) or (3.14) holads,

(3.15) Theorem (Feasibility Theorem) [cf. Bland [AL]}, Cor. 3.4.

Let'F be any nonempty subset of E,. Then the polyhedrc

P(F) = ¢ iff neither (3.13) nor (3.14) holds.

" The sufficiency of this theorem has already been observe

For the necessity we need the following lemma:

(3.16) Lemma Let F be any subset of E, and let h ¢ F.
If P(F) = ¢ and P(F\{h}) =¢ then there exists a

vector X € P(F \{h}) maximizing h over P(F\ {h}).

Proof Assume P(F) = ¢ and P(F \{h})= ¢ . Suppose the
contrary. Consider an OP P = (C \ S; g,h) where S = E, \ F.
Since P(F\ {h})= ¢ , the OP P is feasible. By the Fundamental
Theorem (3.4), P is either unbounded or has an optimal solu-
tion. Observing that there exists no X ¢ A maximizing h

over P(F \ {h}), P has no optimal solution and hence it is

unbounded. This implies

-]

T2 ¢ A s.t. 2, >0 and 20 .

Zp \{h}

It follows from the assumption P(F) = ¢ and P(F\ {h})=z¢

that
AX € A s.t. xh < 0 and xF\{h}Z 0.
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Using the elimination property for X and Z, we obtain X'e A
s | I ] [] 3 :
with Xh 0 and XF\{h} 20. Then X'e P(F), contradicting

P(F) = ¢ . Thus the result follows. 0

(3.17) Proof of (3.15) : It is left to show the necessity.

It is sufficient to prove

(3.18) < P(F) = ¢ and g 1is not a loop >

=> < (3.14) holds > .

We shall prove (3.18) by induction on |F| .

1f |F| = 0, then the assumption of (3.18) cannot be

satisfied and hence (3.18) holds.

Suppose |F| 2 1 and assume that the statement (3.18)
holds for smaller F. Take any element h ¢ F. There are two
cases to consider (i) P(F\ {h}) = ¢ and (ii) P(F\ {h})= ¢.
I1f P(F \{h})= ¢ , by the inductive hypothesis the property
(3.14) follows. Suppose P(F\ {hl)= ¢ . Then by Lemma (3.16)

(3.14) follows immediately. This completes the proof. 0O

E. The Strong Duality Theorem (Primal Statement)

A subset F of El is said to be cofeasible for (3.1) if

(3.19) $ 2z ¢ A” such that Z. > 0 and Z, 2 Q.

This condition (3.11) is equivalent to

(3.20) The infinite face P”(F) of the polyhedron P(F)

contains no vector 2 with Zf > 0.

A vector Xe A and a subset F € E, are said to be complementary

if
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3.12

(3.21) X =0 .

(A similar notion of complementarity was introduced by
Bland [AL], where the equivalence was established between

the two notions of optimality in terms of the existence

of a complementary co-feasible solution and the nonexistence

of a primal augmentation.)

The following is clear.

(3.22) Proposition A feasible solution X for an OP (3.1)
is optimal iff there exists a cofeasible subset F

of El such that X and F are complementary.

An OP (3.1) is said to be co-infeasible if the OP has an

infinite-optimal vector. Thus the unboundedness of an OP is
simply the feasibility together with co-infeasibily, and
clearly a co-infeasible OP has no optimal solution. The
following theorem which will be shown in Chapter 8 to be
equivalent to the OP strong duality theorem (first proved by
Lawrence [OM] and later algorithmically by Bland [AL]) is

a conseguence of the Fundamental Theorem (3.4) and (3.22).

(3.23) Theorem For an OP P = (C; g,f), exactly one of

the following statements holds:

(a) P is infeasible or co-infeasible;
(b) There exists a feasible solution X for P
and a cofeasible subset F of El' and further-

more they can be chosen complementary.
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F. The Optimal Face and Full Complementality

In this section we shall study a generalization of the
Full Complementality Theorem of linear programming, which makes

the Strong Duality Theorem (3.23) slightly stronger.

First we recall a geometrical property of the set of

all optimal solutions for an OP.
Consider an OP P = (C; g,f). As we have shown in (2.28)
(3.24) The set P* of all optimal solutions of P is a face of

the feasible region P(El), which is called the

optimal face of P.

It follows from (2.25) that

(3.25) for the optimal face P* of P
Xf = x% for all X, X'e P* .

For a solution X € A , a constraint element e ¢ El is said
to be active at X if Xe = 0. For each subset F of El' let

Pp denote a face of the feasible region P = P(El) defined by

(3.27) Po = {XeP : X;=0} .

It is clear that if an OP P has an optimal solution then the

optimal face P* of P is determined by
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(3.28) P*= P

where F is the set of constraint elements which are
active at every optimal solution for P. Since a poly-
hedron is closed under the composition and P* is clearly

a polyhedron ,

(3.29) there exists an optimal solution Xx* such that

*
Xg p* 7 2

It follows from (3.22) that

(3.30) F* is cofeasible.
In fact one can prove a stronger statement on F* than (3.30).

First we remark that

(3.31) Proposition If F ¢ E1 is cofeasible for P and

if e ¢ Fand 32 ¢ A" s.t. Ze > 0, Zf 2 0 and

0 then F \{e} is cofeasible.

v

zF\{e}

Proof Assume F ¢ El is cofeasible and there exists e ¢ F
(=<

and 2 ¢ A" s.t. % >0, Z;2>0 and Zp\{e}Z - Suppose F \ {e}
is not cofeasible. Then dZ'¢ A~ s.t. 2Z'! > 0 and 2! > 0.

f F\{el}l® ~
Since F is cofeasible Zé < 0. Using the elimination property
for Z and Z' we obtain Z"¢A~ s.t. 2% > 0, 2% = 0 and 2} > 0.
This contradicts the cofeasibility of F. Hence F \ {e} is

cofeasible. » O
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3.15

We say that a subset F of El is strongly cofeasible for an OP

P if it is cofeasible and § 2z ¢ A” s.t. Z, >0, 2.2 0 and

ZF\{e} 2 0, for each e ¢ F. Proposition (3.31) implies:

(3.32) If F < E; is cofeasible, then there exists a strongly

cofeasible subset F' of F.

Now we can show that the set F~ is strongly cofeasible.

(3.33) Theorem Suppose that an OP P has an optimal
solution. Let F* be the set of constraint elements
which are active at every optimal solution. Then F*

is strongly cofeasible.

Proof 1f F'= ¢ , there is nothing to prove. Assume that
F*2 ¢ . Suppose that F* is not strongly cofeasible. Since F”
is cofeasible by (3.30), there exists e ¢ F* and z% A"

20 > 0, z3
tion of F* s.t. 2

s.t. > 0, and Zg* 29. Let R, S be the parti-

\{el}

° = 0. By the remark (3.29)

R
we know that there exists an optimal solution x* s.t. X

Xg \ps> O- Let xt = x*o 2°. Clearly xt

o

> 0 and ZS

*

F
is a feasible solution,

*= 0’
~

however, not an optimal solution for x;*z 0. It follows that
there exists Zle A” s.t. Z% > 0, Zé 2 0. Let 22 = 2%, Zl.'

2 2
Then 2 ¢ A" , Z% > 0, ZF 20, which contradicts the co-

feasibility of F* . Therefore F* is strongly cofeasible. O

Using Theorem (3.33) one can make Theorem (3.15)

stronger by replacing (b) of (3.15) by

(3.34) There exists a feasible solution X and a strongly

cofeasible subset F* of Ej such that they are
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3.16

full complementary:

*

*
XF* g and xEl\F* > 9, .

For a vector Xe¢ A and F € E,, a pair (X,F) is said to be

a complementary pair if X and ¥ are complementary, and an

optimal pair if in addition X is feasible and F is cofeasible.

Bland (private communication) pointed out that
(3.34) can be proved from (3.15) and the generalization
of Tucker's complementary Theorem (see Bland [ALl,

Corollary 3.2.1) in‘the context of dual pairs of OM's.

(3. 35) Proposition If (X,F) is an optimal pair, and if
F is strongly cofeasible, then F € F*, where F*

is defined in (3.33).

Proof Let (X, F) be an optimal pair and let F be strongly
cofeasible. Suppose that there exists e ¢ F \ F. By the
definition of F*, there exists an optimal solution x° s.t.

xO

e > 0. Since (X, F) is an optimal pair, Xp = 0. Thus X = x°

and there exists a direction ZeA” from X to X° such that Ze > 0
and ZF\{e} 2 0. By the optimality of X and x°, and by (2.25),

Zf = 0. This contradicts the strong cofeasibility of F. 0

(3. 35) implies:
(3.36)  corollary (Bland [AL}) 1If (x}, Fl) is an optimal

pair and Fi jsg strongly cofeasible for i =1,2,

then (X1, F2) is$ an optimal pair.
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4. BASES OF ORIENTED MATROIDS

A. Elementary Properties

Let E be a finite set and let C be an o.m. on E.

Let
(4.1) M) ={E\ X :XeC}.

It can be easily shown that the set M(C) is the set

of flats of a matroid, since M =M(C) satisfies the

flat axioms of a matroid:

(M=-0) EeM;
(M-1) Fi, Fp e M=> F; nF, eM;
(M-2) Fi, Fp e M, a} F, UF, , be F)\F,

n

=> HF3eM s.t. ac F3$ b and Fy nF, €F

3 -
Given subset S of E, the closure c¢l(S) of S in C is the

smallest flat of M(C) containing S i.e. ,.

(4.2) cl(s) =n{F : S € F ¢ M(C)} .
Clearly, we have

(4.3) S' € S8 €E =>cl(S') £ cl(s) .

A subset S of E is said to be independent in C if there

is no proper subset S' of S with cl1(S') = ¢cl1(S). Given T < E,

a maximal independent subset of T is called a basis of T in C .

Using matroidal properties (M-0) ~ (M-2), we can prove the

following: Let T be a subset of E.

—54 —



(4.4) If a subset S of E is independent and cl(T) \ cl(S)= ¢,
then T \ ¢c1(S) ¢ and S vu{e}is independent for each

e e€ T \ cl(S).

(4.5) If S is a basis of T then cl(S) = cl(T).
(4.6) If S is a basis of T and j ¢ S, then there exists
a unique flat F with S \{j} € F ¢ ¢c1(S) (therefore

F=cl(s\{j}.

(4.7) Let S be a basis of T and let i ¢ T \ S. Then

S \{j} v {i} is a basis of T iff i ¢ cl(s\ {ji}).

(4.8) If S and S' are bases of T and j ¢ S \ S', then there
exists i ¢ S'\ S such that S\ {j} u{i} is a basis

of T.

(4.9) Every basis of T has the same cardinality, called

the rank r(T) of T.

A basis of E in C is also called a basis of C , and the
rank r(C) of C is r(E). Let B = B(C) denote the set of all

bases of C . The following properties will be very useful:

Let C(F) denote the set {X ¢ C : Xp = 0} for F € E .
(4.10) B € B iff B is a minimal subset of E such that

C(B) = {0} .
(4.11) For each basis B e¢B and j ¢« B, C(B\{j}) = {X,-X, 0}
for a unique signed vector X ¢ C with xj = + , Such

X is called the fundamental cocircuit (or vertex) of j

in B, denoted by X(B;j).
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4.3

(4.12) (Exchange Property) Let Be B and let j ¢ B and

i ¢ E \ B. Then the following statements (a) ~ (d)

are equivalent:

(a) B\ {j} v {i} ¢ B

-,

(b) cl(B \ {j}) $ i ;

(c) X(B; j); =0

.o

(@) C(B \ {j}_u {i})y = {0} .

An element e ¢ E is said to be a loop of C if
X = 0 for all X ¢ C, and a'coloog of C if I X ¢C s.t.
X = {e} . The following properties are easy to verify:

(4.13) The following statements are equivalent:

(a) e is a loop of C ;
(b) {el}is not independent in C ;
(c) e € F for all F ¢ M(C) ;

(d) e ¢ B for all B ¢ B(() .

(4.14) The following statements are equivalent:

(a) e is a coloop of C ;

(b) S uv{e} is independent for all independent set S;
(c) E\ {e} € M(C);

(d) e ¢ B for all B ¢ B(().

A less obvious property is:
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(4.15) Proposition Assume that neither g ¢ E is a loop
nor £ ¢ E is a coloop of C . Then there exists a

basis B of C with g ¢« B } f.

Proof It follows from the assumption and from (4.13), (4.14)

1 1

that there exist bases B! and BZ with ge B, £f¢ B2, 1f

f 4 Bl or g e B2, we are done. Suppose that f ¢ B1 and g ¢ Bz.

Since f ¢ B1 \ Bz, using (4.8) there exists i ¢ B2\ Bl such

that Bl \{f} u{i} 1is a basis of C . 0

In Chapter 1 we defined the minors C \ Rand C / S

of C for subsets R and S of E as

C\R= X e C}

{Xp\r

which are OM's on E \ R and E \ S respectively. The following

X e € and X, = 0}

S

properties are immediate.

(4.16) Proposition Let R and S be subsets of E. Then the

following properties are satisfied:

(a) A subset B of E \ R is a basis of C iff it is
a basis of C \ R . Moreover if B € E \ R is a

basis of C and j ¢ B then X(B;j) is the

E\R
fundamental cocircuit of j in a basis B of

C\R;
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(b) A subset B of E containing S is a basis of C°
iff B \ 8 is a basis of €./ S. Moreover if B
is a basis of C with § € B and if j ¢ B \ S
then x(B;j)E\s is the fundamental cocircuit

of j in a basis B \' S of C/ S .
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B. Sign Properties

Let C be an OM on E and let B be the set of bases

of C .

It is clear that for Be¢B and j ¢ B,

(4.17) X(B;j) = 0 and X(B;j)j > 0 and hence

B\ {3}
(4.18)  X(B3j)g > 0.

The following proposition will be useful:

(4.19) Proposition Let Be¢B and let i € E \ B. Then the

following two statements are equivalent:

(a) < X € C and XB 20 > = < Xi 20 >

(b) X(B; j)i >0 for all j € B.

Proof The implication (a) => (b) follows from (4.18).
We shall prove (b) => (a). Assume (b) is satisfied and
suppose (a) does not hold. Let X be a vector in C with

Xy 2 0, X; < 0 and the set B n X being minimal with these
properties. By (4.10), B n X is nonempty. Take any j ¢ B n X .
Since Xj > 0 and X(B;j)i 2 0, by using the elimination
property (1.2 OM-3) for X and -X(B;j), we obtain X'e ¢ with
X'B > 0, Xi <0 and B n X' < B n X . This contradicts the

choice of X. Therefore (a) holds. a
A corollary of (4.19) and (4.16.b) is

(4.20) Corollary Let Be B, S € B, and let i ¢ E \ B.

Then the following two statements are equivalent:
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(a) <X e C, Xg\g 2 0 and Xg =0 >=< X, 20>

(b) X(B; j)i >0 for all' j e B\ 8 .

(4.21) Proposition (c f. Bland [ALl, Claim 4.3) Let B ¢B

and let g and Jj be two given elements of B.

Then the following statements hold:

(a) If K is a subset of E such that X(B; gh( 2 0
and the set 1= {i ek : X(B; j)i < 0}
is nonempty then there exisis an element i e 1
such that B;E B \{j} v {i} ¢ B and

X(B' ; g&

v

0 ;

(b) If Kis a subset of E such that X(B ; j)K 20
and the set 1= {i ¢ K : X(B; g)i <0} |is
nonempty and X(B ; j)I > 0 then there exists
an element i ¢ I such that B' = B\ {j} u{i} ¢ B

and X(B' ; glg 2 0 .

~

Proof The results follow from (4.12) and the following

claim which is straightforward from (1.4).

Claim : If Xl, x2ecC and K is a subset of E much that
Xi > 0 and the set I = {i e XK : Xi < 0} is non-
empty then there exists an element i ¢ I and x3e c
such that X3 =0, X320 and X2 = (x! o x?), for
i K ~ 2 L
all £ ¢ E not separating Xl and x2 . . O



5. BASIS FORM OF THE FUNDAMENTAL THEOREM

The Fundamental Theorem (3.4) of Oriented Matroid
Programming says that every feasible OP is either unbounded
or has an optimal solution. We have shown that there is a

simple inductive proof of the theorem.

It is well known that the corresponding LP theorem

can be proved constructively by a finite simplex method.
Since the simplex method produces feasible solutions of
special type, basic feasible solutions, this constructive
proof yields a stronger form of the theorem, which is some-

times called the basis form or schematic form of the theorem.

In the next two chapters, we prove the basis

form of the OP Fundamental Theorem is true, although the
finiteness of the simplex method cannot be guaranteed by

any known finite pivot rules in a broader context of OP. The
proof of the theorem is devided into two parts. The easier
part is proved inductively in this chapter, and the more

difficult part will be proved by the algorithm in Chapter 6.

This theorem and the basic idea of the proof is
not new. This result is due to Bland [AL] . However his

presentation of the subject is quite different from ours,



because an oriented matroid is defined together with the

"dual" oriented matroid in Bland [AL] .

The point of this chapter is to understand the
Bland's results in a simplex setting without using
duality. This approach is also an attempt to understand the

subject more geometrically.

For this chapter we assume that C is an OM on a
finite set E, g and £ are given elements of E, and

E, = E\{g) , E; = E\{g,f} .
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A. Standard OP

We say that an OP P = (C; g,f) is standard if

neither g is a loop of C nor £ is a coloop of C . First of

all we remark that a non-standard OP has obvious properties

so that such an OP may be excluded from our consideration.

(5.1)

(5.2)

Proposition For an OP P = (C; g,f) the following

properties hold:

(a) If g is a loop of C then the OP is infeasible.
(b) If £ is a coloop of C then the OP is co-
infeasible (, thus the OP is unbounded if it

is feasible).
Let B = B(C) be the set of all bases of C . Let

BlzBl(C)={B§El: Bu {g} ¢ B} .

The set B, is the set of bases of an OP (C; g,f). By (4.15)

we have

(5.3)

An OP (C; g,f) is standard iff the set Bl of bases

of the OP is nonempty.

Let A and A” be the affine space and the infinite

space of an affine OM (C; g). One can easily verify the

following properties for any basis B ¢ B1 :
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{(5.4) There exists a unique vector X .in the affine space

A  such that XB = 0, called a basic solution X(B).

(Using the terminology of (4.11), X(B) is the

fundamental cocircuit X(Bu {gl};g) of g in the

basis B u{g} of C .)

(5.5) The polyhedron P(B) = {X ¢ A : Xg 2 0} is a

cone having the smallest face {X(B)} , called a

basic feasible cone.

(5.6) For each basic element j ¢ B, there exists a unique
feasible direction Z ¢ A" at X(B) in P(B) such that

Zj > 0 and 2 = 0, called a basic feasible

B\{j}
direction 32zJ(B). (By the language of (4.11),

Zj(B) is the fundamental cocircuit X(B y{g}, j) of

j in the basis By {g} of C .)

(5.7) For each basic element j ¢ B, the polyhedron
P(B,B\ {j}) = {X ¢ A : X3y = Q0 Xy 2 0} is a
cone having the smallest face {X(B)} and the infinite

face {27 (B)} , called a basic feasible ray rI (B).

Clearly each basic feasible ray Rj(B) is a face of

the basic feasible cone.

(5.8) The infinite face P"(B) = {z ¢ A”: 2, 2 0} of the

basic feasible cone P(B) contains the basic feasible

direction z7J(B) for all j e B.



The above terminologies concerning bases of OP are
merely imitating the standard use of those terminologies in
linear programming. The importance of these terminologies

are that they play exactly same role in OM programming as

they played in linear programming.
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B. Basic Properties

We start with an elementary property.

(5.9) Proposition For any basis B ¢ Bl and any element
i e E \ B the following three statements are

equivalent:

(a) The basic solution X(B) maximizes i over the

basic feasible cone P(B) ;

-.

(b) 2, < 0 for all 2 « P”(B)

(c) Zj(B)i < 0 for all j ¢ B i.e., every basic
feasible direction ZJ(B) (j ¢« B) has non-

positive i-component.

Proof The first two statements are obviously equivalent
from definitions. Also by (5.8), the statement (b) implies
(c). It is left to prove the implication (c) => (b). Observing
that zJ(B) is the fundamental cocircuit X(B'u {g}; j) of j in
the basis B u{g} of C , it follows from (4.20)

that (c) => (b). 8]

Remember that a subset F of El is cofeasible

(for an OP (C; g,f)) Aif

Zo < 0 for all Z ¢ Po(F) .
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Proposition (5.9) tells us two different characterizations

of cofeasible basis:

(5.10) A basis B ¢ Bl is cofeasible iff

(a) the basic solution X(B) maximizes f over the

basic feasible cone P(B) ; iff

{(b) Zj(B)f 2 0 for all j ¢ B i.e. every feasible
direction Zj(B) (j ¢ B) has nonpositive

f-component.

