
cddlib Reference Manual

Komei Fukuda
School of Computer Science

McConnel Engineering Building
3480 University Street

Montreal, Quebec
Canada H3A 2A7

email: fukuda@cs.mcgill.ca

(cddlib ver. 093a, manual ver. August 10, 2003)

Abstract

This is a reference manual for cddlib-093a. The manual is not quite satisfactory but ex-
plains the most important functions of polyhedral representation conversion in cddlib. Please
use the accompanying README file and test programs to complement the incompleteness.

1 Introduction

The program cddlib is an efficient implementation [12] of the double description Method [14] for
generating all vertices (i.e. extreme points) and extreme rays of a general convex polyhedron
given by a system of linear inequalities:

P = {x = (x1, x2, . . . , xd)
T ∈ Rd : b − Ax ≥ 0}

where A is a given m × d real matrix and b is a given real m-vector. In the mathematical
language, the computation is the transformation of an H-representation of a convex polytope to
an V-representation.

cddlib is a C-library version of the previously released C-code cdd/cdd+. In order to make
this library version, a large part of the cdd source (Version 0.61) has been rewritten. This library
version is more flexible since it can be called from other programs in C/C++. Unlike cdd/cdd+,
cddlib can handle any general input and is more general. Furtthermore, additional functions
have been written to extend its functionality.

One useful feature of cddlib/cdd/cdd+ is its capability of handling the dual (reverse) problem
without any transformation of data. The dual transformation problem of a V-representation to
a minimal H-representation and is often called the (convex) hull problem. More explicitly, is to
obtain a linear inequality representation of a convex polyhedron given as the Minkowski sum of
the convex hull of a finite set of points and the nonnegative hull of a finite set of points in Rd:

P = conv(v1, . . . , vn) + nonneg(rn+1, . . . , rn+s),

where the Minkowski sum of two subsets S and T of Rd is defined as

S + T = {s + t |s ∈ S and t ∈ T}.

1

As we see in this manual, the computation can be done in straightforward manner. Unlike
the earlier versions of cdd/cdd+ that assume certain regularity conditions for input, cddlib is
designed to do a correct transformation for any general input. The user must be aware of the
fact that in certain cases the transformation is not unique and there are polyhedra with infinitely
many representations. For example, a line segment (1-dimensional polytope) in R3 has infinitely
many minimal H-representations, and a halfspace in the same space has infinitely many minimal
V-representations. cddlib generates merely one minimal representation.

cddlib comes with an LP code to solve the general linear programming (LP) problem to
maximize (or minimize) a linear function over polyhedron P . It is useful mainly for solving
dense LP’s with large m (say, up to few hundred thousands) and small d (say, up to 100). It
implements a revised dual simplex method that updates (d + 1) × (d + 1) matrix for a pivot
operation.

The program cddlib has an I/O routines that read and write files in Polyhedra format which
was defined by David Avis and the author in 1993, and has been updated in 1997. The program
called lrs [2] developed by David Avis is a C-implementation of the reverse search algorithm [4]
for the same enumeration purpose, and it conforms to Polyhedra format as well. Hopefully,
this compatibility of the two programs enables users to use both programs for the same input
files and to choose whichever is useful for their purposes. From our experiences with relatively
large problems, the two methods are both useful and perhaps complementary to each other. In
general, the program cddlib tends to be efficient for highly degenerate inputs and the program
rs tends to be efficient for nondegenerate or slightly degenerate problems.

Although the program can be used for nondegenerate inputs, it might not be very efficient.
For nondegenerate inputs, other available programs, such as the reverse search code lrs or qhull
(developed by the Geometry Center), might be more efficient. See Section 8 for pointers to
these codes. The paper [3] contains many interesting results on polyhedral computation and
experimental results on cdd+, lrs, qhull and porta.

This program can be distributed freely under the GNU GENERAL PUBLIC LICENSE.
Please read the file COPYING carefully before using.

I will not take any responsibility of any problems you might have with this program. But I
will be glad to receive bug reports or suggestions at the e-mail addresses above. If cddlib turns
out to be useful, please kindly inform me of what purposes cdd has been used for. I will be
happy to include a list of applications in future distribution if I receive enough replies. The most
powerful support for free software development is user’s appreciation and collaboration.

2 Polyhedra H- and V-Formats (Version 1999)

Every convex polyhedron has two representations, one as the intersection of finite halfspaces
and the other as Minkowski sum of the convex hull of finite points and the nonnegative hull of
finite directions. These are called H-representation and V-representation, respectively.

Naturally there are two basic Polyhedra formats, H-format for H-representation and V-
format for V-representation. These two formats are designed to be almost indistinguishable,
and in fact, one can almost pretend one for the other. There is some asymmetry arising from
the asymmetry of two representations.