We say that a basis B ¢ Bl is feasible if the basic solution
X(B) is feasible i.e., X(B)El 2 0, and optimal if it is both

feasible and cofeasible. Clearly

(5.11) If B ¢ B1 is optimal then the basic solution X(B)

is an optimal solution.

We say that a basis B e Bl is inconsistent if

(5.12) Tie El\B s.t. X(B)i < 0 and

Zj(B)i < 0 for all j € B .

(5.13) Proposition If there exists an inconsistent basis

then the OP is infeasible.

Proof  Suppose B ¢ Bl is an inconsistent basis. By (5.9)
there exists i ¢ El\B such that X(B) maximizes i over P(B)
and X(B)i < 0. It follows from (2.24) that P(B u{il) = ¢

and hence P(El) = ¢ . This proves the result. O
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A basis B ¢ Bl is said to be co-inconsistent if

(5.14) 7j ¢ B such that 27(B) is an infinite-optimal

vector i.e., z)(B); > 0 and 27 (B)g; 2 0 .
It follows immediately from the definition that

(5.15) If there is a co-inconsistent basis then the OP

is infeasible or unbounded.

We say that a basis B ¢ Bl is unbounded if it is both feasible

and co-inconsistent.
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C. The Theorem

It should be clear that the inconsistency, the
optimality and the unboundedness of a basis B are sign
properties on the basic solution X(B) and the basic feasible
directions {Zj(B) : j ¢ B} , and that the existence of each
inconsistent,optimal or unbounded basis implies the in-
feasibility, the existence of an optimal solution, or the

unboundedness of the OP.

The following is the main theorem:

(5.16) Theorem (Basis Form of the Fundamental Theorem)

Every standard OP has either an optimal, unbounded,

or inconsistent basis.
This theorem can be viewed as the following two statements:

(5.17.a) Every standard OP has either a feasible or in-

consistent basis;

(5.17.b) Every standard OP having a feasible basis has

either an optimal or unbounded basis.

Bland [AL, §51 has stated a fesult for dual pairs
of oriented matroids which implies Theorem (5.16). He has
also described (private conversation) how it is possible to
extend his pivoting operation in order to obtain this result.
The proof presented here (developed independently) based on a
purely primal approach can in fact be easily adapted to prove

the result stated by Bland.
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D. Phase 1

In this section we shall prové the easier
part of Theorem (5.16). Namely we shall prove
Feasibility Theorem (5.17.a), provided that the Optimality
Theorem (5.17.b) is true. Since Theorem (5.16) is equivalent
to (5.17.a) together with (5.17.b), once (5.17.b) is proved

(in the next chapter) the main theorem (5.16) will be proved.

One reason for separating the proof of the
feasibility part from the prbof for the optimality part is
that the first part is considerably simpler than the other
one. Also it will be clear that obtaining the Feasibility
Theorem from the Optimality is essentially an analogue of
the Phase I of the simplex method, although the proof will

be by induction.
(5.18) Proof ((5.17.b) => (5.17.a)).

Suppose (5.17.b) is true. Let P = (C; g,f) be a
standard OP and we want to show that P has either a
feasible or inconsistent basis. Since P is standard, there
is a basis B ¢ Bl . We assume by-induction that for any
nonempty subset F of E;\ B the subproblem P \ F = (C\F; g,f)
has either a feasible or inconsistent basis. (Clearly B
is a feasible basis of P \ (E;\ B).) Take any r «¢ E, \'B
and consider the subproblem P' = P\ {r} . The set Bi of

bases of P' is {B' : r ¢ B'e By} . Since P' is standard,
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it follows from the induction that there exists a basis B'
of P' which is either feasible or inconsistent for P'. It
is easy to see that if B' is an inconsistent basis of P'
then it is an inconsistent basis of P . Hence we can assume

that it is a feasible basis of P'. Now consider the OP

p" = (C\{f} ; g, r). |Note that B' is a feasible basis of
P". By (5.17.b), there exists a basis B" of P" which is
either optimal or unbounded for P". If X(B")r 2 0 then B"

is a feasible basis and we are done. We can assume
(5.19) X(B")r < 0.
There are two cases to consider.
Case 1: B" is optimal for P".
In this case, by (4.16) and (5.10) we have
Zj(B")r <0 for all j ¢ B"
This together with (5.19) implies the inconsistency of B".
Case 2: B" is unbounded.
Again by (4.16) and (5.14) we obtain
(5.20) Zj € B" such that
Zj(B")r > 0 and
Zj(B")i 2 0 for all i e E;\ {r}
Since Zj(B")r # 0 , the set Bz B" \ {j}u {r} is a basis

of P. By (5.19) and since

X(B")j 2 0 for all i e Ej\ {r} ,



we can apply the elimination property (1.2 OM-3) for X(B")
and ZJ(B") eliminating r to obtain a feasible vector X
satisfying Xz= 0 . This implies X(B) = X and hence B is a

feasible basis.

This completes the proof. O
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6. PIVOT METHODS

The simplex method for linear programming which
was discovered by Dantzig [LP] is one of the most celebrated
algorithms in both theory and practice. The main mechanism of
the algorithm is the pivot operation which replaces a
canonical system of linear equalities by another equivalent

canonical system.

In this chapter we study the pivot operation in OM
programming which abstracts the same terminology in linear
programming.‘We shall introduce a pivot method as a general
algorithm for OM programming. We introduce the simplex method
as a feasible pivot method, and we point out that there is no
known finite pivot rule for the simplex method in a broader
setting of oriented matroid programming. Then a finite pivot
method is proposed, from which the Optimality Theorem (5.17.b)
follows immediately.

It should be noted that Bland [OT][AL] first
pointed out that pivoting operations and the simplex method
in linear programming have the natural abstractions in the
context of dual pairs of OM's. Here, we shall employ
these notions from a different point of view, one that does not
concern the duality of OM's.

For this chapter we assume that C is an OM on a
finite set E, g and f are given elements of E, P is

the oP  (C:g,f), E_ =E \{g}l and E; =E \ {q,f}.

- 73 —



A. Pivot Operations

Let B be the set of bases of C and let Bl be the

set of bases of P:

Bl = {B\{g} : ge B¢ B }.

It follows from the exchange property of bases (4.12) that
(6.1) Proposition . For B ¢ Bl’ j e Band i ¢ El\ B,
< B\ {jlu {i} € B> <= <z3(B)i 20 > .

I£Be By, ¢ B, i e E[\ Band if ZJ(B)i z 0, the replace-
ment of a basis B by B\ {j} u{i} is said to be the

pivot (operation) at (i,j) in a basis B. A pivot replacing

B by B' is degenerate if X(B) = X(B').

The following is immediate:

(6.2) Proposition Let B € Bl’ j e B, 1ice€ El\ B and
ZJ(B)i # 0. Then the pivot at (i,j) in B is
degenerate iff X(B)i = 0.

(6.3) A pivot method is an algorithm which start with a

given basis B® « Bi and generates a segquence Bo, Bl, B2,...

of bases using pivot operations.

We assume that

(6.4) The oracle of a pivot method is to give the basic
solution X(B) and the basic feasible direction Zj(B) for-

any basis B ¢ Bl and any j € B.
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B. Feasible Pivot Method

A pivot operation replacing B ¢ Bl by B'e Bl is
said to be feasible if both B and B' are feasible bases.
A pivot method is said to be feasible if it generates

feasible bases only. or equivalently it only uses feasible

pivot onerations.

Setting K =El in Proposition (4.21.a) implies:

(6.4) Proposition (Bland [AL]) Let B gBl be a feasible

basis. If j ¢B and the set I ={i <Ej\ B: z3(B), <0}
is nonempty then there exists 1 €I such that

B\ {j} u{i} is a feasible basis.

For B ¢ Bl, ie Band j ¢ El\ B, a pivot at (i,j)
in B is said to be simplex if the following three conditions

are satisfied:

(6.5.a) it is a feasible pivot ;
(6.5.0) 2zI(B), <0 ; and

(6.5.c) Zj(B)f >0 .

Now we have:

(6.6) Proposition (Bland [AL]) If B eBl is feasible

then either it is unbounded, optimal, or there

exists a simplex pivot in B.
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Proof Let B be a feasible basis. Suppose it is neither
optimal nor unbounded. Thus it is not cofeasible, and by

(5.10) this means

qjeB such that ZJ(B)f >0,

Since it is not co-inconsistent, and by (5.14), we know

I = {ic¢e El\ B : Zj(B)i <0} = ¢ .

By Proposition (6.3), we know that there is i ¢ I such that
a pivot at (i,3j) in B is a simplex pivot. This completes

the proof. O

The simplex method is a feasible pivot method which

naturally follows from Proposition (6.6):

(6.7) Simplex Method

Input: An initial feasible basis B°.
Output: Either an unbounded or optimal basis if
it terminates.

Initialization: Set B = B°

Steps

(sl1) Select any element % ¢ B such that ZR’(B)f > 0. If
there is no such £ , stop ( => the basis is optimal).

(S2) Test: I = {i ¢ E)\ B : 2"(B), < 0} = ¢? If so,

stop (=> the basis is unbounded). Otherwise select

any k ¢ I such that the basis B\ {f}u {k} is feasible
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(S3) Perform a simplex pivot at (k,%&) in B and repeat
the above procedure with the new basis

B' = B\ {2} v {k}.

It is wellknown that the simplex method is not
finite in general, even if OP's are restricted to be linear
(see Beale [C D]). This is because the simplex method may

cycle, that is, to generate a sequence

(6.8) B°® - Bl - 8% ... L BK

. o k i-1 i
of feasible bases such that B~ = B (where B -+ B~ denotes
the pivot operation replacing Bl—l by B).

Here we should make distinction between two types

of cycling.

(6.9) The first one is a degenerate cycling, that is, a

i-1

cycling of pivots, all of which (811 » 8 for 1 = 1,2,...,k)

are degenerate.

{6.10) The second one is a nondegenerate cycling, that is,

a cycling of pivots, not all of which are degenerate.
It is easy to see that

(6.11) Proposition If the simplex method produces a cycling

(6.8) for a linear OP then it is a degenerate cycling.

Hence if there is a systematic rule (pivot rule) which restricts

the selection of elements £ and k to leave and to enter the
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basis in the simplex method, and which excludes the possibility
of degenerate cycling then the basis form of the Fundamental

Theorem (5.6) with linear restriction follows immediately.

(6.12) In fact Bland [FS] [AL] has shown that with the

following rule the simplex method never produces any degenerate

cycling.

(6.13) Smallest Subscript Rule (a)

Initialization Give any ordering on the constraint

elements: E, = {el,ez,...,en} .

Rules
(al) In Step (S1), if there is more than one

element which can be selected, select the

element £ with the smallest subscript:

(a2) In Step (S2), if there is more than one
element which can be selected (i.e. [I] >1) ¢l

select the element k with the smallest subscript

It is natural to conjecture that Proposition (6.11)
is true in general without linear restriction and hence that
the simplex method with (a) is finite for any OP. Unfortunately

this is not true as we show in Chapter 7:
(6.14) Theorem There is an OP for which the simplex method
produces a nondegenerate cycling.

(6.15) Theorem There is an OP for which the simplex method

with the Smallest Subscript Rule cycles.

Theorem (6.14) answers one of the problems raised by Bland [AL] negative
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C. PFinite Pivot Method: The Algorithm A

We say that a pivot method is finite if it terminates

in finite number of iterations for any given OP.

It has been remarked that there is no known feasible
pivot method which is finite and which terminates in either

unbounded or optimal basis.

In this section we will present a finite pivot method

which either produces an unbounded or an optimal basis. This

algorithm is a modification of the finite pivot method of
Bland [{AL]l. Our algorithm is not known to be feasible,
while the Bland's algorithm will be shown to be non-feasible

in Chapter 7.

Before we describe the algorithm we shall present the
main lemma by which the validity of the algorithm will be

guaranteed.

Let h ¢ El be any given constraint element. As defined
before, P \{h} and P / {h} denote the subproblems
(c \{h} ; g,f) and (C/ {h} ; g,f) of P, respectively. By
(4.16 ), the sets B, (P \{h}) and Bl(P / {h}) of bases of the

subproblems are defined by
(6.16.a) B;(P\{(h}) = {B :h¢Be B, }

(6.16.b) Bl(p / {hh= {B\{h} : h e B e B},
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where B1 is the set of bases of P. It is easy to see the

following:

(6.17.a) If B is an inconsistent basis of P \ {h} then B

is an inconsistent basis of P ;

(6.17.b) 1If B is an co-inconsistent basis of P / {h} then
B u {h} is an co-inconsistent basis of P. (Note
that this statement is still valid»when "co-inconsister

is replaced by unbounded).

The main lemma is the following:

(6.18) Lemma (Bland [AL], Theorem 5.1) Let h €E be a fixed

1
1 2

constraint element and let B and B be bases of P

with h eBZ \Bl. Further suppose that B2 \{n} is an
optimal basis of P /{hl but 52 is not an optimal
basis of P. Then the following properties hold:

(a) If Bl is an optimal basis of P \ {h} then it is

an optimal basis of P as well;

(b) If there exists j ¢ Bl such that ZJ(Bl)f > 0 and

} /ml . . . .
zJ (B )El\{h} 20 (i.e. Bl is an co-inconsistent

basis of P \ {h}) then Zj(Bl)h > 0 (thus B! is

an co-inconsistent basis of P as well).

Proof The proof of this lemma is very similar to that of

Lemma (3.11).
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(a) Assume that Bl is an optimum basis of P\{hl}.

Suppose the conclusion is false, that is, neither Bl nor B2

1

is optimal. Let X' = x(BY) for i = 1,2 . Since B~ is optimal

for P\ {h} but not for P, xi < 0. Let P' be the polyhedron

i '
El\{h}z 0 and Xh < 0} . Clearly X* ¢ P' for

i=1,2, and x1 maximizes h over P'., Let 2' be any direction

from X2 to X!. Then by (2.21) and (2.23),

{Xe A : X

2! > 0,

£ 20 and 2! <0 .

L}
?B2\(n} * h
On the other hand, since B? is optimal for P/ {h} but not

for P, we know that

Zf > 0, ZBZ\{h} = 0 and Zy, > 0

for 2 = Zh(Bz). Using the elimination property (1.2 OM-2)

for Z and Z' eliminating h, we obtain Z"¢ A" s.t.

z" > 0,

£ 20 and 2zZ" =0 .

Z82\(n} 2 ¢ h

2

This contradicts the optimality of B in P /{h} . Therefore

the result holds.

(b) ZJ(Bl)h > 0 follows from a similar argument as above.
ZJ(Bl)h z 0 follows from the fact that X(Bl) maximizes f over

{Xe A X, = 0 and xEl\{h} 2 0 Y.

The following pivot method which makesuse of Lemma
(6.18) will be shown to be finite and produces either an
optimal or co-inconsistent basis provided an initial feasible

basis is given.
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6.10

(6.19) Algorithm A

Input : An feasible basis B°

OQutput : Either an optimal or co-inconsistent basis.

Data Structure (to be updated each iteration)

(i) a basis B of the OP
(ii) a subset R of El\ B
(iii) the set T = R u B with a linear order of

elements T = {tl'tZ""’tITl} .

Initialization

set B=B° R=¢ , T =BO, and give any linear

order T = {tl,tz,...,tlTl} .

Steps
(A1) Test: J(B) = {j ¢ B : 23(B); > 0} = ¢ ?
If so, stop ( => B is optimal). Otherwise
select the largest number s such that
l <s < |T| and t, € J(B) , and let & = t_ .
(a2) Let R°® = R n {t;sty,...st } and let

I =E\ (BuRS. Test : 2%(B), > 0 for all
ie¢ I. If so, stop ( => B is co-inconsistent).
Otherwise select any k ¢ I such that

ZQ(B)k < 0 and

X(B\{2} v (kD 2 0 .
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(A3) Repeat the same procedure with the new basis

B' = B\ {2} v {k} and with R' = R® u {2}

and T' = R' v B' with any linear order of

elements T' = {ti'ti""'tiT'|} satisfying

ti = ti for all 1 <i < s .

(6.20) Proposition Suppose that B is a basis obtained by

Proof

the algorithm A, and let the associated data structure
be given by (6.19) (i), (ii),(iii). Then for each

ty € R (1 < j < |T]), there exists a basis B obtained
previously by the algorithm with the associated data
structures R, T = {El,EZ,...,EITI} (= R v B) satisfying

() &, =t, for 1 s<izx<j;

(b) t,; R iff t;eR (L<is<j=-1) ; and

(c) EJ € J(E) and -Ej_*_l,...,ElT'léJ(ﬁ)

(thus Ej was chosen to leave the basis B).

This follows immediately from the algorithm. 0

(6.21) Proposition  Suppose that (i), (ii), (iii) in (6.19)

are the data structures obtained by the algorithm in

some iteration. Then the following holds:
(a) X(B)i 2 0 for all i € El \R ;
(b) If1 <3< |T| and t; ¢ J(B)
for all j < i < |T| then X(B); 2 0 for all

ie Ej \RI7! where RI! =R {ty,..o0ty1l) o
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Proof The proof is tedious but not difficult. Use induction
on the number of iterations. The properties (a) and (b) are
obvious in the first iteration, and these in a general itera-

tion follows from (6.18) and (6.20). 0
Now we state the main theorems:

(6.22) Theorem The Algorithm A is finite.

(6.23) Theorem

(a) If the Algorithm A stops at the step (Al) then

the last basis B is optimal.

(b) If the Algorithm A stops at the step (A2) then
the last basis B is co-inconsistent, and further-
more, for % = tg the element chosen to leave the
basis in (al), 2%(B); > 0 for all i ¢ R® and

X(B)j 2 0 for all j e El\ RS .

Proof of (6.22): Let B and B' be two consecutive bases obtained

by the algorithm and let T = {ti,...,t |} and T' = {ti,...,t' 1

|T |T

be the associated ordered sets. Let y be the integral vector

(Yl, Yoreees Ym) defined by

where m is the cardinality of a basis (= r(C)-1). Let Y' be
the corresponding vector for B' and T'. By the step (B3) we
know- that there exists 1 < s < |T| such that ti = t, for

all 1 = i < s and
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tj € B <=> té € B' (l e jes-1)

and

t, ¢ B and t! { B' .

This implies that Yy' 1is lexicographically greater than y .
Since the cardinality of a set T cannot exceed |E1] ,» the
lexicographically increasing sequence of y's associated
with the algorithm must be finite. This completes the

proof. O

Proof of (6.23) The part (a) follows immediately from (6.21).

We shall prove the part (b). Suppose that the algorithm stops
at (A2). By the selection of pivot element & = ty in (A1),

and by (6.21)

(6.24) X(B); 2 0 for all ie EQ\ RS .

Also, by the stopping criterion in (A2) we have
2 . s
(6.25) Z (B)i 20 for all ie EJ\R .

Suppose that ZR(B)tj < 0 for some £y € R® and let j be the
largest j with this property. We shall obtain a contradiction.

First we remark that
(6.26) 2%B), = 0 for all i e E)\ R .

. - j-1 a
Setting h = t, , R = RITS, §=8Bn {tysevovts ;) and
P=P\R/ S . It follows from (6.20) that there is a basis B

produced by the algorithm such that S € B and B \ § is an
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optimal basis of P / {h} but not of P. It follows from (6.26)

and the fact R n B = ¢ that

(6.27) z“(B)i >0 for all i e E;\ {h)

where E; = E;\ (R u §). By (6.18.b) we have z%(B)_ < 0, a

contradiction. This completes the proof. ]

(6.28) Lemma If B is a co-inconsistent basis obtained by
the Algorithm A then it takes at most one pivot to

obtain an unbounded basis.

Proof If B is unbounded, there is nothing to prove. Other-

wise by (6.23.b) we have

and ZR(B)I > 0 . Since ZQ(B)El 2 0 and using (4.21.b) (with
K = El r J = %), there exists i ¢ I such that the basis
B' = B\{&} v {i} is feasible (i.e., X(B")g; 2 0). Observing

that ZQ(B) = Zl(B'), the basis B' is unbounded. O

The above results (6.22), (6.23) and (6.28) imply
the following result which proves the optimality theorem

(5.17.b).