First we start with the H-representation. Let A be an m × d matrix, and let b be a column
m-vector. The Polyhedra format (H-format) of the system b − Ax ≥ 0 of m inequalities in d
variables x = (x1, x2, . . . , xd)

T is

2

various comments
H-representation
(linearity t i1 i2 . . . it)
begin
m d + 1 numbertype
b −A
end
various options

where numbertype can be one of integer, rational or real. When rational type is selected,
each component of b and A can be specified by the usual integer expression or by the rational
expression “p/q” or “−p/q” where p and q are arbitrary long positive integers (see the example
input file rational.ine). In the 1997 format, we introduced “H-representation” which must appear
before “begin”. There was one restriction in the old polyhedra format (before 1997): the last d
rows must determine a vertex of P . This is obsolete now.

In the new 1999 format, we added the possibility of specifying linearity. This means that
for H-representation, some of the input rows can be specified as equalities: bij − Aij = 0 for
all j = 1, 2, . . . , t. The linearity line may be omitted if there are no equalities.

Option lines can be used to control computation of a specific program. In particular both
cdd and lrs use the option lines to represent a linear objective function. See the attached LP
files, samplelp*.ine.

Next we define Polyhedra V-format. Let P be represented by n gerating points and s gener-
ating directions (rays) as P = conv(v1, . . . , vn) + nonneg(rn+1, . . . , rn+s). Then the Polyhedra
V-format for P is

various comments
V-representation
(linearity t i1 i2 . . . it)
begin
n + s d + 1 numbertype

1 v1

...
...

1 vn

0 rn+1

...
...

0 rn+s

end
various options

Here we do not require that vertices and rays are listed separately; they can appear mixed in
arbitrary order.

Linearity for V-representation specifies a subset of generators whose coefficients are relaxed to
be free: for all j = 1, 2, . . . , t, the k = ijth generator (vk or rk whichever is the ijth generator) is
a free generator. This means for each such a ray rk, the line generated by rk is in the polyhedron,
and for each such a vertex vk, its coefficient is no longer nonnegative but still the coefficients for
all vi’s must sum up to one.

When the representation statement, either “H-representation” or “V-representation”, is
omitted, the former “H-representation” is assumed.

3

It is strongly suggested to use the following rule for naming H-format files and V-format
files:

(a) use the filename extension “.ine” for H-files (where ine stands for inequalities), and

(b) use the filename extension “.ext” for V-files (where ext stands for extreme points/rays).

3 Basic Object Types (Structures) in cddlib

Here are the types (defined in cddtypes.h) that are important for the cddlib user. The most
important one, dd MatrixType, is to store a Polyhedra data in a straightforward manner.
Once the user sets up a (pointer to) dd MatrixType data, he/she can load the data to an
internal data type (dd PolyhedraType) by using functions described in the next section, and
apply the double descrition method to get another representation. As an option dd MatrixType
can save a linear objective function to be used by a linear programming solver.

The two dimensional array data in the structure dd MatrixType is dd Amatrix whose
components are of type mytype. The type mytype is set to be either the rational type mpq t
of the GNU MP Library or the C double array of size 1. This abstract type allows us to write a
single program that can be compiled with the two different arithmetics, see example programs
such as simplecdd.c, testlp*.c and testcdd*.c in the src and src-gmp subdirectories of the source
distribution.

#define dd_FALSE 0

#define dd_TRUE 1

typedef long dd_rowrange;

typedef long dd_colrange;

typedef long dd_bigrange;

typedef set_type dd_rowset; /* set_type defined in setoper.h */

typedef set_type dd_colset;

typedef long *dd_rowindex;

typedef int *dd_rowflag;

typedef long *dd_colindex;

typedef mytype **dd_Amatrix; /* mytype is either GMP mpq_t or 1-dim double array. */

typedef mytype *dd_Arow;

typedef enum {

dd_Real, dd_Rational, dd_Integer, dd_Unknown

} dd_NumberType;

typedef enum {

dd_Inequality, dd_Generator, dd_Unspecified

} dd_RepresentationType;

typedef enum {

dd_MaxIndex, dd_MinIndex, dd_MinCutoff, dd_MaxCutoff, dd_MixCutoff,

dd_LexMin, dd_LexMax, dd_RandomRow

} dd_RowOrderType;

4

typedef enum {

dd_InProgress, dd_AllFound, dd_RegionEmpty

} dd_CompStatusType;

typedef enum {

dd_DimensionTooLarge, dd_ImproperInputFormat,

dd_NegativeMatrixSize, dd_EmptyVrepresentation,

dd_IFileNotFound, dd_OFileNotOpen, dd_NoLPObjective, dd_NoRealNumberSupport, dd_NoError