(6.29) Theorem There is a finite algorithm for any OP which
transforms a feasible basis into either an optimal

or unbounded basis.
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7. NONDEGENERATE CYCLING OF THE SIMPLEX METHOD

In this chapter, we will construct an example of OP
for which the simplex method can produce a cycle of pivots,
which contains at least one nondegenerate pivot. The construc-
tion will start with a linear OM with 8 elements, and determine
an OP on the OM (by choosing two elements, the infinite and
the objective elements) such that there is a cycle of 6 pivots,
3 of which are degenerate simplex pivots and the rest are non-
degenerate non-simplex pivots. Then we use an operation, called

a perturbation by which the OM will be transformed to a slightly

different OM on the same elements in such a way that the bases
of the o0ld OP remain bases of the new OP, the feasible bases
of the old remain feasible, and the o0ld cycle becomes a cycle

of all simplex pivots, 3 of which are nondegenerate.

It will be also shown that one can further transform
this OP to a new OP for which the simplex method can produces
a cycle of pivots all of which are nondegenerate. This example
will be used to show that (i) the simplex method with the
Smallest Subscript Rule is not finite (ii) the Bland's Finite
Algorithm for OP's (which will be described in this chapter)
produces an infeasible solution and hence it is not a feasible

pivot method.
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A. The Starter

Let E be the set {g,1,2,3,...,6,f} of 8 elements.

Let A be 4 x E matrix given

g 1 2 3 4 5 6 f
— l-
1 0 o0 o0 1 1 3
1
o 1 0o 0 3 -1 -1 -1
(7.1) A=
© 0 1 o0 -1 % -1 -1
1
[0 0 0o 1 -1 -1 3 -1 ,

and let C(A) be the linear OM having a matrix representation
A. Thus C(A) is the set of incidence sign vectors of vectors

X in the row space R(A) of A:

(7.2) R(AY = {x e Rt x (Ao' Xl, le X3) A for some

(gr Apr Ay )\3)€IR4}

Consider the linear OP P (C(A); g,f). This OP corresponds

to the following LP:

(7.3) maximize Xg
X € R(A)
X, 2 0 i=1,2,...,6
x_ =1
g

which is reduced to
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. 1
(7.4) maximize - Al - 12 - A3 + 5
subject to Al z 0
Az 2
A3 p-3
1 A - A - A +1 =2 0
2 "1 2 3 =
- Aq+ L A - A +1 =2 0
1" 2 2 3 -
“ Ay - A, +EA, +1 = 0
1 2 273 =

Geometrically the feasible region of (7.4) is a 3-dimensional
polytope of 6 facets, 12 edges and 5 vertices. Clearly the

optimal solution of (7.4) is

*
2’
Through the relation:

(A]» A3, A3) = (0, 0, 0).

X = M, the i-th constraint in
(7.4) corresponds to the non-
negative constraint of i-~th

variable X5 for i =1,2,...,6.

Thus, at the optimal solution

* *=*=*=
x of (7.3), Xy X, X, 0

* * * N :
and X4r X5, Xo are positive.

This implies that the optimal

solution X* of the OP P is

WiN
~

wlto
~

win
N

(x;,xI,...,xg,x;)

= (+,0,0,0,4,+,+,+) .
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It is clear that

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

g 1 2 3 4 5 6 £
] 5 L -
1 1 0o o 3 o 0o -2
o -1 0 0 = % 101 1
A=
. 0 -1 1 o -3 32 o 0
> 2
1 3 3 3
o 3 o0 1 -3 -3 0 -3

F € E is independent in C(A) iff the corresponding column

vectors {A€: e ¢ F)} are linearly independent.

B € E is a basis of C(A) iff the corresponding column
vectors {A€: e ¢ B} are linearly independent and |B| = 4.

(e.g. {g9,1,2,3} is a basis of C(A)).

Let E; = E\ {g,£f} = {1,2,3,4,5,6} . A subset B of Ey
is a basis of the OP P iff the corresponding column
vectors {A® = e ¢ B} with the first row deleted are
linearly independent and |B] = 3. (e.g. {1,2,3} is a

basis.)

For the basis B = {g,1,2,3} of C(aA), and for j ¢ B, the
fundamental vertex X(B;j) is the incidence signed vector
of the row of A in which j-component is one. (e.g.
X(B;g) = (+,0,0,0,+,+,+,+) and

X(B;2) = (0,0,+,0,-,+,-,-).)

The pivot (or row) operations in A preserve the OM,

e.g., a pivot on the 2nd row 7th column in A results in




7.5

where the obvious basis of C(aA) is {g,2,3,6} and the fundamental
vertices in the basis are shown . It will be convenient to

perform one more pivot on the 4-th row 6-th column in A, to

obtain
g 1 2 3 4 5 6 f_
1 1 o o > 0o o -2
o -2 o £ 1 o 1 o
S 1 1 2 o o -3
|0 -3 o - 2 3 1 0o 1]
where the basis {g,2,5,6} is shown.
(7.10) From (7.9) B° = {2,5,6} and B! = {2,3,6} are bases

of the OP and in fact they are feasible, since the
corresponding basic solutions

Xx(B°) = x(8° u {g} ; g) =g 1 4 f and

X(Bl) = X(Bl v {g} 39 =g 1 4 £ are feasible
(where we use a new notation for signed vectors and

g 1l 4 £ denotes the sign vector X on E such that for

1 4

underlined element xf = -, and the rest of components

are zero.) Remarking that the basic feasible direction

the non-underlined elements Xg = X, =X, =0, for the

z°(8°) = x(B° v {g} ; 5) =1 345 f from the last

row of A_, ZS(BO)f = + and hence replacement of B° by
B1 is a simplex pivot (see the circled entry in Ao is

the pivot entry), although it is degenerate.
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(7.11) Because of the symmetry in the matrix A, the permuta-

tion B on E:

preserves many properties of the OM C(a).

For example, let
32

B3

B (B°) = {3,4,6)

B(Bl) = {11314}

be bases of P. Then
B4

B3

B.(B%) = {1,4,5}

8 (8%) = {1,2,5}

8° and g (B°) = Bl.

are also bases of P. Clearly 8(B4)

For the permutation B , and a signed vector X
on E, we define R (X) as the signed vector on E s.t.

for each e ¢ E.

B(X)g = Xgm1(0y -

Then we can easily see that

x(8%) = g(x(8°))
x(8%) = gx(l))
x(8%) = px(8?))
x(8%) = p(x(3))

Since B fixes g and f, it preserves the feasibility

1 5

and hence all of the bases B°,B r+++.,B° are feasible.
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Also, by (7.10) and by the symmetry, the replacement

2 3 4 5

of B by B”, B® and B~ are degenerate simplex pivots.

Geometrically, three basic solutions correspond to the
three vertices in the middle of the polytope in Fig.l.
The degeneracy is caused by four constraint hyperplanes

intersecting at each of the three vertices.

2

(7.12) Consider the bases BY = {2,3,6} and B% = {3,4,6} .

From the matrix Al' the basic feasible direction

Zz(Bl) = X(Bl v {g} , 2) =12 45 has zero f-component.

1 2

Therefore, the pivot replacing B™ by B” is not a

simplex pivot. By the symmetry the replacements of B3

4 5 1

by B", B™ by B~ are not simplex pivots.

(7.13) So far we observed that there is a cycle of 6 pivots:

° Bl» s> BS+ B° three of which are degenerate

B
pivots, and the rest are non-simplex nondegenerate

pivots.
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7.8

B. The Vertex Perturbation

For a signed vector X on E, for an element e ¢ E,
and for o = +,0, or -, we define X + e®* as the sign vector

on E such that
Xj if j e E\ {e}
o
X e . =
(X + )3

o if j=e .

(7.14) Theorem (Vertex Perturbation): Let C be an OM on a
finite set E. Suppose that there is an element f and
a vertex V of C satisfying the following conditions

(a) and (b):

(a) Vf =0 ;

(b) <X e C, Xe =0, V<<X>

=> <X+ feC> .

Then C = C \ {V,-V} v {¥,-¥} u N v -N

is an OM on E, where

6 =v + £

N=C°%u N
°N=(x+£f%°: V<XeC and Xg = =}
N={X+£f': V< XeC and Xe = -1 .

The above theorem was first proved by J. Edmonds, A. Mandel
and the author. 1In Chapter 12, we show that a considerably

more general theorem is true.
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Let C be an OM on a set E. For an element f ¢ E, a

vertex V of C is said to be f-flexible (in €) if the condi-

tions (a) and (b) of (7.14) are satisfied. For f ¢ E and an
f-flexible vertex V of C , the OM C in (7.14) is said to be

obtained from C by perturbing f around V.

Suppose that V° is an f-flexible vertex of C for a
fixed f ¢ E, and suppose that C is obtained from C by
perturbing f arround v°. The following properties are

immediate:"

c .

(7.15) If V + £-¢ C then ¢
(7.16) If X' ¢ C then there exists Xe C such that X ¢ X' .
Therefore, if V is a vertex of C and V ¢ C then V is

a vertex of C as well.
The next property is less obvious:
(7.17) If B is a basis of C then it is a basis of ( as well.

For a basis B of ( , and for j ¢ B, i(B,j) denotes

the fundamental vertex of j in B in C .

(7.18) If B is a basis of C and j ¢ B

(a) X(B;3j) = X(B;j) if X(B;j)= + V° ;
(b) X(B;3) = X(B;j) + £ if X(B;j) = v°
(c) X(B;j) = X(B;j) + £ if X(B;j) = -v° .

(7.19) If a vertex V (as well as V°) is f-flexible in C and
V = + V° then V is an f-flexible vertex in ¢ . Thus
the vertex perturbations of f can be done successively
around initially f-flexible vertices which are distinct

and no two of which are antipodal.
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7.10

C. The Construction

Consider the linear OM C(A) and the OP P = (C(A); g,f).

In (7.12) we remarked that a pivot replacing

Bl = {2,3,6} by B2 = {3,4,6} is not a simplex pivot, since

1

the basic feasible direction V! = z2(8l) has zero in

f-component. However, we can show that vl is an f-flexible

vertex in C(A) and thus a new OM can be obtained from C(A) by

perturbing f around Vl so that the corresponding basic

feasible direction V1 = ﬁz(Bl) has + in f~component in the

2

new OP P and the pivot replacing B1 by B becomes a simplex

pivot. It is clear from (7.18) that the perturbation around
a basic feasible direction, and all the other basic feasible

directions. Therefore the simplex method produces a sequence

1 2

° + B . By the symmetry of C(a),

of pivorts: B~ - B

2 3

Ve = a(Vl) and VvV~ = a(VZ) are basic feasible directions

23(83) and 21(B°), which are f-flexible in C(A). Using (7.19),.

we can perform the perturbation of f around Vl, V2

and V3
successively to obtain a new OM, say € , so that for an OP

P (C; g,f) the simplex method can produce a cycle of pivots:

B° » pls ...» B% 5 B® , three of which (i.e., B°> BT ,
B2 > B3, B4 -+ Bs) are degenerate pivots and the rest of which
(i.e., B1 > Bz, B3 -+ B4, B5 > Bo) are nondegenerate.

It is left to show:

(7.20) Each vertex VY (i = 1,2,3) is f-flexible in C(a).
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Proof 1It is enough to show for V1 =1245.,

Let Ai be the e-column vector of Al : for e ¢ E. Suppose

X ¢ C(A) with X = 0, vi

this implies that A ¢ R? such that

X and X =2 V. Since C(a) = C(Al),

(1) AA%>0, AA%>0 ’ }\A4l<o ’ )\Ai>0 ;
(ii) AA{ =0, |
(iii) at least one of AA% ’ AA% R XAg is nonzero.

By the structure of Al' we have

(iv) )\AglJ 20 <=> Xx_ =20

e

o

3 - .

(v) AAl z 0 <= AB z 0 ;

(vi) aa$ =0 <> A =0 .
4

Then there exists A' ¢ IR° obtained from A by changing one of

the nonzero components in {Ao,kl,x3} by very small amount ¢

f < 0, and X Ai and A'Ai have the same sign for

such that )'A
all i = £. Therefore, the incidence signed vector of A'A is

X + £ which is in C(A). This completes the proof.
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D. Further Results on Cycling

In this section, we construct an example of OP for

which

(a) The simplex method produces a cycle of pivots all of
which are nondegenerate (as opposed to "some of which"

for the op P = (C ; g,f) constructed in the Section C);

(b) Bland's Smallest Subscript Rule produces the same

cycle of pivots as in (a) and thus it is not finite;

(¢) Bland's:(finite) Algorithm for OP's produces an

infeasible solution, starting from a basic feasible

solution.
The results (b) and (c¢) answer the open guestions raised by
Bland [AL] negatively.

The construction of the example starts with the oM T
and applies some vertex perturbations around 3 feasible

vertices of P, which are degenerate.

Consider the OP (C(a); g,f) and let

wo =x(@B° =g1l4f¢
w? = x(B%) =g25¢f
w=xeY =g36¢f

where Bi's are feasible bases of the OP defined in (7.10) and

(7.11). First of all we remark that
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(7.21) Each of the vertices w°, wz, W' are respectivelv

3-feasible, 1-flexible, 2-flexible in c(a).

Proof The proof is similar to (7.20) and is omited.

From (7.10), we have Z5(B°) =1 345 2 and hence

O

WC 0 2°(B°) =g 1345FfcC(A) . Let

Wl =W o2°@®°) =g1345¢
w3=w2oz6(32)°g;256§=B(wl)
w=wlozte!) =g2346f =psmw .

Hence we have

(7.22) W' e C(A) for i =1,2,...,5.

It follows from (7.19), (7.20) and (7.21) that

(7.23) It is possible to perform vertex perturbations of f

l, V2, V3 successively and then perform vertex

2

around V

perturbations of an element 3 around W°, 1l around W

and 2 around W4 to C(Aa).

Let C be the OM obtained from C(aA) by the operations in

(7.23). In other words, C is the OM obtained from T
(constructed in Section C) by the last three perturbations
specified in (7.23). Let P = (T ¢ g,£f). The following properties

are easily verified from (7.22) and (7.14):

(7.24) Let
W o=w + 3" (=g134F%
W=w+1' (=g125 9
w=wti2t (=g23671) .
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Then W- ¢« C for i = 0,2,4 .

Observing that

W< W

3, W4-< W5 and W, = W, = W, = - , the

2
s WL W 3 1 2

construction and (7.14) implies:

(7.25)

Let

W=wl +3°(=g145 %)
W =w +1°(=g256 f)
W=w +2° (=g346 f)
Then W' ¢ T for i = 1,3,5.

By (7.17), each basis Biu{g}(i=0J4---,5) of C(a) is a basis

of C . Thus, using (7.24) and (7.25) we obtain:

(7.26)

(7.27)

X@®el) =W for i=0,1,...,5,

where §(Bl) is the basic solution for the basis Bl B
(i = 0,1,...,5). Thus each B! is a feasible basis of P

(i = 0,1,...,5).

Since C can be obtained from C , the OM constructed

in Section C, by perturbations around vertices

2 4

w°, W°, W' with positive g-component and by (7.18),

the basic feasible directions for the OP (C ; g,f)
remain basic feasible directions for T ; 9,£). Thus,
by (7.26), the simplex method can produce a cycle of

1 2 5

pivots: B® » B » B°> ---> B> > B for P . Further-

more each pivot in the cycle for P is nondegenerate

since W: = W) for any 0 < i < j < 5 .
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7.15

Let e =1, e, T 2,000y e = 6 . Now we shall show that the

simplex method with Bland's Smallest Subscript Rule (a)

described in Chapter 5 can produce the same cycle

o) 1 5

B® > B> .. > B> » B® of pivots. We remark the following:

1 for P is uniquely selected by the

simplex method. By the symmetry 32 -+ B3 ’ B4 - B5

(7.28) The pivot B® -~ B

are uniquely selected by the simplex method.

Proof By the construction of ( , we have

zJ (8°) = 77 (8%) ¥ j ¢ B°
where 27 (B) and Z7(B) denote the basic feasible directions in
P and P , respectively. From the matrix Ao

22(8°) =1234¢

2°(8° =1345f¢

z8(8°) = 13456
Remarking that B° = {2,5,6} , B° = {1,2,5} , 2°(8°) = - z1(8%)
=-V3,

7% =2%@8°% + £ =1346¢

It follows that
72(8°) = 22(8°)

Z°(8°%) = 2°(8°)

7z (8% = z65(8°) + £

and fs(Bo) is the only basic feasible directionfor B® in P

whose f-component is positive. Therefore B® » Bl

is the only
simplex pivot in B°. By the symmetry of T » the result

follows. O
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7.16

(7.29) The pivot B1 > Bz is the simpiex pivot selected

by Bland's Smallest Subscript Rule, and so are

4 5

the pivots B3 - B", and B~ - Bl, for the OP D .

Proof We prove the first statement, since the rest will
1

follow similarly. First we observe that B~ = {2,3,6} ,
728 =72Y =2%@Y) + £t = 1245 ¢
722l =72°;h =23 =1345¢
78l =7%m®Y) =25 = 1456 ¢

This implies that the simplex method selects either the element

2 or 6 to leave the basis Bl,and hence the Bland's rule (a)

1 2

selects 2, which results in the pivot B~ + B”. This completes

the proof. 0
It follows from (7.28) and (7.29) that

(7.30) Bland's Smallest Subscript Rule (a) produces a

1 5

cycle B° > B"» ... » B> » B® of pivots for the OP .

5

Geometrically the cycling B° - B1+ «++>B> > B® of non-

degenerate pivots can be described by the figure :
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=0
w

=n
1=

where W' = X(B for i =0,1,...,5 .

The rest of this section will be devoted to a

description of Bland's Algorithm and to show that it can

produce an infeasible solution.

The original description Bland's Algorithm [AL]
was in recursive fashion so that in order to apply the
algorithm for an OP one has to consider certain subproblems
of the OP. Thus it is rather difficult to analyse the behavior
of the algorithm with this description. Here we shall give
a nonrecursive description of the algorithm, by which one
can observe how the algorithm works without considering

"nested" class of subproblems.

(7.30) Bland's Algorithm

Input : An OP (C; g,f) and an initial feasible basis B.

Output : Either an optimal or co-inconsistent basis.
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7.18

Data Structure (to be updated each iteration)

(i) a basis B of the OP ;
(ii) an ordered subset R = {rl,rz,...,qa} of El\ B ;
(iii) a partition of the basis B into (g + 1) subsets

Bo,Bl,...,Bq .

Initialization

Set B=B ,R=¢ , g=0, B _=B.

Steps

(Bl) Select the largest number p such that 0 < p < g
and BN = {2 e B_ : 2%®B), > 0} =¢ . If there is
P P £
no such p, stop (=> the basis is optimal). Other-

wise select any element £ ¢ B; .

(B2) Let I = EN (B v {rl,rz,...,rp}).
Test: ZQ(B)i 20 for all i e I ?
If so, stop (=> the basis is co-inconsistent).
Otherwise select any k € I such that ZZ(B)k <0

and X(B \ {2} v {k})I > 0.

(B3) Repeat the above procedure with the new basis

')

B' =B \ {2} v {k} and with R'= {ri,ré,...,rq

and B'~ Bé ue++y B' ,, defined by

ql
qg' =p+1

I =
ri
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B. if 0

A
(W
A
e/
|

[

B \ {2} if i=p

o
t
T+ e

p+l TRIRNY Bq v {k} if i=p + 1.

+
B B v B
( p \ p)
Bland's Algorithm and the Algorithm A described

in (6.19) are very similar, and in fact the following basic
properties of Bland's Algorithm can be proved using a
similar argument as one used to prove the corresponding

properties (6.22) and (6.23) of the Algorithm A.

(7.31) Theorem (Bland) Bland's Algorithm is finite.

(7.32) Theorem (Bland)

(a) If Bland's Algorithm stops at the Step (Bl)

the last basis B is optimal.
(b) If Bland's Algorithm stops at the Step (B2)

then the last basis B is co-inconsistent.

It is clear from the description ( 6.7) of the simplex

method that the simplex method stays feasible , i.e., it

produces only feasible bases. Bland's Algorithm (B) has
many similarities to the simplex method in that both methods
start with a feasible basis and update a basis using pivot
operations. In fact it is easy to see that if Biand's
Algorithm would stay feasible then we could conclude that it
is a simplex method. This open question whether Bland's
Algorithm stays feasible was asked by Bland [AL]. Ue shall

answer to this guestion negatively in the rest of this

section.
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First we explain how the algorithm (B) may produce an
infeasible basis. Suppose that the algorithm (B) is applied
to some OP P = (C; g,f) and that a feasible basis B with parti-
tion B, U By ur--u Bq and a subset R = {rl,rz,...,rq}
are produced in some iteration. And further suppose that
(7.33) B, = ¢ .
This implies that in the step (Bl) the index b cannot be chosen
to be zero, and hence when the element k is selected in (B2)
the nonnegativity of the rl—component in the new basic solu-
tion X(B \ {f&} u {k}) will not be guaranteed and can possibly
be negative. This is exactly what can happen when Bland's
Algorithm is applied to the OP P=(T 3 g,f) constructed
earlier.

Suppose that Bland's Algorithm is applied to the -

OP P with the initial feasible basis Bl = {2,3,6}. For

initialization we set B = Bl, R=¢, gq

o, B0=B.

+

As we remarked in the proof of (7.29), B {2,6} . We can

o
select £ = 2 in the step (Bl). In the step (B2), set
I= El \ Bl = {1,4,5} and we can select k = 4 since ZZ(B)4 < 0

and Bl\ {2}u {4} = {3,4,6} = B% is a feasible basis. Then we

update the data structure by setting

g¥0+1=1

rl © 2
- + -
B, ¥ BJ\ {2} = {6}
- + -
Bl ¥ (B,\ BJ) v {4} = {3,4} .
B = {(3,4,6} (= B?).
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As we saw in (7

select p = 0,

7.21

+=
1

2 = 6 and k

{6} and hence we must

.28), B ¢ and BO

1 to obtain Bz\ {6} v {1} = B3.

Then for updating, set

g=0+1-=1
r, = 6
B = B3
B, = B\ {6} = ¢
B = (B, \ B)) v B, u {1} = {1,3,4} .
Now we have the situation (7.33) we discussed above and we

will ignore the

solutions which

nonnegativity of 6-component in every basic

will be obtained from now on. The Table.l

indicates the changes of data structure from the first itera-

tion to the last (7-th) iteration when we obtain an optimal
I

basis B* {1,2,3} . Note that the sixth basis B* will be

shown to be infeasible (in(7.34)). It is rather tedious to

verify that Bland's Algorithm produces the segquence

1 2 I

BT » B%» +-. > B 5 B

- B . Intuitively the following figure
1)

shows how it can produce an infeasible solution X §(B

which is in the negative side of the element 6.
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ﬁ*
N
w w
=2 < v=ql — =
W ; W/':
= : A’

We must show:

(7.34) The set BI = {2,3,5} is an infeasible basis of P

5
o
|
w
n

gldase f .
Proof From the matrix Ags in (7.9), we have

X(B°) =g 14 ¢f

-2%3B%=13145

where B = {2,5,6} . Let X = X(B°) 0-2%(8°) =g 1346 ¢

€eC . Since C is obtained from C using the vertex perturba-
tion of the element 3 around X(B®) (= W®) and by the fact
3=-+%X+3%°=29g146f T . It follows
that x(8T) = gl 46 f and hence BT is infeasible. 0

that X W° and X

From Table 1 and (7.34), we obtain the claimed result:
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(7.35) Bland's Algorithm can produce an infeasible

basis and hence it is not a simplex method.

Since the two algorithms, Bland's Algorithm (B)
and the algorithm (A) (in (6.8)) are similar, one might
suspect that the algorithm (A) is not a feasible method
either. We don't know the answer to this question. The
only thing we can show is that the algorithm A stays feasible

for the OP P starting with any feasible basis.

-109 -



7.24

T :91qel

Teut3do :
M=F9sv b - - - (s'v'9) {eg'T'tr ¢ ¢ ¢ {e'2'1}=,49 L
M=39v 16 1 {1} z (T'v’'9) {£'2} {s} ¢ ¢ {s'c’t}=sH 9
tMaF9peEb € {€} z (p'9) - {s'?'T) ¢ ¢ {s'¢'1}=q S
tM=39€zb 7 (g} T (€'9) - {st {v'1} ¢ {6'9'1}=,8 ¥
tEM=39s52b s {s'C) T (9) - - {(vr'€’1} ¢ (P'€'T}=cd 3
ty=3sc1bh T {521} 0 () - - {v'€} {9} {9'v'e}=,d 4
TM=Fsv1b v {s'¢'T}C 0 ¢ - - - {9'e't} {9'c’'z)= 8 1
(2)X % I a Gareeeily € i g °a g ads

b |
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8. DUALITY

The duality in oriented matroids is an abstraction
of the duality (or the orthogonality) in vector subspaces in
Rr", Two signed vectors X and Y on E are said to be orthogonal
if the existence of an element separating X and Y implies the
existence of an element on which the signs of X and Y agree.
The dual C* of an OM C is the set of all signed vectors orthogonal
to every vector in (. Two basic properties are that C* is
also an OM, and that the dual (C*)* of C* is C. This implies
that any property of C can be stated equivalently as a property
of C* and vice versa.

Duality in oriented matroids has been studied exten-
sively by Bland [OT][AL], Bland and Las Vergnas [OR], Folkman
and Lawrence [OM], Las Vergnas [OM], and Lawrence [OMl.

In this chapter we review the fundamental properties
of duality in oriented matroids. Those include the two basic
properties mentioned above and the so-called "Painting Lemma"
by Bland and Las Vergnas. Our main interest is to show how
the results of OM programming in the previous chapters 3 and
5 can be translated through the basic properties of duality
to OM generalizations of well known results in LP duality.
Among others we obtain the OP strong duality theorem
(Lawrence [OM] and Bland [AL]) and the OP full complementary

theorem.
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A. Orthogonality

Let E be a finite set. We say that two signed vectors

X and Y on E are orthogonal (denoted by X * Y) if either

(8.1.a) Xe =0 or Ye =0 for all e € E ; or
(8.1.b) e, f ¢ E such that
Xe = Ye # 0 and Xf = —Yf = 0 .

For any set C of vectors on E, we define the (orthogonal) dual

*

¢ of C as
(8.2) C*= {Y : X * Y for all X ¢ C} ,

i.e. the set of all vectors on E orthogonal to all vectors in

c .
For a set C of vectors on E, and for subsets F, Fl, F2
of E, let
(8.3) C(F) = {X e C : xF = 0}
(8.4) c(FL,F2) = (X eC : > 0 and X., < 0}
. ' : Xp1 2 Q g2 < 0} -

Hence C(F¥,F) = C(F) for F € E.
For a vector X on E, let
(8.5.a) xT= {fe ¢ E : X_ >0}

e

(8.5.b) X = {e ¢ E : X, <0} .
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It is clear that if C is a set of vectors on E and if Y is

a vector on E then

(8.6) c(yy = cix', ¥y nc(yT, ¥4,

and if in addition C satisfies the symmetry (1.2 OM-1) then

(8.7) ciyt, Yy = - cix”, ¥ .

It is easy to verify the following:

(8.8) Proposition Let C be a set of vectors on E satisfying

the symmetry property (1.2 OM-1). Then for a vector
Y on E,

<Y eC' > = < c(Yt, ¥) =C(y) >

The following theorem will be useful:

(8.9) Theorem (Generalized Farkas Lemma) Let C be a set of vectors

on E satisfying both the symmetry property (1.2 OM-1)
and the closedness under the composition (1.2 OM-2).
Then for any fixed element g ¢ E exactly one of the

following statements holds:

v
o
-e

(a) 3Xe C s.t. Xg >0 and X

(b) TIYe C* s.t. Yy >0 and ¥

v
o

Proof Obviously (a) and (b) cannot both hold. Suppose
neither (a) nor (b) is satisfied and we shall obtain a contradic-

tion. For eachgubset F of E, F(+) denotes the vector on E such

that for e ¢ E
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+ if e ¢ F

F(+)g = 0 if ee¢E\F

Let F° be a maximal subset of E such that F°(+) e C . Such

(o}

F° exists because (b) is not satisfied and C(E,¢) \ C(E)= ¢

by (8.8). Since (a) does not hold, g ¢ F°. Let F° = g\ FO.

Since g ¢ F° and FO(+) ¢ ¢* , it follows from (8.8) that
) -
22 ¢ C(F ,4) \ C(FO).

Let Xl = F°(+) o 2. Since C is closed under the composition

1 1

x' ¢ ¢ . Note that x! > 0 and F® < X' . This contradicts

the choice of F°. Therefore the result holds. 0

A special case of Theorem (8.9), where C is
an OM (i.e., C satisfies the elimination property (1.2 OM-3)
and (1.2 OM-0) in addition to the other two properties),
was proved by Bland and Las Vergnas (see Bland [AL],
Corollary 3.1.1). Theorem (8.9) due to Edmonds, Mandel
and the author is certainly more general than the Bland-

Las Vergnas theorem.
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B. The Dual OM

The main theorem in this section is:

(8.10) Theorem (Bland and Las Vergnas [OR]) Let be an OM
on a .finite set E. Then,
*
(a) the dual ¢ of C is an OM on E; and
* % *
(b) the dual C of C is C.

We shall prove (8.10) by induction on |E| . For this

we need some remarks.

For any set C of vectors on E and for any subset F
of E, we define the deletion operation C \ F and the contrac-

tion operation C / F in the same way as they are defined

when C is an OM:

C\F = {XE\F' : E e C}

c/F = {XE\F : X e C and X, =0} .

(8.11) Proposition ([OR]) Let be an OM on E. Then the

féllowing properties hold for anv subset F or E:

(a) (C\F* = ¢*/F

-
14

() (C /P = ¢*\F .

Proof It suffices to prove it for the case |F| = 1. The proof
b W
of (@) is not difficult but a bit tedious. The part (b) is

easy and in fact we don't need to use the elimination property

(1.2 OM-3). ]
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.(8.12) Proof of (8.10):

(a): The first two axioms (OM-0) and (OM-1) are clearly

satisfied by c*. To verify (OM-2), take aﬁy two vectors

1 2

¥' and Y° from C* and take any vector X from C .

Consider three cases (a) X n‘Xlz ¢ , (b) X n Xl = ¢
2

and X n Y224  (c) X n(xtuy®) =¢ , and (xlo ¥?) xx

follows immediately each case.

The most difficult part is to verify (OM-3). Use

induction on |E| . Trivial if |E| = 1. Suppose

2

|E|] = k (2 2) and take any two vectors Yl and ¥Y© from c*

with £ ¢ E separating Yl and Y2. Let F be the set of

elements separating vl ana ¥2. 1£ F = (£} ’ v3 gefined

1 2 3. :
by Y (Y- o Y )E\{f} and Ye 0 is a vector

3 =

E\{f}
in C* we want. Otherwise, let Fl = F\ {f} and use the
OM-ness of C*\ Fl (=(c /FH)* , by (8.11.b)), and the

result follows easily.

(b): We use induction on |E|. By (8.11l.a) and (8.10.a)
we know by induction that ¢ / F = c**/ F for any

¢ = F € E. Let V and U be the sets of vertices of C
and ¢**, respectively. By (1.8) enough to show V = V .
Clearly VvV / F = V/F for ¢2F € E. If V = E for some
V e V then V= {V, -V} and we can easily show C = V =

- * %

V= ¢ 7. Otherwise for all X e V X =2 E and this

n
o]

together with the equality V /F =V /F (¢ = F

implies V = U , and hence C = et O
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Theorem (8.10) and (8.11) imply a theorem of Bland and

Las Vergnas [OR]:

(8.12) Theorem Let C be an OM on E and let R and S be
disjoint subsets of E. Then C\R / S and c*\' s / R

is a dual pair of OM's (i.e. the dual of each other).

An important corollary of (8.9) and (8.12) is the so-called
"Painting Lemma" : (Bland [OT][AL], Las Vergnas [MO],
and Bland and Las Vergnas [OR])
(8.13) Corollary (Painting Lemma)
For an OM C on E, given a partition of E into subsets
R, S and T, and a fixed g ¢ T, exactly one of the

following statements hold:

(a) X e C s.t. Xg >0, Xp, 2 0 and Xg =10 ;
* =
(b) dTY e C s.t. Yg >0. X, 20 and Y, =0 .
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C. Dual Bases

We assume in this section that C is an OM on E.

Recall that a subset B of E is a basis of an OM C on

E iff it is a minimal subset of E such that

c(B) = {0}

(see (4.10)). We will show that

(8.14) Theorem A subset B of E is a basis of C iff E \ B

. R *
is a basis of C .

In order to show (8.14) we need two lemmas:
(8.15) Lemma If B is a basis of an OM C , then C*(E \ B)= {Q}.

Proof Suppose B is a basis of C and suppose that

0 = Ye C*(E\ B) . Take any £ ¢ B with Y. = 0. Let X be

f
the fundamental cocircuit X(B;f) of f in a basis B of C . Since

XnY={f} , X and Y are not orthogonal, a contradiction. 0

(8.16) Lemma (Bland [OT1[AL]) For a basis B of an OM C on E

and for an element f ¢E \ B, let Y be a vector on E defined by

-X(B; e)f if e ¢ B
Y = + if e = f
e
0 otherwise

(where X(B;e) is the fundamental cocircuit of e in B) then

YeCX.
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8.9

Proof Suppose that Y ¢ C*. Then there exists X ¢ C s.t.
X and Y are not orthogonal and no element e ¢ E separates X
and Y, and |X n B| is minimal with these properties. Thus

Xe > 0, and since B is a basis, |X nB| > 1. If X_ =0 ,

f
then there exists g ¢ B such that xg = Yg = -X(B;g)f = 0.

Otherwise let g be any element of X n B. By the choice of X,

S - . = O - i = -
Yg X(B,g)f Xg or 0. Let X~ be X(B;g) if Xg and
-X(B;g) if Xg = + . Using elimination property (OM-3) for X
and X° we obtain Xle C such that Xé =0, x% > 0, and

1 - o . 1

XB\{g} XB\{g} . This implies that X~ and Y are not orthogonal
and |§l n B| = |X nB | -1, contradicting the choice of X.
This completes the proof. 0

(8.17) Proof of (8.14): By the duality (8.10) it is sufficient

to prove one direction. Let B be a basis of C . Then it follows
from (8.15) and (8.16) that E \ B is a minimal subset of E such

that C*(E \ B) = {0} . Thus E \ B is a basis of c* . D

(8.18) For a basis D of C* and for i ¢ D, we denote by Y(D;i)
the fundamental cocircuit of i in D. It is easy to see from

(8.14) and (8.16) that for any basis B of C ,
(8.19) Y(E \ B; i)j =-X(B; j)i

for i «e E\B and j ¢ B .
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8.10

D. Duality in Oriented Matroid Programming

For this section we assume that C is an OM on E, g

and £ are two fixed elements of E.

For a (primal) OP P = (C; g,f) the dual OP P* of P

is defined as the OP

*

(8.20) P* = (c*; £,9) ,

that is, the OP obtained from P by replacing C by its dual
and interchanging the roles of the infinite element g and

the objective element £f. Obviously by the duality (8.10.b),

* %

(8.21) P =P .

Let E; be the set E \{g,f} of constraint elements of

P (and P* as well).

For a subset F of El’ let

(a) P(F) = {X e C : Xg >0 and X2 o}y ,
(b) P°(F) = {X e C : Xy = 0 and Xp > o} ,
(¢) Q(F) = (Y ¢ C*: Y. >0 and ¥,z 0} ,
(@) Q°(F) = {Y ¢ C*: Y. =0 and Y,z 0} .

Then, for a subset F of El’ P(F) is a polyhedron in an affine
OM (C;g) whose infinite face is P°(F), and Q(F) is a poly-
hedron in an affine OM (C*;f) whose infinite face is Q (F).

In particular, P = P(El) is the feasible region of a primal OP
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8.11

P with the infinite face P°= Pw(El), and Q = Q(E;) is
the feasible region of the dual OP P* with the infinite

face Q°° = Qm(El).

Recall that a subset F of El is cofeasible for a

primal OP P if

(8.22) # 2 ¢ C s.t. Zg =0 , Zg > 0 and Zp 2 0,

and strongly cofeasible if it is cofeasible and

(8.23) #2 e C s.t. zg =0, 2,>0, Zg20, Zev{e} 2 00

for all e ¢ F.

. . ' *
Using the Painting Lemma (8.13) and the axiom (1.20M-2) for C

14

we can obtain the following:
(8.24) Proposition Consider a primal op P = (C; g,f).

(a) A subset F of El is cofeasible for P iff there
exists a feasible solution Y to the dual OP such

that YEl\F

=,Q,'
(b) A subset F of E, is strongly cofeasible for P
iff there exists a feasible solution Y to the

dual OP such that Y Q0 and Y_ > 0 .

E]\F < F
Bland [AL] defined that a vector X ¢C and a vector Y eC*

are complementary (for an OP P) if

( 8.25) X, = 0 or Y = 0 for all e ¢ E,
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and in this case a pair (X,Y) is called a complementary pair.

Using (8.24), Proposition (3.22) implies:

(8.26) Proposition (Bland [AL]) A feasible solution X to be

primal OP P is optimal iff there exists a feasible solutio

Y to +the dual OP such that X and Y are complimentary.

A optimal pair is a complementary pair (X,Y¥Y) such that X is

feasible for a primal P and Y is feasible for the dual P .

Using (8.24.b), (3.36) implies:

(8.27) Theorem (Bland [AL1) If (x!, vl) and (x2,Y2) are

optimal pairs, then (Xl,Yz) is an optimal paijr.

The following theorem is a generalization of the full

complementary slackness theorem of linear programming:

(8.28) Theorem If a primal OP (C; g,f) has an optimal
solution then there exists a full complementary pair

(X, ¥), that is,a complementary pair satisfying:

either xe > 0 or Ye > 0 fof all e ¢ El .

Proof As in Theorem (3.33), let F* be the set of all constraint
elements which are active at every optimal solution. Let X be
a composition of all optimal solutions. Then, X is algo an

optimal solution, and clearly X, = 0 and X «> 0. By the

F EQF

strong cofeasibility of F* (Theorem (3.33)) and (8.24.b), we

have a feasible solution Y to the dual such that Y 0 and

F*”
Y x = 0 . Clearly, (X,Y) is a full complementary pai:i. 0
E\F
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Recall that a primal OP is cofeasible if the set E

of constraints is cofeasible, and co-infeasible otherwise.

It is straightforward from (8.24.a) that:

(8.29)

Proposition

(a) A primal OP is cofeasible iff the dual OP is

feasible;

(b) A primal OP is co-infeasible iff the dual OP is

infeasible.

By (8.29), the primal statement (3.23) of the strong duality

theorem is equivalent to a primal-dual statement:

(8.30)

Theorem (Strong Duality Theorem, Lawrence [OM]):
For a primal OP P and the dual OP P*, exactly one

of the following statements hold:

(a) Either the primal or the dual is infeasible;
(b) Both the primal and the dual have feasible

solutions X and Y which are complementary.

Let B be the set of bases of C and D be the set of

bases of C* , and let

(8.31)

(8.32)

Bl {B ¢ E; : Bu {g} ¢ B} ,

D

in

{D € E Du {f} ¢ D} ,

1 1

which are the set of bases of a primal OP P and the set of

bases of the dual OP P*. By (8.14), we have
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(8.33) D {E\NB : Be B}, and

(8.34) vl = {El\ B : B« Bl} .

The terminelogies developed in Section B of Chapter 5
on bases of OP have the duality through the duality (8.19) of

fundamental cocircuits:

(8.35) Proposition Let B be any subset of El. Then the

following properties hold:

(a) B is a feasible (co-feasible, respectively)
basis of P iff El\ B is a co-feasible (feasible)

basis of P* ;

(b) B is an inconsistent (co-inconsistent, respectively)
basis of P iff E,\ B is a co-inconsistent (inconsiste

basis of p* H

(c) B is an optimal basis of P iff El\ B is an optimal

basis of P* .

The basis form (8.36) of the Strong Duality Theorem is

straightforward from (5.16) and (8.35).

(8.36) Theorem (Bland [AL]): For every standard OP, exactly

one of the following statements hold:

(a) there exists either an inconsistent or co-incon-

sistent basis;

(b) there exists an optimal basis.
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PART 1I

GEOMETRY OF ORIENTED MATROIDS



9. FLATS

A. Posets

A partially ordered set (or poset) , here, is a
finite set L together with a partial ordering < on P. The
join and the meet of a subset X of Pare denoted by v X and
A X , respectively, if they exist. 1If P is a poset
a, b ¢ P, we say that a covers b if b < a and there is no
element ¢ ¢ P with b < ¢ < a. A chain ¢ in a poset P is any
totally ordered subset {ao, al,...,ak} of P, where

o < cer <@y and the length of a chain c¢ is k. For
any comparable elements a, b (a £b) of a poset P the interval

fa, bl is the poset of all elements between a and b

i.e. {c e P :ac<czs<b} .

Let P be a poset containing a least element O = OP'
The height h(x) of an element x ¢ P is defined to be the
maximum of length of a chain: 0 =ag <aj <... <ay =X,

between O and x. The maximum height of any element of P is the

height h(P) of P. The closure of an element a ¢ P is the

interval [o, a] , the set of all elements below a.

A graded poset is a poset P with O and a function

g : P + Z such that

(Gl) a>b =>g(a) > g(b) ; and

(G2) a covers b => g(a) = g(b) + 1 .
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We say that a poset satisfies the Jordan-Dedekind (Chain)

Property if
(J-D) Every maximal chain between the same elements have

the same length.