} dd_ErrorType;

typedef enum {

dd_LPnone=0, dd_LPmax, dd_LPmin

} dd_LPObjectiveType;

typedef enum {

dd_LPSundecided, dd_Optimal, dd_Inconsistent, dd_DualInconsistent,

dd_StrucInconsistent, dd_StrucDualInconsistent,

dd_Unbounded, dd_DualUnbounded

} dd_LPStatusType;

typedef struct matrixdata *dd_MatrixPtr;

typedef struct matrixdata {

dd_rowrange rowsize;

dd_rowset linset;

/* a subset of rows of linearity (ie, generators of

linearity space for V-representation, and equations

for H-representation. */

dd_colrange colsize;

dd_RepresentationType representation;

dd_NumberType numbtype;

dd_Amatrix matrix;

dd_LPObjectiveType objective;

dd_Arow rowvec;

} dd_MatrixType;

typedef struct setfamily *dd_SetFamilyPtr;

typedef struct setfamily {

dd_bigrange famsize;

dd_bigrange setsize;

dd_SetVector set;

} dd_SetFamilyType;

typedef struct lpsolution *dd_LPSolutionPtr;

typedef struct lpsolution {

dd_DataFileType filename;

dd_LPObjectiveType objective;

dd_LPSolverType solver;

dd_rowrange m;

5

dd_colrange d;

dd_NumberType numbtype;

dd_LPStatusType LPS; /* the current solution status */

mytype optvalue; /* optimal value */

dd_Arow sol; /* primal solution */

dd_Arow dsol; /* dual solution */

dd_colindex nbindex; /* current basis represented by nonbasic indices */

dd_rowrange re; /* row index as a certificate in the case of inconsistency */

dd_colrange se; /* col index as a certificate in the case of dual inconsistency */

long pivots[5];

/* pivots[0]=setup (to find a basis), pivots[1]=PhaseI or Criss-Cross,

pivots[2]=Phase II, pivots[3]=Anticycling, pivots[4]=GMP postopt */

long total_pivots;

} dd_LPSolutionType;

4 Library Functions

Here we list some of the most important library functions/procedures. We use the follow-
ing convention: poly is of type dd PolyhedraPtr, matrix, matrix1 and matrix2 are of type
dd MatrixPtr, err is of type dd ErrorType*, ifile and ofile are of type char*, A is of type
dd Amatrix, point and vector are of type dd Arow, d is of type dd colrange, m and i are of
type dd rowrange, x is of type mytype, a is of type signed long integer, b is of type double,
set is of type set type. Also, setfam is of type dd SetFamilyPtr, lp is of type dd LPPtr,
solver is of type dd LPSolverType, roworder is of type dd RowOrderType.

4.1 Library Initialization

void dd set global constants(void) :
This is to set the global constants such as dd zero, dd purezero and dd one for sign
recognition and basic arithmetic operations. Every program to use cddlib must call this
function before doing any computation. Just call this once. See Section 4.3.3 for the
definitions of constants.

4.2 Core Functions

There are two types of core functions in cddlib. The first type runs the double description (DD)
algorithm and does a representation conversion of a specified polyhedron. The standard header
for this type is dd DD*. The second type solves an linear program and the standard naming is
dd LP*. Both computations are nontrivial and the users (especially for the DD algorithm) must
know that there is a serous limit in the sizes of problems that can be practically solved. Please
check *.ext and *.ine files that come with cddlib to get ideas of tractable problems.

dd PolyhedraPtr dd DDMatrix2Poly(matrix, err) :
Store the representation given by matrix in a polyhedra data, and generate the second
representation of *poly. It returns a pointer to the data. *err returns dd NoError if the
computation terminates normally. Otherwise, it returns a value according to the error
occured.

6

dd PolyhedraPtr dd DDMatrix2Poly2(matrix, roworder, err) :
This is the same function as dd DDMatrix2Poly except that the insertion order is spec-
ified by the user. The argument roworder is of dd RowOrderType and takes one of
the values: dd MaxIndex, dd MinIndex, dd MinCutoff, dd MaxCutoff, dd MixCutoff,
dd LexMin, dd LexMax, dd RandomRow. In general, dd LexMin is the best choice which
is in fact chosen in dd DDMatrix2Poly. If you know that the input is already sorted in the
order you like, use dd MinIndex or dd MaxIndex. If the input contains many redundant
rows (say more than 80% redundant), you might want to try dd MaxCutoff which might
result in much faster termination, see [3, 12]

boolean dd DDInputAppend(poly, matrix, err) :
Modify the input representation in *poly by appending the matrix of *matrix, and com-
pute the second representation. The number of columns in *matrix must be equal to the
input representation.

boolean dd LPSolve(lp, solver, err) :
Solve lp by the algorithm solver and save the solututions in *lp. Unlike the earlier
versions (dplex, cdd+), it can deal with equations and totally zero right hand sides. It
is recommended that solver is dd DualSimplex, the revised dual simplex method that
updates a d × d dual basis matrix in each pivot (where d is the column size of lp).