Clearly a poset with 0 satisfies the Jordan-Dedekind property

iff it is graded by the height function.

A lattice is a poset L in which any two elements have
a join and a meet. A lattice is complete if each of its sub-
sets has a join and a meet. A nonempty complete lattice has
the least element O = AL and the largest element 1 = VL.
An element a of a lattice is called an atom if it covers 0.

An atomic lattice is a lattice in which every element except

0 is a join of atoms. A lattice L is called semimodular if

for all x, y ¢« L, ¥ and y cover X A y then X v y covers both.

The polar {(or dual) L of a lattice L is the lattice

defined by the converse ordering relation on the same elements.
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B. Matroids

Let M be an matroid on a finite set E, i.e., M is a

set of subsets of E satisfying the axioms.

(M-0) E e M ;
(M-1) Fl' F2 e M=> Fl n F2 € M ;

(M-2) < Fl, F2 e M, ace Fl U F2 r b € FZ\ Fl>

in

=> < AF; ¢ M s.t. ac Fy }b and Fy nFy, € F3> .

Members of M are called flats of M. Given subset S of E, the

closure cl(S) of S in M is the smallest flat of M(C)

(9.1) cl(s) =n{F : S € F ¢ M(O)} .

Clearly we have
(9.2) §' €8 € E = cl(s8') € cl(s).

A subset S of E is said to be independent in M if there is

no proper subset S' of S with cl(S') = cl(S). Given T < E,

a maximal independent subset o0of T is called a basis of T in M.

The following properties are well-known and can be

easily proved from the axioms (M-0) ~ (M-2):

Let T be a subset of E.

(9.3) If a subset S of E is independent and cl(T) \ cl(S) = ¢
then T \ cl(S)# ¢ and S u{e} is independent for

every e ¢ T \ cl(S) ;
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(9.4) If S is a basis of T then cl(S) = cl(T);

(9.5) If S is a basis of T and

j ¢ S then there exists

a unique flat F with S\ {j} € F < c1(S) (hence

F = cl(s\ {j});

(9.6) If S is a basis of T and

if i ¢« T\ S then

S \{j}u {i}) is a basis of T iff i ¢ cl(s\ {i});

(9.7) If S and S' are bases of

T and if j ¢ S \ S' then

there exists i ¢ 8'\ 8§ such that s \{j} v {i} is

a basis of T;
(9.8) Every basis has the same

rank r(T) of T.

A basis of E in M is also called

rank r(M) of M is defined to be

The rank function r of M

properties:

(9.9) r(¢) =0

-

(9.10) O

A

r(s) < |sj (s € E)
(9.11) S €T S E =>r(S) < r(T)

(9.12) r(S) + r(T) 2 xr(S u T) +

Let L(M) be the poset of

cardinality, called the

a basis of M , and the

rank r(E) of E,

satisfies the following

.
14
-
’

r(S n T) (S, T €< E).

flats of an matroid M ordered

by inclusion. From the axioms (M-0) and (M-1), it follows that

(9.13) L(M) is a lattice where the join Fl v F2 and the meet

Fl A F, are defined by
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F, A F, = F) n F,
FlVF2=n{F:F1uF2§FeM} ,
for Fy, erL(M).

(9.14) L(M) has the largest flat 1 E and the smallest

i

L (M)

flat OL(M) z cl(¢).

One can easily show from (9.3) that

(9.15) 1I1f Fl’ F, ¢ M and Fl c F2, then r(Fl) < r(F2) and

2
furthermore for each e ¢ F2\ Fl there exists a flat

F3 ¢ M such that F, c F3 < F2, e ¢ F, and r(F3) = r(Fl)

1 3
This implies that

(9.16) 1If Fl’ F2 € M and Fl c F2’ then the length of every

maximal chain from Fl to F2 is r(Fz) - r(Fl).

By the fact that r(0 = 0,

L(m)’
(9.17) The height function of L(M) is the rank function r

of M restricted to the flats of M ;

(9.18) L(M) is graded by its height function and hence L(M)

satisfies the Jordan-Dedekind property.

Remarking that the atoms of L(M) are the flats of rank 1,

the property (9.15) with setting F, = OL(M) implies
(9.19) L(M) is an atomic lattice.
It follows from (9.12), (9.17) and (9.18) that

(9.20) L(M) is semimodular.
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Let C be an OM on E. It is easily shown that the set

(9.21) M(C) = {E \ X : X e C}

is a matroid on E, called the underlying matroid of C . The

rank r(C) of C is r(E), the rank of the underlying matroid.
A subset S of E is called independent in ( if it is independent

in M(C).
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C. Flats of an Oriented Matroid

Let C be an OM. For a subset T of E, let

(9.22) C€(T) = {X e C : Xp = o} .

A subset t of C is said to be a flat of C if there exists
a subset T of E such that t = C(T) . Let L(C) be the poset
of flats of C ordered by reverse inclusion. The following

properties are obvious:

(9.23) C is the minimum flat in L(C) and {0} is the maximum

flat in L(C) ;

(9.24) tyr ty € L(C) => t, n ty € L(C).

1

Hence,

(9.25) L(C) is a lattice, in which the meet t Aty and the
join tl vV t, are defined by

tl v t2 = tl n 1:2
t1 A t2 = a{t : tl u t2 € t e L(C)} .
for tl’ t2 e L(C) .

Let M(C) be the underlying matroid of C , and let cl(T) be

the closure of a set T € E in M((C). Clearly,
(9.26) C(T) = C(cl(T)) for any T € E ;
(9.27) Fi, Fy ¢ M(C) and Fy #F2=9C(Fl) #C(Fz) .

Thus, for each flat t of C there exists a unique flat F(t)

of M(C) such that
t = C(F(t)) .

-132 -



The following properties hold:

(9.28)
(9.29)

F(t) = n{E \ X : X ¢ t} (t € LIC)) ;

The lattices L(C) and L(M(C)) are isomorphic for

there are order-preserving bijections:

> C(F) € L(C)

F ¢ L(M(C))

t € L(C) > F(t) e L(M(C)) .

The properties (9.17) ~ (9.20), (9.29) imply:

(9.30) The height p = PL(C) of L(C) is defined by
p(t) = r(F(t)) (t e L(C)) ;
(9.31) L(C) is graded by its height function p , and hence
it satisfies the J-D property;
(9.32) L(C) is a atomic lattice;
(9.33) L(C) is a semimodular lattice.
The dimension d(t) of a flat t ¢ L(C) is defined to
be r(C) - p(t) - 1. The k-flats of C are the flats of C
having dimension k, for - 1 < k < r(€) - 1.
It follows from (9.26) and (9.30) that
(9.34) A flat t of C is a k-flat iff t = C(S) for an
independent set S of M(C) with |S| = r(C) - k - 1;
(9.35) The only (-1)-flat is {Q} = lncey
(9.36) The O-flats are the flats of the form

{0 , V, -V} for some vertex V of C , called the

points of C;
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(9.37) The (r(C)-2)-flats are the flats of the form C({e})

for some e ¢ E \ cl(¢), called the hyperplanes of C ;

(9.38) If t is a k-flat (-1 < k

A

r{C)-2) and h is a

[a}

hyperplane then either t hor t nh is a (k-l)-flat;

(9.39) The only (r{(C)-1)-flat is C = OL(C) .

The 1-flats of C are called the lines of C . It is

straightforward from (9.36) and (9.38) that

(9.40) If % and h are respectively a line and a hyperplane of
¢ and r(C) z 3 then either 2 € h or they intersect

at a point.
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10.1

10. CELLS

A natural generalization of convex polytopes by
oriented matroids will be considered in this chapter.
Our generalization is related by (poset) polarity to another
oriented matroidal generalization of convex polytopes due
to Las Vergnas [CV]. The basic properties of the face
lattice of a convex polytope will be shown to be valid in

a more general setting of oriented matroids.

In this chapter we assume that C is an OM on a

finite set E. Vectors in C will be called faces .

A, Face Lattice and J-D Property

For a vector X on E, let CIL[X] denote the set of

all faces of C conforming to X:

(10.1) CIx] = {X'e C : X'< X} .

A subset t of C is said to be a cell (or polytope) in C

(10.2) t -»C[X]
for some vector X on E.

(10.3) Proposition Let t be a cell of an OM C . Then the

following properties hold:
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10.2

(a) < Xl, Xzs t > = < Xlo Xze t >

(a cell is closed under the composition)

(b) < xl, x2e t > = < xlo X2 = xzox1 >

(the composition in commutative in t).

By (10.3.b), for any subset s of a cell t the
composition o.s = o{X: X ¢ s} of vectors in s is uniquely
defined. For each cell t, let L[t] denote the poset t
ordered by the conformal relation. By the above remarks:

for a cell t

(10.4) the poset L[t] is a lattice in which the join and

meet operations are defined by

xt v x% = xlo x%2 = x%0 x1 ,
x} A x2=o0{Xet:X<X' and X 2 x2}
1 .2

for X7, X%¢ t

-

(10.5) the largest face of L[t] is ot and the least
face of L[t] is 0 . Since ote C and t = Clot]

for any cell t,
(10.6) a subset t of C is a cell iff t = C[W] for some

face W e C .

For a face X in C , let the dimension d(X) of X as
the dimension d(t) of the largest flat t = C(E \ X) of C

containing X. By (9.34)
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10.3

(10.7) 4(X) = r(C) - r(E \ X) -1,

where r 1is the rank function of M(C).

First we observe that

(10.8.a) The unique face of dimension (-1) is 0 ;

(10.8.b) The faces of dimension 0 are the vertices of (C .

(10.9) Theorem Let t be a cell of C . Then the following

statements hold:

(a) The height h(X) of X ¢ t in LIt] is d(X) + 1.

(b) The lattice L[t] is graded by 4, and hence

satisfies the J-D property.

Knowing that d(0) = -1, the above theorem follows from the

next proposition.

(10.10) Proposition If X', X%c ¢ with X% < x' then

d(xl) > d(X2) and furthermore there exists X3e c

s.t. X2-< x3 < x! and d(x3) = d(Xz) + 1.

1 2

Proof: Let Xl, Xze C and X < X°. The first statement

is clear from (9.15), (9.21) and (10.7). For the second
statement we can assume that d(xl) > d(Xz) + 1. It is enough
to show that there is X ¢ C s.t. X%< X < xI. By (10.7)

we have r(E \ 52) > r(E \ 51) + 1. Since L(M(C)) is graded

by r, there exists X3¢ ¢ s.t. 52 c x3 ¢ 51. Let

4 2 3 1

‘X® = X° o X° . If X4:$ X' then we are done. Assume X° X xt
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and set F = E \ §2. Let I be the set of elements separating

x! ana x4. Clearly I < F. Using (1.8) for Xl, x4 and I,

we obtain xse € and j € I such that xg =0, X2-< X5 < X1

This completes the proof. a
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B. Facets

For X, X'e C , X' is said to be a (proper) face of X
if X' 2 X (X' < X). The following properties are equivalent

for X, X'e C with X' £ X:

(10.11.a) d4(X') = d4d(X) -1 ;
(10.11.b) X' is a maximal proper face of X;

(10.11.¢c) X covers X' in L[C[X]1]1.
A face X' of X ¢C is said to be a facet of X (or C[X]) if

one of the above conditions holds.

For Xe C , an element e ¢ E is said to be a

facet element of X if Xe # 0 and there exists a facet X' of

X with X = 0.
By Proposition (10.10), the following is immediate:

(10.12) Proposition If X, X'e C and X' < X then there

exists a facet element e of X with e ¢ X \ X'.

We shall investigate basic properties of facets
and facet elements in this section. For this it will be

convenient to have some new notations.

A symbol + is called a dot whose negative -(.) is

defined to be itself. A signed-dot vector X on a finite set

E is a vector (Xg : e ¢ E) where X¢ ¢ {+,0,-, +} for e ¢ E.
A signed-dot vector may be called an sd vector. The negative
-X of an sd vector X is defined in the obvious way. The

1 2 2

composition X~ o x° of sd vectors xl and X is defined by
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x1  ifr x! = o0
1 5 e e
(10.13) (X7 o X%) = (e ¢ E)
e 2 . .
xe otherwise

We define the binary relation £ on {+,0,-,°} by 0< a and
a < + for ae{+,0,-,+} . This binary relation induces the
conformal relation on sd vectors as follows: for sd vectors

xl and X2 1

on E, X~ conforms to x? (denoted by Xlzﬁ Xz) if

Xl < X2 for all e ¢ E.
e e

It should be clear that signed vectors are sd
vectors, and the operations on sd vectors are simply the
same operations on signed vectors when they are restricted

for signed vectors.

If X is an sd vector on E, F € E and o e{+,0,-,} ,
X + F* denotes the sd vector defined by

o if e ¢ F

(10.14) (X + F“)e =

xe otherwise.

For an sd vector X, C[X] is defined by (10.1). Hence for an

sd vector X and a subset F of E,
(10.15) clx + F°1 < C[x1 s C[X + F°1 .

For a signed vector X on E, let X1 denote the
maximal face of X comforming to X, or equivalently the

maximal face of the cell C[X] . It is easy to see that

(10.16) an element e ¢ E is a facet element of X iff

arx + e°1) = ax) - 1.
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The following proposition says that a cell C[X] is determined
by the facet elements of X together with the zero elements

E \ X, for each X ¢ C

(10.17) Proposition Let X ¢ C and let F be a set of non-

facet elements of X in X. Then

C[X] = CI[X + F'1 .

Proof Suppose the statement is false for some X ¢ C and
some F. We can assume that F is a minimal set of non-facet
elements in X with the property that C[X + F' 1 = C[X] .

By (10.15), C[X] e C[X + F'] . Let W e C[X + F'J \ CLX] .

By the choice of F,

WF = - xF and

Ye\r 2 Xg\p -
Using (1. 8) setting x! = X, X2 = Wand I = F, we obtain

X'« €C and j ¢ F such that

' - '
Jj o , XF < XF and

' =
Xe\F T *E\P -
This implies that X' < X. By (10.12) there exists a facet

element e of X with e ¢ X \ X'c F, a contradiction. 0
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(10.18) Corollary Let X'c¢ ¢ for i = 1,2,3 and let
xl-< X2 < X3. Then there exist a facet element e

of x> with e e X2\ XI.

1

Proof: Let F = 52\ X". Remarking that x!

0 (-Xz) €
crx3 + FT1 \C[X3] , by (10.17) F must contain a facet element

of X3. ]

(10.19) Theorem Let X ¢ C \{Q} and let X'e C be a
k-dimensional face of X. Then there exists at

least (d4-k) facets of X, of which X' is a face.

Proof By the J-D property (10.9) of LIC[X]] there exists

a chain of faces:

x' = xX¥ < xFlc oo xl x9 =

in LICICX]] where d(Xi) =i for i =%k,...,d. Since

xi71 ¢ xt 4 x% for i = x+1,...,d-1, and by (10.18) and (10.12),

there exist a facet element e, ¢ xty xi7d

of X for i = k+1,...,d.
We claim that the facetswW® = X + e?W i=k%+1,...,4 are

all distinct, that proves the result. Suppose that Wi = Wj

for some i, j with k+lsi<j<d . Noting that e, ¢ x3\ x! ana

ejr ey ¢ ﬂi, wi< wl o x} < x contradicting that W is a

facet of X. This completes the proof. D
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Immediate corollaries are:

(10.20) Corollary Every d-dimensional face (or cell) of C

has at least (d+l1l) facets, for 4 2 0.

(10.21) Corollary For every d-dimensional face X (or cell)
of C and its vertex (i.e. O-dimensional face) V,

there are at least d facets of X which V is a face of.

(10.22) Corollary Every d-dimensional face X of C is the
comoposition xl 0 X2 of any two distinct facets
x! ana x% of X, for d > 1 .
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It has been remarked that the vertices V = V(C)

of C are precisely the 0O-dimensional faces of C .

We define the edges of C as the l-dimensional

faces of C .

(10.23) Proposition Every edge of C has exactly two

vertices as its faces.

Proof Let W be an edge of C . By (10.20) W has at least

two vertices. Suppose that W has three vertices, Vl,Vz,V3.

By (10.22), vio v2 = vZo v3 = v v = w. pet Tl =w .\ v

for i = 1,2,3. Clearly Tin T3 = ¢ if i = 3. Setting X1 = vi

= v,
x> = v and I = T3, it follows from (1.8) that there exists
X e Cand 3J ¢ T3 s.t.

Xj =0

Xp3 2 W3

XTl = -WTl

Xp2 = Wp2 .
Remark that X;3 = 0 , since otherwise v3< viox < w,
contradicting W being an edge. Thus X ¢ 23 and hence X = V3
or -V3. This cannot happen because xe = -VZ # 0 for e ¢ T1
and X¢ = Vg 2 0 for f ¢ T2. This completes the proof. 0
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(10.24) Corollary If X, X'e ¢ and X' < X with d(X) = d4(x°'

then there are exactly two faces between X' and X.

Proof Let R = X' . Consider the minor C' = C\R of C .
Clearly there is one to one correspondance between the faces
of C between X' and X and the vertices of C' below the edge

X R of ('. Hence the result follows from (10.23). a

E\
(10.25) One important consequence of (10.23) is that there
is a graph structure underlying oriented matroids. Let t

be a subset of C with the property that

(a) < X'e Cand X'X X e t > => < X'e £t > .

Let Ki(t) be the set of ail i-dimensional faces of C in t,
for -~l<isr(C)-1. The l-skeleton sl(t) is the pair (Ko(t).Kl(t))

Proposition (10.23) implies that

(10.26) The l-skeleton Sl (t) is a graph in which the
incidence relation is induced by the conformal

relation < in C .

In particular,

(10.27) if t is a 0-dimensional cell then Sl(t) is a graph

consisting of a single vertex ; and

(10.28)  if t is a l-dimensional cell then S1(t) is a
graph consisting of a single edge and its two

vertices.
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D. Sugercells

We shall introduce a new notion generalizing flats

and cells.

A supercell in C is a subset t of C which is of the

form t = CI[W] for an sd vector W on E.

Following properties are obvious.
(10.29) Every flat and eVery cell in C are supercells;
{(10.30) The intersection of supercells is a supercell;

(10.31) Supercells are closed under composition;

(10.32) Supercells satisfy the elimination property.
It is also clear that if t is a supercell,

(10.33) the poset L[t] is graded by the dimension function

d (in (10.7)).
Since the dimension function
d(xX) = xr(C) - r(E \ X) -1 X e C

depends only on the support X of X, and by (10.31), we know

that for a supercell t
(10.34) every maximal faces of L[t] have the same dimension.
The dimension d(t) of a supercell t is defined as the dimension

of any maximal face of t.

(10.35) Proposition Let t be a d-dimensional supercell, and
let X be a (d-1)-dimensional face of t. Then there

exists at most two faces of t covering X in L[t] .
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Furthermore, if t is a flat then there exists

exactly two faces of t covering X.

The last statement easily follows from the fact that flats
are closed under the composition and the negation. The first

statement is implied by the following.

(10.36) Lemma Let X ¢ be a common face of three distinct

1 .2 .3

faces X7,X",X"¢ C having the same support. Then

aixt) > a) +2 for i=1,2,3.

Proof Since Xl,Xz,x3 are distinct, we may assume Xlz * Xz.

Using (1. 8 ) with setting I be the set of elements separating

Xl and X2, we obtain X4€ C s.t. X< X4 1

< X~. This tégether
with (10.33) implies d(x!) > d(X) + 2. Since a(x}) = a(x?) =

d(X3), the proof is complete. O
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11.  SHELLING

Bruggesser and Mani [SD] showed that the facets
of any d-dimensional convex polytope P can be arranged in
a sequence Fl’Fz""'Fr (r = the number 2flfacets of P) such
that for each i with 2 =i <r, Firw( ':l F.) is a topological
(d-2)-ball. This property, called the shgllability of polytopes
was necessary to complete Schldfli's computation of the Euler
characteristic for convex polytopes. Since then, the
shellability, naturally considered as a property of geometrical
cell complexes, has been studied by many authors. One of the

most significant result using shellability is the proof

of the upper bound conjecture (see McMullen and Shepherd [UBJ).

In this chapter we introduce the notion of shell-
ability for posets which abstracts the same notion for cell
complexes. It will be shown that the Euler relation is still
valid for shellable posets. The main theorem is the shell-

ability of OM cells (ordered by the conformal relation).

It can be also shown as a consequence of shell-
ability of OM cells that the l-skelton of an d-dimensional OM
cell is d-connected. (This result was first proved by

Mandel [TO] by a different argument.)
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It is worth remarking that Lawrence (unpublished)
recently found an OM cell which is not isomorphic to any
convex polytope. This implies that the above results
really generalize the corresponding results on convex
polytopes. (See, Balinski [GC] for the proof of d-connect-

ivity of a d-dimensional convex polytope).
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A. PM Posets

First of all we note that every poset L studied
in this chapter has the least element O = O1,» and assume

that the dimension function d = 4 of L is the height func-

tion h = hL of L minus one.

(11.1) A poset L (ordered by a partial order < ) is

called a PM poset of dimension d if the conditions (PM-1)

~(PM-5) are satisfied

(PM-1) L has the least element O = OL ;

(PM-2) L satisfies the J-D property, or equi-
alently L is graded by its dimension
function ;

(PM-3) Every maximal element of L has dimension 4;

(PM-4) Each element of dimension d-1 is covered

by at most two (at least one from (PM-3))

maximal elements ;

(PM-5) For any two ordered elements X'< X with
d(X) = d(X')+2, there are exactly two

elements between X' and X.

(11.2) The boundary elements D of a PM poset L of

dimension 4 are the (d-1)-dimensional elements (i.e. coatoms)

of L which are covered by only one maximal element.
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(11.3) The boundary 9L of a PM poset L is the lower
ideal of DL i.e.,

L = {X e L : X < Z for some Z e D} .

It is easy to see that the boundary of a PM poset

* is not in general PM. For example :

L = is PM ,

but

oL = Q\\<X/£i//o is not PM

because this violates (PM-4).

However the following property holds:

(11.4) If L is a PM poset with the greatest element lL
then the boundary 5L of L is a PM poset of
dimension one less than L, and furthermore 33L = ¢.

PM posets of small dimensions are easy to characterize:

(11.5) Every PM poset of dimension (-1) is a singleton
{0 = 1} ;
(11.6) Every PM poset of dimension 0 is either a poset

of two ordered elements {0, 1} or a poset of
three elements {0, My, Mz} where M, and M, are

the maximal elements covering 0.
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Therefore the PM posets L of dimensicen 0 is
isomorphic to either the face lattice of a 0-dimensional
convex polytope or the boundary poset of a l-dimensional

convex polytope.

It can be shown that the face lattice of any
d-dimensional convex polytope is a PM poset of dimension
d and the boundary 3L is a PM poset of dimension d-1. How-

ever a more general statement is true.

By an OM cell of dimension 4 we mean a

d-dimensional cell in some OM. By (10.9) and (10.24) the

following proposition holds:

(11.7) Proposition The lattice L[t] of an OM cell t
of dimension 4 (d 2 -1) is a PM poset of dimension
d and the boundary 3L[t] is a PM posets of

' @imension (d-1).
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B. Shellability of PM Posets

For a poset L with a least element OL’ and for

a k-dimensional element X ¢ L, the interval [OL, X]

= {X'e L : X'< X} is called a k-dimensional cell (or k-cell)

of L.

(11.8) The shellability of PM posets is defined induct-

ively, using two different types of shellable posets namely

shellable d-balls and shellable d-spheres:

(B)

(B-1)

(B-~2)

(B-2a)

A poset L is defined to be a shellable d-ball

(d > 0) if it is a PM poset of dimension 4

and either

L has the greatest element 1; and the boundary

3L is a ‘shellable (d-1)-sphere ; or

every d-cell of L is a shellable d~ball and
the d-cells of L can be arranged in a

sequence:

tl,e2,...,¢¥

in such a way that

-1 . .
( v t%) n td is a shellable (d-1)-ball
i=1
for all 1l < j < r.

—-153 -



11.7

(8) A poset L is defined to be a shellable
d-sphere (d 2 -1) if it is a PM poset of

dimension d@ and either

(s-1) d=-1 (i.e. L = {Op}) ; or
(8-2) 9L = ¢ and every d-cell of L is a shellable
d-cells of L can be arranged in a sequence:

el,e2, ... ,¢F

in such a way that

j-1 . .
(s-2a) ( v t1) n td is a shellable (d-1)-ball
i=1
for all 1 < j = r
and
r=l 4 r
(s-2b) ( v t7) n t is a shellable (d-1)-sphere.
i=l
(11.9) ° 1If L is a PM poset of dimension d a sequence

t1,¢2,...,t% of the d-cells of L is said to be a shelling

sequence of L if it satisfies either (B-2a), or (S-2a) and

(S-2b). A PM poset of dimension d is said to be shellable if

it is either a shellable d-ball or a shellable d-sphere.

The following is straightforward from the defini-

tions , (11.5) and (11.6).

{(11.10) The PM posets of dimension (-1) are the shellable
(-1)-spheres. The PM~posets of dimension 0 are shellable and
those of from {0, 1} are the shellable 0-balls and those of

form {0, M;, My} are the shellable O-spheres.
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It should be clear that not all PM posets are

shellable. For example,

L = is not shellable.
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C. Euler's Relation

Let L be a PM poset of dimension 4 (@ 2 -1).
We denote by f,(L) the number of i~-deminsional elements

i
of L for -1 < i £ 4. The Euler characteristic x(L) of L

is defined by
d

(11.11) xw = 1 Dt .
i=0

It is well~known as Euler's relation that if L is the

face lattice of a d-dimensional convex polytope then

(11.12) x(L) =1

and if L is the boundary of the face lattice of a (d+l1l)=-

dimensional polytope then
d
(11.13) x(L) =1 + (-1)" .

In this section we shall prove a generalization of this

result:
(11.14) Theorem The shellable PM posets satisfy the

Euler's relation, that is,

(a) if L is a shellable d-ball then (L) = 1 ; and

(b) if L is a shellable d-sphere then x(L) = 1+ (—1)d.
Proof Let L be a shellable PM posets. If 4d(L) = -1,

by (11.10), L {0} is a shellable sphere and X(L) = 0

1

= 1+ (-1) " follows. We use induction on d(L). Assume that
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the Euler-Poincare relation holds for all shellable PM posets
of dimension <d-1 (d 2 0). Consider the case d(L) =d. There
are two cases (a) L is a shellable d-~ball and (b) L is a

shellable d-sphere.

Case (a): Since L is a shellable d-ball, (B-1l) or (B-2) holds.
If (B-1) holds, then clearly L = 3L + 1 and
X(L) = x(31) + (-1)¢
=14+ (-1, (cnd =1

where the second equality holds because 3L is a shellable
(d-1)-sphere and by the inductive hypothesis. Suppose (B-2)

holds. Then there exists a shelling sedquence

tl,t2,... ,tF
-1 37t
of the d-cells of L satisfying (B-2a). Let U’ = u t
i=1
for 1 £ J < r + 1. We shall prove that
j-1, . X
(=) x@’ =) =1 for 1 <j=sr +1
which proves X(L) = 1. We use induction on j to prove (x).
1

If j = 1, the result (*) follows from the fact that t~ is
a shellable d-ball and from the first observation. Thus,
we assume that X(Uj-l) =1 for 1 < j < k, and calculate

X(Uk) as follows :

x (%) = x@W* 1) + x1&®) - x@wkla ¥y .

k

Since t™ is a shellable d-ball with a greatest element, X(tk)= 0.
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k-1 k-1 k

By the (second) induction X (U ) = 1. By (B-2a), U nt

is a shellable (d-1)-ball and by the first induction

Uk—l

X ( n tk) = 0. Therefore X(Uk) = 0 and (*) follows. The

completes the proof of (a) part.

Case (b): Since L a shellable d-sphere with d 2 0, the

condition (S-2) holds. Let t!,t%,...,t¥ be a shelling

r-1 .
e
i=1
and t¥ are shellable d-balls and by the Case (a),

sequence satisfying (S-2a) and (S-2b). Let U
Since Ur-l

we have

(x+)  xwF 1y = 1 ana x(t%) = 1.

1

Since U "n t¥ is a shellable (d-1)~-sphere, the inductive

hypothesis implies
(xx%)  X(UT Lo tT) =1+ (-1 .

Using (*x) and (xx%x), we obtain

x(@) = xUE ™ 4+ xtF) - x@F s 5
=1+1-1- (-1
=1+ (-19 .
This completes the proof. O
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D. The Shellability of OM Ccells

In this section, we assume that sets of signed
vectors (on a finite set)are ordered by the conformal
relation £ . So we may simply write t for the poset L[t] of
an OM cell t .

We have already remarked in (11.7) that every OM
cell t of dimension d and its boundary 9t are both PM posets
of dimension d and (d-1) respectively. In this section we shall

prove the main result of the present chapter :

(11.15) Theorem (Shellability of OM Cells)
Every OM cell of dimension d is a shellable d-ball

and its boundary is a shellable (d-1)-sphere.

An important corollary of this theorem and Theorem (11.14)

is a generalization of Euler's relation for convex polytopes:

(11.16) Corollary (Euler's Relation for OM Cells)

For every OM cell t of dimension 4,

1 and

X (t)
1+ (-1)9 .

x(ot)

First of all, we shall reduce the theorem (11.15)

to an equivalent statement which is easier to handle.
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Let C be an OM on a finite set E. The maximal
vectors (or faces) of C are said to be the topes of C .
Hence, if C has no loops, a vector X ¢ C is a tope iff
X =E. For a tope T of C , the cell C[T] = { X ¢ C: X £ T }
is said to be a tope cell of C . Clearly the tope cells of
C are the maximal cells of C , and topes and tope cells have

dimension r(C) - 1.

(11.17) Proposition Let t be an OM cell of dimension d.
Then there exists an OM C with a tope + ¢ C such

that the tope cell C[+] is isomorphic to t .

Proof Let t be a d-dimensional cell of an OM C' on E',

and let W ¢ C' be the maximal face of t. Thus t = C'[W]

Let

A = {ec¢E': W =0}

B = { e e¢E': We =-1 ,
and let C = B(C' / A) , E=E'\NA . It is easy to see that
€ has the desired properties. B

By the proposition above, Theorem (11.15) is

equivalent to the following :

(11.18) Theorem Let C be an OM on E with + ¢ C. Then,
the tope cell C[+] is a shellable d-ball and
its boundary 3(C[+] is a shellable (d-1)-sphere,

where 4 = r(C) -1 .
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We shall prove a more general form of Theorem (11.18)
in the rest of the section, and hence obtain the main theorem
(11.15) as a consequence. The proof technique we use here is
a combinatorial analog of the "line :shelling” of convex poly-
topes given by Bruggesser and Mani [SD]. The idea of line
shelling can be explained as follows. Suppose P iga
d-dimensional convex polytope in IRd with facets Fl’FZ""'Fr'
Let Hi be the hyperplane in IRd spanned by Fi for each i.

Take any line % in the space passing through an interior

point of P, which intersects with the hyperplanes at distinct
points. Now we trace the line in one direction starting from
a interior point of P, and pass the first hyperplane, say Hil,
, the third Hi and so on till infinity,

2 3
and comes back from the other end of infinity (i.e., trace the

and then the second Hi

line % projectively), and again pass the remaining hyper-

planes H, ,H. re++sH, to return to the initial point. (See
Tkl tr
Fig 11.1 in the next page.) Then, the sequence Fi ,Fi Foeos
1 2
Fi of facets of P is known to be a shelling of P, i.e.,
r j-1

for each 2 s j <r, F, n (v F, ) is a topological (d-2)-
i, i
Jj k=1 k

dimensional ball.

It turns out that for the purpose of obtaining a
shelling of a convex polytope, we need not take a "straight"
line as described above, but we may as well take a topological

line segment provided that (a) it contains an interior point
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= H )
15
~_ SR
HS( = Hi3)
Fig 11.1
Hs
Fig 11.2
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of P, (b) it passes through each hyperplane exactry once,

(c) the intersections of the segment and hyperplanes are all
distinct, and (d) it connects two d-dimensional unbounded
polyhedra that are opposite,i.e., they are determined by
intersecting opposite sides (halfspaces) of each hyperplanes.
(See Fig 11.2.) For shelling of an OM cell , we shall use a
combinatorial analog of such a segment, which is a directed

path in a certain graph that is to be described now.

For the simplicity of our discussion, in what follows,

we assume that the assumption of Theorem (11.18) is satisfied:

(11.19) Assumption C is an OM on a finite set E having

the tope + and r(C) =4 + 1 .

Thus we have

(11.20) - ¢ C

~

(11.21) X ¢ C is a tope iff X =E iff 4(X) =4 .

(11.22) Proposition Let W be a (d-1)-dimensional vector
of € . Then there exist exactly two topes of ¢(
having W as their facets.
Proof Since there are at least two topes Wo + and W o -
having W as their facets, the result immediatly follows from

Lemma (10.36). 0
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Using Proposition(11l.22), we can construct a directed graph

as follows :

(11.23) The tope graph TG = TG(C) of C is the directed graph
in which the nodes are the topes, the edges are the (d-1)-
dimensional vectors of C , and each edge W is directed from

the tail t(W) to the head h(W) defined by

t (W) W o

~

h(W) = Wo t .

One important property of the tope graph that

immediatly follows from the definition is
(11.24) TG is acyclic.

For singed vectors X and X' on E, let D(X,X') denote
the set of elements in E separating X and X'. Two elements
e and e' are said to be equivalent in C if X, = Xé for
all X in C . Clearly, the set E can be partitioned into the
equivalent classes of elements by this equivalence ralation.

The following properties are easily verified :

(11.25) Topes T and T' are adjacent in TG
iff the set D(T,T') is an equivalent class of element

and T + D(T,T')o is a common facet of T and T' ;
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(11.26) A tope T' is dircted from a tope T in TG
iff they are adjacent in TG and T' = T + D(T, T')+ ;
(11.27) If e is a facet element of T then there exists a
unige tope T' adjacént to T such that Té = —Te .
The following proposion is very useful.
(11.28) Proposition For distinct topes T and T', there

exists a facet element of T separating T and T°'.

Proof Suppose that there exists no facet element of T

separating T and T'. Then, by (10.17), we obtain
C{T) = CIT + D(T,T")"] .

This is a contradiction, because T' is in RHS but not in LHS.

Therefore the result holds. 0
Two immediate corollaries of (11.28) are :

(11.29) Corollary The tope + ( - , respectively) is the

only sink (source) of the tope graph TG.

(11.30) Corollary Let T and T' be distinct topes of
such that Té = + for all e ¢ E with Te =+ ,
Then there exists a directed path from T to T

in TG.
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It is clear from (11.30) that there exists a directed
path from the source = to the sink + in TG. This path, which
can be considered as a combinatorial analog of a line described
previously for the line shelling of convex polytopes, will play
a significant role in determining a shelling seguence of
the tope cell C[+] ( and its boundary 93C[+] ), and hence in

proving the main result (11.18).

One more term, which is merelv a combinatorial
analog of "invisible points" given by Bruggesser and Mani [SD],
is necessary here. For a tope T of C , the umbrella U(T) of T

is the subset of C[+] defined by

(11.31) U(T) = { X eClt] : X =0 for some e ¢ E
with T, =+ 1,

or equivalently,

(11.32) U(r) =vu{Clt+e°] : T =+ and ecE}.

From the definition, we have

(11.33a) U(=) P ;

aC[#] ;

(11.33b) U(t)

(11.33c) u(T)

In

aC[+] for every tope T .

A more interesting property of an umbrella is as follows
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(11.34) Lemma Let T be a tope of C different from - .
Then the umbrella U(T) of T is a nonempty union
of facets of C[+], and it is a PM poset of

dimension (d4-1).

Proof Let £ be an element of E such that Tf = + .,
To prove the first statement, it is enough to show that there
exists a facet element g of + such that Tg = + and

Cl+ + £21 < cl+ + ¢°1 . Let

™° = 1++ %0 (-1) ,

where [X] denotes the maximal face of C conforming to a vector

X. Clearly ™ is a tope of C . By (11.28) (with setting

T=+ and T' = To), we obtain a facet element g of + such
that T! = - . It follows that [% + f°1g =0, T =+, and
cl+ + £°1 < cl+ + g°] . This element g is what we needed.
The second result easily follows from the first one. 8]

Let T be a tope of ¢ different from - . By (11.30),

there exists a directed path P from = to T in TG :

(11.35) = To - Tl > T2 -> > Tz-l > Tl =T .

For i1i=1,2,...,% , we denote
i-1

(11.36) s, = p(r'~t,thH ,

(11.37) ' = crp+ s .
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It follows from (11.25) that

(11.38) {Sl, Sz, . . .y Sl} is the partition of D(T,=)

into eguivalent classes of elements in C .

Therefore,

2 .
(11.39) u(T) = u t* .

Note that each t' is a face of C[+] but not necessarily a facet

The facet sequence of C[+] induced by a directed path (11.35)

is the subsequence of tl, t2, « o o 4 t2 :

(11.40) t ', t7, . .., t (r < 2)

consisting of all facets in the original sequence.

From (11.34) and (11.39), we obtain

r i,
(11.41) u(r) = u tJ ,

j=1
and furthermore,

ik k i.
(11.42) Uy = u ot 3 for k =1,2,...,r .
j=1

(11.43) Theorem Let T be a tope of C different from - , an

let P be a directed path from - to T in TG. Then
the following statements hold :
(a) If T # + then the umbrella U(T) of T is

a shellable (d-1)-ball ;
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(b) If T = t then the umbrella U(T)= 3C[+] of T is
a shellable (d-1)-sphere (thus, C[+] is a shellable
d-ball);

(c) In both cases (a) and (b) above, if d =2 1 ,
the facet sequence of C[+] induced by the directed

path P is a shelling sequence of U(T) .

It is clear that the statement (b) of the above

theorem implies the main results, Theorem (11.18) and (11.15).

We shall use somewhat complicated induction to prove (11.43).

The following lemma will serve as the core of the inductive

proof.

(11.44)

Proof .

prove (b).

Lemma Let T and T' be topes of C with T -~ T' in TG,
and let S = D(T,T'). Then the following statements

hold :

(a) (=T

E\S ) is a tope of C / S

~e

Te\s

(b) If C[+ + s°] is a facet of C[+] then + is

a tope of C / S and the poset U(T) n C[+ + S°]
is isomorphic to the umbrella UC/S(TE\S) of the
tope TE\S inC/ s .

The statement (a) is clear from (11.25). We shall

Let F =+ + s© , and suppose C[F] is a facet of
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C[+] . Since T + s® e ¢ , and since [F1 has the same dimen-

sion as T + s° , and by the fact that [F] ¢ T + s , we have

[F1 =F ¢ C . Thus, FE\S =+¢e¢ C/ S is a topeof C / S .
For the proof of the last statement, take X ¢ U(T) n C[F] .
Noting that X, = 0, T, = + for some e ¢ E \ S and Xg = Q9 ,

we have XE\S € UC/S(TE\S) . Conversely, if X' « UC/S(TE\S)
then X' + s° « U(T) n Clx + SO] . Thus there exists a bijection
between the two posets, and this obviously preserves the con-

formal relation. This completes the proof. 0

Now we shall prove Theorem (11.43), and thus we

complete the proof of the main theorem.

Proof of (11.43) We use induction on r(C) (=4 - 1) .

If r(C) =1, C=1{ 4+, =, 0 } and the result (a) and (b) are

obvious. Assume that (a) and (b) are true when 1 < r(C) < m-1 .‘

Let r(C) = m . Let T # - be a tope of C , and

let P be any directed path : = = ° > Tl > e 0 e > Tl =T

~

in the tope graph TG. We describe the facet sequence induced
by the path P as in (11.35) ~ (11.40). Then we have
ik k i,
u(T ™) = v ot for 1 <k <r.
3=1

i,
Remarking that each t J (1 < j £ r) is a cell of dimension

(m-2) and clearly a shellable (m-2)-ball by the inductive

i i
hypothesis. Hence, U(T 1) =t 1 is a shellable (m-2)-ball.

—-170 —



11.24

i

We shall prove that U(T ¥) is a shellable (m-2)-ball for

i
1 < k < r using induction on k , and finally show that U(T T)
is a shellable (m-2)-ball if T # + , and a shellable (m-2)-
sphere if T = + .

i
Assume that U(T k) is a shellable (m-2)-ba;1

1 .
if 1 <k £g-1 (g < r). In order to prove that U(T 9 s
a shellable (m-2)-ball (-sphere, respectively), it is sufficient
i i
to show that U(T 97!) n t 9 jis a shellable (m-3)-ball (-sphere).
First of all, we observe that
i i-1
(i) uer T = g ) .
Applying Lemma (11.44) with setting T =T q and T' =T 4 ’
we obtain
-1 i i

1
(ii) u(r? ) nt? is isomorphic to T(T &) ,

where we set S =5, , X denotes the subvector XE\S of a signed

_ q
vector X, and U(+) denotes the umbrella UC/S (+) in C / s .

.It is easy to see that r(C / S) = r(C) - 1 ,and by the first

1 .
inductive hypothesis we know that U(T 9) is a shellable (m-3)-

ball if 'flq # £ , and a shellable (m-3)-sphere if qu =+ .
Since qu = + iff qu =+ iff g =r and Tlr =T =4+,
and by (i) and (ii), one obtains

i i
(iii) u(T q-l) nt 9 is a shellable (m-3)-ball

if T#+ and g# r ; and
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i i
(iv) u(r 9 1 £ 9 is a shellable (m-3) -sphere

if T=4+ and g=1r .

Therefore, by the second induction, U(T) is a shellable (m-2)-
ball if T # + , and a shellable (m-2)-sphere if T = + .

~

The result (c) is clear from the proof. O

Before ending this section, we shall show that there
are several different ways of shelling OM cells. We know
from (11.43) that any directed path from - to + in the tope
graph TG induces a shelling'sequence of C(C[+] . Hence,
by showing the existence of a directed path with certain
properties, one can obtain a shelling sequence with special

requirements.

(11.45) Proposition Let V ¢ C be any vertex of C[+], and
let F, F' ¢ C be any two distinct facets of C[+] .

Then, there exists a directed path :

=To->Tl->T2-+ooo—>T2=t

-—
~

from - to + in the tope graph TG with a prescribed

property, either Property 1 or Property 2 :

Tl = -(Fo=) and T -l oo 0o = ;

~

Property 1

Property 2 : V £ ™ for i 1,2,...,k and

vV £ Ti for

'..h
i

k+l,...,2

for some 1 < R .

A
Sl
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Proof Since F and F' are facets of C[+] , F o = and
F' o = are topes of C adjacent to + . Thus, -(F' o =) is
a tope and there exists a directed path from =(F' o =) to
Fogzby (11.30) . Since = > -(F' o0 =) and F o = + + ,

the result with Property 1 follows.

Let T =V o= . Since T is a tope of C , there
exists a directed path from = to % through T by (11.30).
For such a path, Property 2 is clearly satisfied. This com-

pletes the proof. O

(11.46) Proposision Let - =1° > N | +

be a directed path from = to + in TG. Then, the

L 1

reflection = =77 > o o o > =" o -t° = + is

~

also a directed path from = to + in TG.
Proof Trivial. g

The following proposision is implied by (11.45)
and (1l1.4e6).

(11.47) Proposition Let V ¢ C be any vertex of C[+], and
let t, t' ¢ C be any two distinct facets of C[+] .

Then, the statements (a), (b) and (c) hold :

(a) There exists a shelling sequence of C[+], in

which t is the first and t' is the last ;
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(b) There exists a shelling sequence of C[+],
in which no facet of C[+] containing V appears befor

any facet of C[+] not containing V ;

(c) There exists a shelling sequence of C[%],
in which every facet of C[+] containing V appears

before any facet of C[t] not containing V.
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12. PERTURBATIONS

Let E be a finite set and let A be anm x E real
matrix having A® as the e-column of A for each e « E. We

denote by C==CA the oriented matroid (OM) obtained from the

row space of A, i.e.,

(12.1) ¢, =1 S A) : )« r"} ,

where S(x) is the signed vector of x e:mE. For two fixed

elements f and g of E, and for a real number ¢ , define the

m X E matrix A(e) by

(12.2) A(e)® =
2 + ¢ a9 if e

A® if ee E N\ f
£.

Then, one can verify that there exists a positive number €
such that the OM CA(e) is invariant over all 0 < € < . We
shall denote this OM by C'. A more interesting observation
is that the OM C' is obtainable from C itself without knowing

its representaion matrix A, once two elements f and g are fixed

More explicitly, C' is uniquely determined by

(12.3a) X'e¢ C' and Xé =0 iff X'e C and Xé =0 ;

—-175 -



12.2

(12.3Db) X' ¢ C' and Xé = 4+ iff either (1), (2) or (3) holds

' | S '
(1) X' ¢ C, Xg + and Xf # 0 ,

(2) X' =X+ £' for some X « Ft ,
(3) X' =X+ f+ or X' = X + £° for some X ¢ C
such that X_ = - and there exists Z ¢ F+

f
with X ¥ 2 ,

where F' = {2z ¢ C : Zg =+ and 2 01} ; and

(12.3c) cr = =C' .

Hence, for any linear OM C and for any two elements f and g,
the operation for obtaining C' by using the relations (12.3a) ~
(12.3c) preserves the OM-ness ( and the linearity ). This
observation leads us to the question as to whether the same
operation preserves the OM-ness for any non-linear OM C .

We shall answer to this question positively in this chapter.
Namely, we show that considerably more general operations can
preserve the OM-ness. Such operations, which will be called
perturbations, are specified by choosing two elements f and g
together with a certain flat F of C lying on f, and modify

the f-components of vectors in the "neighborhood" of the flat F.
Two important specializations of perturbations are the sliding
operation (described above for linear OM's) in which F is chosen
to be C(f) ={ X e C : Xg = 0 }, and the point perturbation in

which F is chosen to be a point { %V} for some vertex V of C.
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There are interesting applications of point pertur-
bations such as constructions of well-known nonlinear OM's
(e.g. the non-Desargues OM, the Vamos OM) from certain linear
OM's, and constructions of non-BOM's (see, Chapter 7).
Sliding operations can be used for an OM programming problem
to disolve degeneracy so that every optimal (respectively,
unbounded) basis of a resulting new problem is optimal
(unbounded) for the original problem, just like the pertur-
bation of a linear programming problem. Unfortunately,
no interesting applications of perturbations excluding

slidings and point perturbations have heen found.
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A. GENERAL PERTURBATION THEOREM

Let C be an OM on a finite set E. For a subset
D of C, we define the star st(D) of D (in C) is the set of

vectors in C \ P having some vector in D as its face, i.e.,
(12.4) st(D) = { X e C\ND: X g X' for some X' ¢ D }.
The following is the main theorem of this chapter.

(12.5) Theorem (General Perturbation Theorem)

Let C be an OM on E, let £ and g be two elements
of E and let F be a flat of C satisfying the following

conditions (a) and (b):
(a) F lies on f (i.e., X. =0 for all X € F );

(b) <X€st(F+) and Xf=0> =><X+f+€C >

14

where F' = {2z ¢ F: Zg = + } . Then the set C'

is an OM on E, where

' = ¢\ {2FFy U (2FT) U (2N}
rox+ £t xefh

N =°vuy tw

{x+ft: XxXest(F) anda x_=-1

=
I

[¢]
b
]

{x+£f%°: X e st(F+) and X, = - }.
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(12.6) Remark: It is easy to see that the condition (b)

of the theorem (under the other conditions) implies

(b') < X ¢ st(F) and Xg=0> => <X+£f ¢ C>,

Moreover, this condition is independent of
the orientation of ( but it is in fact equivalent
to the following condition on the underlying matroid

M={E\NX: XeClof C:
(b") < F' e¢eM and f ¢ F' c F > => < F'\ {fle M >,
where F=n{E\X: XeF]I}.

(12.7) Remark: In Theorem (12.5), the new OM (' is different

from the original OM C iff
2 X ¢ F' such that X + e .

As we remarked before, the following two corollaries
of the main theorem can be obtained immediately from (12.5)
by taking F to be (i) a point (0-dimensional flat) of C or
(ii) the minimal flat { X ¢ C: X_. =0 } of C lying on £ (that

£
is a hyperplane of C unless f is a loop).

(12.8) Corollary (Point Perturbation Theorem)

Let C be an OM on E, let f ¢ E and let V be a vertex

of C satisfying the following conditions (a) and (b):
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f
(b)<X€C,Xf=0and X >V > => <x+f+eC>.
Then c* =C \ {v,-v}l v {v,-v} v {£tN} is an OM

on E, where

vV =V + f+
=°% vty
N={x+£f*: v<XeC and Xe = -} (ae{0,4} ).
(12.9) Corollary (Sliding Theorem)

Let C be an OM on E and let f and g be two distinct
elements of E. Then the set C' defined as in (12.5)

isan OM on E for F = { X e C : Xg = 0 }.

It should be remarked that the above two corollaries
were first proved by Mandel. 1In fact, Mandel [TO] gave a very
interesting generalization of the Point Perturbation Theorem,
and a topological proof using a topological representation theorem

of oriented matroids.

We pointed out earier that a sliding operation preserves
the linearity of OM's. However, a general perturbation does
not necessarily preserve this property. Some examples of
nonlinear OM's are constructed frém a linear OM by means of

a sequence of point perturbations in Chapter 7.
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B. Proof of the General Perturbation Theorem

In this section we shall give a proof of the main
theorem (12.5). Obviously the direct proof of the theorem
is to verify that the OM axioms (1.2 OM-0) ~ (OM-3) are
satisfied by the new C' in (12.5) under the conditions of the
theorem. While the axioms (OM-0) and (OM-1) are clearly
satisfied by C' because of the construction, the verification
of the closedness under composition (OM-2) and the elimination

property (OM-3) is not straightforward.

Here we introduce a new property, called the
P-connectivity property, which is equivalent to the property
(OM-2) together with (OM-3). We shall verify that C' has
this property ihstead of showing the last two axioms are
satisfied. Although the proof is not too simple, it is much

more tedious to follow the direct proof.

Let E be a finite set. We say that two signed
vectors X and X' on E are adjacent if either X is a face of
X' or X' is a face of X (i.e., X > X' or X' = X). For a set
C of vectors on E, and two signed vectors X and X' in C ,

a path from X to X' (in C ) is a sequence of vectors in C :

(12.100 x = x%, x, %%, . .., xX=x

such that every two consecutive vectors in the sequence are

adjacent.
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Such a path is called a proper (or P-) path if
i

(12.11) Xe = (X o X')e for every e ¢ E not separating

X and X', for each i =1,2,...,k-1.

(12.12) A set C of vectors on E is said to be properly

connected (or P-connected) if

(oM-4) there exists a proper path between

any two vectors of C .

(12.13) Proposition For a set C of vectors on E,

< (OM-4) > <=> <(OM-2) and (OM-3)> .

Proof ( => ) Suppose (OM-4) is satisfied. It is easy to
" see that (OM-3) holds. We shall prove that (OM-2) holds.

Let X, X' ¢ C, and prove X 0 X'e { . We may assume X # X o X'.

Take any element h s.t. Xh = 0. By (OM-4), there exists in (
a proper path from X to X' : X = Xo,xl,...,Xk = X'. By the
properness,
(*) X! = (X o0X'), = X
h h h

From the assumption X # X o X', there exists 1 ¢ E s.t.

Xi = 0 and X} # 0. By (*), we have Xi # 0. Since X and Xl
are adjacent and Xi < Xi, we know X < Xl and this shows
Xl = X o X' ¢ C. Hence (0M-2) follows.
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1

( <=') Suppose C satisfies (OM-2) and (OM-3). Let X~ and

X2 be in

(1.8 oM-3"

C. By using the comformal elimination property

) ,which is equivalent to (OM-3), repeatedly,
0,1 k

we can obtain a sequence : X=X ,X7,...,X =X' of vectors

in C such

By (OM-2),

i-1

that no element separates each X and Xl, and

X = (X7 o X%) for all e ¢ E not separating

Xl and X2.

Wl i-1

il
»

o X' ¢ C and clearly

XO, Wl, Xl, W2, XZ, e, Xk-l, Wk, Xk

1 2

is a proper path from X~ to X°. This'completes the proof. O

(12.14)

(12.15a)
(12.15b)

(12.15¢)

- Using (12.

to show

(12.16)

It follows immediately from (12.13) that

a set C of vectors on E is an OM iff it satisfies

(OM-0), (OM-1) and the P-connectivity (OM-4).

For the rest of the section we assume that

C is an OM on a finite set E;
f and g are given distinct elements of E;

F is a flat of C lying on f.

14), in order to prove Theorem (12.5) it is enough

C' is P-connected under the condition (12.5b),

where C' is given in(12.5).
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The rest of the section will be devoted to achieving (12.16).

We shall use all the sets defined in (12.5), such as

o+

c', F, N, oN, +N, and also we set

F = { X e F: Xy =a ) for acl+0,-}
Let

(12.17) T = st(F) v F'.

(12.18) Proposition T is P-connected.

For the proof of (12.18)

(12.19) Lemma Let X,

and X' » 2°'.

we need the following lemma

X', 2 and 2' be vectors of C with X 2

A

Then there exists a P-path from X to X'

X = XO, Xl, Xz, o o o g Xk = X'
in C and a path from 2 to 2' :
Z = ZO, Zl, Zz, e e e ¢ Zk = 2

in C satisfying (a) and (b) for each i =

(a) z_ =
(b) 2t 2
Proof Since C is an
« o s z¥ = 2' be any

induction on r to prove

Suppose r = 0,
k

X" = X' be a P-path from X to X'.

for i = 0,1,2,...,k,

(Z o 2') for all e ¢ E with 2
e e

xt .
oM, € is P-connected. Let 2
shortest P-path from Z to Z°'.

the result.

i.e., Z2=2'., Let X=X, X
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X

1
b
>4
>
0
>

(*)
2=2,2,2,...,2 =12

are paths we needed.

Consider tha case r = 1. Without loss of generality
we can assume 2Z < Z'. Then 2 < X', Using the first case,
we have two paths as in (*). Adding X' and 2' to the end of
each paths in (*) we obtain paths we needed.

Now we assume by induction that the result is true
if 0 <r <p (p > 2), and consider the case r = p. If
Zp_lﬁ X' , then the result immediately follows. Suppose
that zP™1 & x'. Let x* = 2Pl 5 x' 0 x anda z* = zP°L,
Note that X; = (X o X')e for all e ¢ E not separating X and
X', and X* > 2Z*, By the inductive hypothesis there exists

a P-path from X to X' and a path from 2 to 2°' :

x =x%, x5, ..., xS(=x%), x5t .. %K - x

Z - Z0, Zl,..., ZS(= Z*), ZS+1 zk Zl

P2 I I

satisfying for i =1,2,...,k-1,

Z~" = (2 o0 2") for all e ¢ E with 2 = 2! , and
e e e

This completes the proof. 0
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Now we are ready to prove (12.18).

Proof of (12.18): Let X , X' ¢ T . Then we can always take

Z, Z' ¢ F* such that X s Z and X' r 2'. It follows from
(12.19) that there exists a P-path in T , and therefore 7T

is P-connected. This completes the proof. O

Define the set T' by

+

(12.20) T° st(FH v Fr u

T\ FH o FY

—_
L]

u N) .

We shall see later that the set T' is P-connected as well as
under the condition (12.5b). For the proof of this property,

it will be convenient to observe the following :

(12.21) Lemma Suppose that the condition (12.5b) is

satisfied. Then the following properties hold :

(@) <2 eT> => <2z +£ ¢ T >;

(b)

A

X ¢ T' and Xf =+ >

=> < X =12 + f+ for some 2 ¢ T > ;

(c)

A
>
m

-

and X o >

=> <X+ f T and X+ £ eT' > ;

(d) < X € T' and X

-2

=> <X+foeT' and X+f+eT'>.
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Proof (@) Let Zz e T. If 2=+ then 2 + A
e T\ F ¢ 1. 1f Zo = - then Z + £ ¢ "N ¢ T'. Finally,
suppose Zf = 0. If Z ¢ F+ then 2 + f+ € F+ c T,

+

If 2§ F' (i.e., 2 ¢ st(F')) then 2 + £% ¢ st(F') ¢ 7' by
the assumption (12.5b).

(b) This is straightforward from the construction.

(c) Let X ¢ T' and Xe = 0. Then either X ¢ °N
or X «¢ st(F+). If X ¢ oN, X + £ ¢ st(F+) c T' and also
X+ £ ¢ W c T'., If X ¢ st(F+) then by the assumption (12.5b)
we have X + £% ¢ st(F+) c T' for o = + and - (see Remark
(12.6)).

(d) Let X e T'and X; = -. Then X « st(F') and

X'+ £% ¢ oLNET’ for a

+ and 0. This completes the proof. [

(12.22) Proposition T' is P-connected.
Proof Let X and X' be in T'. We shall show that

there exists a P-path from X to X' in T'. There are five

cases to consider : (1) xf = X% =+, (2) xf = X% = -,

= = X! = t =
(3) Xg # 0 and Xp =0, (4) X =-X:40, (5) X Xg = 0.
Case 1 : xf = X% = +

By (12.21b) there exist vectors Z and 2' ¢ T such

Z + f+ and X' = Z2' + f+. Then there exists a P-path

Z = Zo, Zl, « e e Zk = 2' in T by (2.18). It follows from

0 1

. . . r
r X7,

r’.
=2
)
r'.
o]
0

i

(12.21a) that x* = zt! + f+ e T* , and hence X = X

Xk = X' is a P-path from X to X' in T°'.
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. = X! = -
Case 2 : Xf Xf
In this case, X and X' are in T \ F* and any P-path
from X to X' in T is a P-path in T' , since every vector in

the path has negative f-component.

Case 3 : Xf # 0 and X% =0

It follows from (12.21c) that X' + f' and X' + £~
are in T'. If Xf = 4+, then we know from Case 1 that there
exists a P-path in 7' from X to X' + £t and this path together

with X' is a P-path from X to X'. Similarly the same thing
follows from Case 2 when Xf = -,

H = =X = ' = o
Case 4 : Xf Xf #0 (w.l.g., Xf + and Xf )

We have X*

X' + fo e T' by (12.214). Using Case 3
a P-path from X to X* exists in 7', and this path together with

X' is a P-path we are looking for.

Case 5 : Xf = Xf =0

By (12.21c), W = X + £ and W' X' + £ are in T'.

It follows from Case 2 that there exists a P-path W =W, W

. . ., W=w in T'. Since Wi = -, and by (12.21d),

xo, Xl, e e e xk is a P-path from X to X' in T' , where
xt = wt o+ £,
This completes the proof. 0
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For a subset D of C(C , the neighborhood nb(D) of D

in ¢ is defined to be the set of vectors in C \ D adjacent

to (some vector in) D , i.e.,

(12.23) nb(P) = { X' e C\ND: 3 X D such that

X £ X' or X > X' 1.
It is easy to see that
(12.24)  nb(F) = st(F") v F° .
Let us define the following set B:
(12.25) B = nb(FH \ Ftu FY U N

(= T' v F@ ) .

(12.26) Proposition

Under the condition (12.5b), the set B is P-connected.
Proof since F® is a flat of ¢C , it is P-connected as well
as T'. Let X ¢ F© and X' ¢ T'. It is enough to show
(*) the existence of a P-path between X and X'. We claim that
X* =X o X' € T'. This together with the P-connectivity of T'
implies (*). We consider three cases : (1) X' ¢ st(F+) '
(2) X' ¢ F* , and (3) X' ¢ N .

If (1) is the case, X* ¢ st(F+) c T'. Suppose

we have the case (2), and let X' = 2Z + f+ for some Z ¢ F+.
Since X o 2 ¢ F+, X* =X 02+ £ ¢ F' ¢ T'. Finally suppose
X' ¢ N and let X' = 2 + £% for some Z « st(F+) with Zf = -
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and o = 0 or + . Noting that X o Z « st(F+) and (X o Z)f
we have X* = X o0 2 + £2 ¢ N c T' . This proves the claim

and completes the proof. 0

Now we are ready to prove the maim theorem.

Proof of (12.5) : As we have already remarked, it is sufficient
to show the P~connectivity of (' under the condition (12.5b).

Let us define the subset D of C' by

Then the set C' has a partition
C'= DuBu-B .

It will be useful to keep the following relations in mind

D n B < nb(F+) ;
D n -B < -nb(FY) = nb(F7) ;
B n -B = F° ;
B\ D c FruN .

Take any two vectors X and X' from C'. We shall show that there
exists a P-path from X to X' in C' for each of the four cases :
(1) X, X' eD , (2) X, X* ¢ B or X, X' ¢ -B ,

(3) X e D\ {zB} and X' ¢ {#B} \ P ; and

(4) X e¢ B\ND and X' ¢ =B\ D .
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Case 1 : X, X' €7

Since C is P-connected, there exists a P-path
x=x% x} %3, ..., ®=xin ¢. 1£ x €D for all i,
this path is in C'. Suppose x5 ¢ FF (or F7) for some s.

t. nb(F+) (or nb(F )) with

Then there exist vectors X% and X
0 <r <s <t <k, since the path must meet the neighborhood
of F*' (or F7) before and after it meets F' (or F7). Since

B (and -B) is P-connected and contains nb(F') ( and nb(F),
respectively), there exists a P-path from xF to Xt in B

(or -B ). Replacing Xr, Xr+l,. . . Xt with this path, and
repeating a similar replacement for every other intersection

of a new path and Y F~, one can obtain a P-path from X

to X' in C°'.
Case 2 : X, X' ¢ B or X, X' ¢ -B

Straightforward from Proposition (12.16).

Case 3 : X e D\ {tB} and X' € {#B} \ D

Since (' is symmetric, we may assume X' ¢ B \ D,

and thus we have X' ¢ F+ u N .

Let X" be any vector in F+ with X" 4 X' if X' ¢ N

’

A

and let X" be the vector in F+ with X' = x* + £7 if X' ¢ F+. Let
X*¥ = X" 0 X 0 X'. We claim that X* ¢ C . Once this is shown,
it is easy to see that X* ¢ st(F+) c D n B, and it follows

from the fact : X; = (X o X')e for all e ¢ E not separating
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X and X' , from Case 1 and Case 2 that there exists a P-path
from X to X' through X* in ('. So we shall prove the claim.
First we suppose Xe = 0. Since X' =z + £% for

some o ¢ {0,+} , and since C is closed under composition,
X* = X" 0 X0 (2 +£fY) =X"0Xo02ZeC.

Suppose Xf # 0. There are two cases to consider:

(1) X' ¢ F¥' and (2) X' ¢ N . Let (1) be the case. Thus
X' = x" + £F , and X* = X" o X + f'. Since X" 0 X » X"
¢ F¥ ,and since X ¢ F , we know that X" o X ¢ st(F') and

hence X* ¢ C by the condtion (12.5b). Suppose (2) is the
case. Then there exists a vector Z e st(F+) such that
Zp = - and X' =2 + £* for a = 0 or + according as X' e ONn

or *n. Noting that X" o X ¢ st(F+) and (X" 0 X). = 0, the

condition (12.5b) implies Xl = X" 0o X+ £ e C . Let

X2 = X" 0 X 0 2. Using the elimination property (1.2 OM-3)
for Xl and X2 . together with the closedness under composition
(1.2 OM-2), we obtain X2 + fa (=X*) ¢ C for a =0 and + .
Case 4 : Xe B\ND and X' € =B\ D

Note X, -X' «¢ ;+ u NcT' . Therefore Xf # - and
X% # +. If xf = 0 and X% = -, then by (12.21c) we have
X + £ ¢ D and a P-path from X to X' through X = f exists
in ¢' from Case 3. By the symmetry of C' , a desired path
exists when Xe =+ and X% = 0. Suppose X, = -X! = +. 1If

either X ¢ N or X' ¢ -N , we have either X + £ or X' + £ ¢ D,
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and a required path through one of these vectors exists by Case
If X ¢ F' and -X' e F+, then X + fo e F and X' + f0 e F, and

0 0

using a P-path from X + £  to X' + £  in F , one can easily

construct a P-path from X to X' in F° u {+F"} c C'. The case

Xg = XL =0 (i.e., X ¢ °N and -Xx' ¢ °N) is left.

Suppose X ¢ °N and -X ¢ °N. Then there are vecto:
2, =-2' € st(F+) such that Zf = - Zé = - , and X =2 + fo and
X' =z' + £9 . Let 2, —2' be vectors in F' such that 2 > 2

~

and Z' » 2' . Let 2* =2 0 2' 0 2% ¢ C . Note that
2* ¢ st(F+) , and that Z; = (Z o Z')e = (X o X')e for all
e ¢ E not separating X and X'. Since 2*, Z ¢ T , and by (12.18)

there exists a P-path from 2 to Z* in T . Noting that

Zg = -Z§ = -, there exists a vector 2% in the path such that
Zg = 0. Remark that Zg = (X o X')e for all e ¢ E not separat-

0

ing X and X'. If z0 ¢F then 2° ¢ T\ F = st(F+) cBn?D,

and hence by Case 3 there exists a P-path from X to X' through
Z0 in C'. Finally suppose ZO ¢ F . By the P-connectivity of
F , there exists a P-path from Z0 to Z2' in F . Since Zg =

-Zé = + , there exists a vector Z1 € F satisfying z; = 0 in

the path. Observing that Z1 e F© =8 n -B , and
Zi = (X o x')e for all e ¢ E not separating X and X', a required

path from X to X' through Z' exists in C' by Case 2.

This completes the proof of (12.5). a
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13. BOP'S AND BOM'S

In Chapter 7 we constructed some examples of nonlinear
oriented matroid programming problems (OP), for which the simplex
method produces a cycling of pivots,not all of which are non-
degenerate. These examples were used to show that finding
a finite pivot method for OP's is not a simple matter of
adapting an existing finite simplex method for linear programming
and that we need a new approach to the subject.

Independently, Mandei [TO] used a slight modification
of our examples to show that an oriented matroid generalization
of the separation theorem (Hahn-Banach theorem) proposed by
Las Vergnas [¢cv] was false.

Thus it is suggested that the oriented matroid generali-
zation of vector subspaces of R" and that of linear programming
be too general in some aspects. This motivates us to define
a subclass of OP's (and a subclass of OM's) to which more
properties of linear programming {(and vector subspaces of rY)
can generalize.

In this chaptér we shall introduce a subclass of OP's
called the BOP's, and a subclass of OM's called the BOM's. The
class of BOP's (BOM's, respectively) includes the class of
linear OP's (OM's) and excludes the class of OP's (OM's) for
th simplex method can produce nondegenerate cycling (for some

selection of the infinity and the objective element).
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A. Definitions

Let C be an OM on a finite set E.

For a fixed element g ¢ E, consider an affine OM

(C; g) with the affine space A = {X ¢ C : Xg > 0} and the

infinite space A" = {X ¢ C: Xg = 0} . Let D(X,X') be the set
of directions from X to X' in (C; g) (see (2.21) for the

definition). First we observe:
1 = X2 then there

1 and Xz.

(13.1) Proposition If Xl, Xze A and X

is at most one line % of C containing both X

Proof Suppose that Xl, Xze A and Xl = X2 and that there

exist two lines 21 and 12 of C containing both xl and x2.

since 21 0 22 2 {03 ana ¢! o 2% c g} (i =1,2). the flat

21 n 22 must be a point of C . This is not possible because

xt, %21 < ¢t 0 2% ana x' .+ %2 . 0

4+

1

(13.2) Proposition If X— and x2 are distinct vectors of

with Xle A and x2€ A . and if there exists a line

of C containing both x1 and X2 then D(Xl,xz) = {2}
for some vertex Z of (C .
Proof Suppose that £ is a line containing xl and X2. Since

A=z¢ , A is a hyperplane. Clearly £ ¢ A® and hence

2 o A 1s a point, say {2, -z, 0} for some vertex Z of C .
Since both D(Xl, X2) and D(XZ, xl) are contained in any flat
" containing both X! and X?, by (2.22.a) and (2.22.b), we have

either D(x!,%x%) = {2} or D(x},x%) = {-Z} . This completes the
proof. 0
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(13.3) For two elements g and £ of E, an OP ((C; g,f) is
said to be a non-BOP if there exists a finite sequence of

vertices of C(C:

such that

(a) V_ =V ;

(b) Vie A = {X e C : Xy > 0)
for all i =0,1,...,k ;
i .

(c) VE\f is a vertex of C\ {f}
for all i =20,1,...,k ;

(a) Vi-l and V* are on a line for all i = l,...,k ;

(e) 2. 2 0 for all i =1,...,k and

Hhe Hh b

27 > 0 for at least one 1 < j < k

where z' is the unique direction in (C; g)

i-1

from V to V' for i = 1l,...,k.

(13.4) An OP is said to be a BOP if it is not a non-BOP.

(13.5) An OM C on E is said to be a BOM if the OP (C; g, f)
is a BOP for every choice of g and £, and a non-BOM otherwise -
i.e. if there exist two elements g and £ of E such that the OP

(C; g, £f) is a non-BOP.

-196 —



13.4

B. Characterizations

One elementary property on non-BOP's is the

following:

(13.6) Suppose that an OP (C; g,f) is a non-BOP and let

1 k

VO,V r+--,V" be a sequence of vertices of

satisfying the conditions (13.3a) ~ (13.3e). Then

o _ gl o ... 2 yk
Vf Vf Vf =z 0 .
Proof Suppose the result is false. Since V° = Vk , at

least one of the following conditions must hold:

i-1

(1) v + and v

1A
[

A
=

=0 or -~ for some 1

i-1

(2) v 0 and v

A
=

s - for some 1 < i

Hh b Hh P
Hhbe Hh b
]

It follows that each of cases (1) and (2), we must have

Z; < 0 for the direction z* from vi ! to vi. This violates

the condition (13.3e). Thus the result follows. a

Let B be the set of bases of an OM C and let Bl

be the set of bases of an OP (C;g,f). Thus,

By = {B<E :Bu {g} ¢ B}

where E; = E \ {g,f} . We shall give a characterization of
non-BOP's using a certain sequence of bases of (C;g,f). For
this purpose we need several observations. Let V be the set

of vertices of C and let V be

1
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V, = {VeV : Ve Aand V

1 is a vertex

E\{f}

where A is the affine space of (C;qg) .

(13.7) Proposition For each vertex V e Vl, there exists
a basis B ¢ Bl such that X(B) = V. (Where X{(B) is
the basic solution of (C;g,f) with respect to B,

" see (5.4))

Proof Let V ¢ Vl. Since V is a vertex of (C and Vg > 0,

the set T = E \ V v {g} contains a basis of € . It is enough

to show that there exists a basis B of C s.t. g ¢ B € T\ {f}.

Let B® be any basis of C contained in T. Since 0=vVeC(r\{gl),
g ¢ B®. 1f £ ¢ Bo, nothing to prove, and hence we can assume

f ¢ B°. Let X be the fundamental vertex X(B®°;f) of £ in B°.

If X, = 0 for some e ¢ T\ {f} then by (4.12) B = B°\ {£f} u{e}

is a basis of C we are looking for. Otherwise XT\{f} = 0 and

it implies that ¢ = X \{f} < V and hence V

E\{f}
‘vertex of C \{f}. Since V ¢ Vl , this case never occurs.

is not a

This completes the proof. O

(13.8) Proposition If V and V' are distinct vertices in,

Ul and if there exists a line £ containing both V
and V' then there exists bases B and B' « Bl such
that

vV =X(B) , V'=X(B') and
B\ B'| =1.
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Proof Let T = E\ (V u V') and let S be a basis of T in C .
Clearly C(T) is the smallest flat of C containing V and V!
and hence by (13.1), & = C(T). It follows from (9.36 ) that
|S| = r(C)-2. Since V =z + V', there exists an element

e' ¢ VN V' ande e V'\ V. Let B=5S u {e} and B' = su {e'}

Then we have that B and B' are independent in C , since

e ¢ cl(S) =T and e' ¢ cl(S) = T. It is easy to verify that

B, B' ¢ B, and they satisfy the conditions of the result. 0

(13.9) Proposition If V, V' ¢ Vl are distinct and B, B'e Bl
satisfying V = X(B), and |[B \ B'| = 1, then there exists

a unique line containing both V and V' and

(a) Ve' # 0 for {e'} = B'\ B ;

(b) Ze(B)e.z 0 and the unique direction, say 2,

from V to V' is determined by:

2 (B) if v, = - 2%(B)
Z=
-2%(B) if v, = Ze(B)e. ,

where {e} = B \ B' and ZJ(B) is the basic

feasible direction for j ¢ B.

Proof Suppose the assumptions are satisfied. Since

|B n B'| = r(C)-2, the flat C(B n B') is the line containing

V and V'. The part (a) follows from the fact that X(B) =z X(B').
The first statement of (b), z%(B)_, = 0, is satisfied because

V = V'.Let ¢ = C(B n B'). Since & n A®= {2,-2,0} and
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2(B) ¢ £ . 2 = *+ z%(B). Remarking that V' o V = V' o (-2)
by the definition of directions, and that Vé, = 0, the

second statement follows. O

If B ¢ Bl y J e Band 1i e El\ B , and if

ZJ(B)1 # 0, a pivot at (i,j) in B is said to be nondecreasing

if either

(13.10.a) X(B),

0

(13.10.b) ZJ(B)f 0 ; or
(13.10.c) X(B), = 0, 27 (B), = 0 and
exactly one or three of {X(B)i, Zj(B)f, Zj(B)i}

are negative,

and increasing if (13.10.c) holds.

(13.11) Proposition Let B ¢ Bl' j ¢ Band i ¢ El\ B, and

let ZJ(B)i # 0. Then the following properties hold)

t

(a) B'= B\ {j}u {i} « Bl i
(b) Zi(B')j 20 ;
(c) A pivot at (i,j) in B is nondecreasing iff a

pivot at (j,i) in B' is nonincreasing.

Proof The parts (a) and (b) are trivial.

We shall prove (c). Remark that

(1) Zj(B)i = + =>x(B)i = -X(B')j and
z3() = 2zt (") ;
J o _ '
(2) 27(B); = - —X(B); = X(B'); and
zd(B) = -z*(B").
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This implies that

(3) (13.10.2) <= X(B"), = 0
(4) (13.10.b) <=> Zi(B')f= o ;
(5) (13.10.c) <=> X(B'); = 0 , Zi(B')f 2 0 and

exactly two of {X(B')i, Zi(B')f '

Zl(B')j} are negative.

This implies the statement (c). ]

The following theorem gives a characterization of

non-BOP's using bases.

(13.13) Theorem An OP (C;g,f) is a non-BOP iff there exists

a sequence of bases of (C;g,f):

8°,sl,8?%,...,8%

such that

(a) BJ is obtained from Bj-l by a nondecreasing pivot

for 3 =1,2,...,%2 ; and

(b) for at least one 1 < s < £ . the pivot replacing
S~ by B® is increasing.
Proof (Necessity): Suppose that there exists a sequence

Bo,Bl,...,B2 of bases satisfying (a) and (b). Let vi= X(Bj)

for j = 0,1,...,2 . For each j, the pivot replacing gt
by BJ is nondecreasing, one of (13.10.a), (13.10.b) and
(13.10.c) holds. If (13.10.a) is the case. the pivot is

degenerate and vl = VJ_l . Suppose that (13.10.a) is not the
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case. Then the pivot is nondegenerate and VJ 2 Vj'-1 (by
(6. )). By (13.9), there exists a unique direction, say

ZJ, from VJ-1 to VJ, which is determined by

z€(I71 if Vg, -z8 (g3 1

. e 1
(*) z) =

22837,

-z¢ (371 if V3,
e
where {e} = Bj—l\ Bj and {e'} = Bj\ Bj-l .

We claim that Z% 2 0 for each j =1,...,2 for which
vl = v371 | 1f (13.10.b) with j = e is the case, then
clearly Z% = 0. Otherwise exactly one or three of

{Vg. ' Ze(BJ-l) v s Ze(BJ_l)f} are negative, and by (*),

e
Z% 2 0 follows. By the condition (b), we know that Z? > 0
for some 1 < s < %. Therefore, the subsequence v70,vl1,...,v'k

of V°,Vl,...,V2 , obtained by replacing two or more consequtive

identical vertices by the single vertex satisfies (13.3.a) ~

(13.3.e). This completes the proof. 0

(Sufficiency): Let Vo,vl,...,vk be a sequence of vertices
of € satisfying (13.3.a) ~ (13.3.e). It follows from (13.3.b)
~ (13.3.e) and from (13.7) ~ (13.9) that for any 1 < j < k,
there exist bases Bj-l(j) and Bj(j) e B, such that

vI7l = x®37t(5)) , v3 = x®I(35)) ana BI () is obtained
from Bj-l by a nondecreasing pivot, and such that for some

1 < s < k the pivot replacing Bs;l(s) by Bs(s) is increasing.
It is easy to show that for each 1 < j < k if Bj—l(j-l)v

« 8971 (4) then B371(§) can be obtained from Bj-l(j—l) by a

sequence of nondecreasing pivots of type (13.10.a). This
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L

implies that there exists a sequence Bo,Bl,...,B of bases

satisfying (a) and (b). This completes the proof. a
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Cc. Duality

The dual of an OP ((C;g,f) was defined in Chapter 8
as an OP (C*; f,9) where C* is the dual of C . The following

theorem states that the duality holds for the class of BOP's.

(13.14) Theorem An OP (Cs; g,f) is a BOP iff the dual is
a BOP.

As an immediate corollary, we get:

(13.15) Corollary An OM C is a BOM iff the dual c* is

a BOM.

For the proof of (13.14) , we need some observations.
Suppose that an OP (C; g,f) is given, and let Bl and Dl be
respectively the set of bases of (C; g,f) and the set of

bases of the dual OP. We know from (8. ) that

Dl = {E1 \B : Be Bl}

where E, = E \ {g,f} . For a basis B ¢ B; of the primal and

for each j ¢ B, X(B) indicates the basic solution and Zj(B)

the basic feasible direction in (C; g,f). And for each basis
D e Dl of the dual OP and for each i ¢ D, Y(D) indicates the
basic solution and Wi(D) the basic feasible direction in

the dual OP. We have

(13.16.a) X(B) = X(B v {g} & 9g)
(13.16.b) 2z3(B)= X(B u {g} ; 3)
(13.16.c) Y(D) = Y(Du{f} 3 £f)

(13.16.4) W (D)= Y(D u {£} ; i)
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for B ¢ Bl, D ¢ Dl, j e B, 1e D, where X(B'3%) is the
fundamental vertex of 2(eB') in a basis B' of C and Y(D' ; k)
is the fundamental vertex of k (eD') in a basis D' of C*.

By (8.12) ’

(13.17) YD uv {£f} ; s)r = - X(B v {g} 3 r)S
for each B ¢ Bl and D = El \B and for each

r e Bu {g}) and s ¢ Du {f} .
This together with (13.16.b) and (13.16.d4) implies that
i = -gJ =
(13.18) W (D)j Z (B)i ’for all B ¢ Bl’ D El\ B
and for j ¢ B , i € D.

Hence a pivot at (i,j) in a basis B ¢ Bl for a primal OP
exists iff a pivot at (j,i) in basis D = E \ B «¢ Dl for

the dual OP.

Also it follows from (13.14) and (13.15) that for any B « Bl,

D=E\B,ieD,jeB,with Zj(B)j 20,

(13.19.a) The statement (13.10.a) holds
<=> wi(n)g =0

(13.19.b) The statement (13.10.b) holds
<=> Y(D)j =0

(13.19.c) The statement (13.10.c) holds
<=> exactly two of {wi(D)g, Y(D)j, Wi(D)j}

are negative.
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Hence we obtain:

(13.20) Lemma Let B ¢ Bl’ D = El\ B, 1ie¢D, jeB and
let ZJ(B)i # 0. Then a pivot at (i,j) in B for the
primal OP is nondecreasing iff a pivot at (j,i) in

D for the dual OP is nonincreasing.

Proof of (13, 14) Suppose that P = (C; g,f) is a non-BOP.
Then, by (13.13) there exists a sequence of bases B°,Bl,...,B2
=i

of P satisfying (13.13) (a) and (b). Letting D*"% = £\ B?
for 1 = 0,1,...,2 . It follows from (13.20) that a pivot
replacing Dj"l is nondecreasing for each 1 < j <&, and for
at least one 1 < s < % a pivot replacing ps~1 by D% is

increasing. Therefore, again by (13.13), the OP p*= (C*, f,q)

is a non-BOP. Since p**= p* , the theorem follows. 0
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D. Cycling of Non-degenerate Simplex Pivots and non-BOP's.

By vertue of the characterization (13.13) of non-BOP's,
it is easy to find a closed relationship between the class of
BOP's and the class of OP's for which the simplex method can
produce a cycle of pivot, at least one of which is non-

degenerate.

For this section we assume that P = (C; g,f) is an

op, Bl is the set of bases of P.

We defined in ‘Chapter 5 that a basis B cBl is

feasible if the bacic solution X(B) 1is feasihle for P, i.e.

(13.21.a)  X(B)g, 2 0

where El = E\{g,f} . Recall that for any feasible basis
Be By and for j ¢ B and i ¢ E)\ B with 23(B), = 0, a pivot

at (i,j) in B is a simplex pivot if

(13.21.b) Zj(B)f > 0

and

ar

(13.21.c)  23(B), < 0
(13.21.4) B' = B \{j}lu{i} is feasible. And if in addition
(13.21.e)  X(B)y > O

a simplex pivot at (i,]j) in B is nondegenerate, otherwise
(i.e., X(B)i = 0) degenerate.'Comparing (13.10.a) ~ (13.10.c)

with (13.21.a) ~ (13.2l1l.e), we can easily see that

(13.22) Every simplex pivot is a nondecreasing pivot and

every nondegenerate simplex pivot is a increasing pivot.
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13.15

This together with (13.13) implies:

(13.23) Every OP for which the simplex method can produce
a cycle of pivots, at least one of which is non-

degenerate is a non-BOP.

By this property we know that the OP we constructed in Chapter 7
is a non-BOP. And by using the same idea of the construction
but using different linear OM's to start with we can easily

obtain an infinite class of non-BOP's. Thus,

(13.24) The class of non-BOP's and the class of non-BOM's

are infinite.
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