The revised dual simplex method is ideal for dense LPs in small number of variables (i.e.
small column size, typically less than 100) and many inequality constraints (i.e. large row
size, can be a few ten thousands). If your LP has many variables but only few constraints,
solve the dual LP by this function.

When it is compiled for GMP rational arithmetics, it first tries to solve an LP with C double
floating-point arithmetics and verifies whether the output basis is correct with GMP. If so,
the correct solution is computed with GMP. Otherwise, it (re)solves the LP from scratch
with GMP. This is newly implemented in the version 093. The original (non-crossover)
version of the same function is still available as boolean dd LPSolve0.

dd boolean dd Redundant(matrix, i, point, err) :
Check whether ith data in matrix is redundant for the representation. If it is nonredun-
dant, it returns a certificate. For H-representation, it is a point in Rd which satisfies all
inequalities except for the ith inequality. If i is a linearity, it does nothing and always
returns dd FALSE.

dd rowset dd RedundantRows(matrix, err) :
Returns a maximal set of row indices such that the associated rows can be eliminated
without changing the polyhedron. The function works for both V- and H-representations.

dd boolean dd SRedundant(matrix, i, point, err) :
Check whether ith data in matrix is strongly redundant for the representation. If i
is a linearity, it does nothing and always returns dd FALSE. Here, ith inequality in H-
representation is strongly redundant if it is redundant and there is no point in the poly-
hedron satisfying the inequality with equality. In V-representation, ith point is strongly
redundant if it is redundant and it is in the relative interior of the polyhedron. If it is not
strongly redundant, it returns a certificate.

dd boolean dd ImplicitLinearity(matrix, i, err) :
Check whether ith row in the input is forced to be linearity (equality for H-representation).
If i is linearity itself, it does nothing and always returns dd FALSE.

7

dd rowset dd ImplicitLinearityRows(matrix, err) :
Returns the set of indices of rows that are implicitly linearity. It simply calls the library
function dd ImplicitLinearity for each inequality and collects the row indices for which
the answer is dd TRUE.

dd SetFamilyPtr dd Matrix2Adjacency(matrix, err) :
Computes the adjacency list of input rows using the LP solver and without running the
representation conversion. When the input is H-representation, it gives the facet graph of
the polyhedron. For V-representation, it gives the (vertex) graph of the polyhedron. It
is required that the input matrix is a minimal representation. Run redundancy removal
functions before calling this function, see the sample code adjacency.c.

dd SetFamilyPtr dd Matrix2WeakAdjacency(matrix, err) :
Computes the weak adjacency list of input rows using the LP solver and without running
the representation conversion. When the input is H-representation, it gives the graph
where its nodes are the facets two nodes are adjacent if and only if the associated facets
have some intersection. For V-representation, it gives the graph where its nodes are the
vertices and two nodes are adjacent if and only if the associated vertices are on a common
facet. It is required that the input matrix is a minimal representation. Run redundancy
removal functions before calling this function, see the sample code adjacency.c.

dd MatrixPtr dd FourierElimination(matrix, err) :
Eliminate the last variable from a system of linear inequalities given by matrix by us-
ing the Fourier’s Elimination. If the input matrix is V-representation, *err returns
dd NotAvailForV. This function does not remove redundancy and one might want to
call redundancy removal functions afterwards. See the sample code fourier.c.

dd MatrixPtr dd BlockElimination(matrix, set, err) :
Eliminate a set of variables from a system of linear inequalities given by matrix by using
the extreme rays of the dual linear system. See comments in the code cddproj.c for details.
This might be a faster way to eliminate variables than the repeated FourierElimination
when the number of variables to eliminate is large. If the input matrix is V-representation,
*err returns dd NotAvailForV. This function does not remove redundancy and one might
want to call redundancy removal functions afterwards. See the sample code projection.c.

dd rowrange dd RayShooting(matrix, point, vector) :
Finds the index of a halfspace first left by the ray starting from point toward the direction
vector. It resolves tie by a lexicographic perturbation. Those inequalities violated by
point will be simply ignored.

4.3 Data Manipulations

4.3.1 Number Assignments

For number assignments, one cannot use such expressions as x=(mytype)a. This is because
cddlib uses an abstract number type (mytype) so that it can compute with various number
types such as C double and GMP rational. User can easily add a new number type by redefining
arithmetic operations in cddmp.h and cddmp.c.

void dd init(x) :
This is to initialize a mytype variable x and to set it to zero. This initialization has to be
called before any mytype variable to be used.

8

void dd clear(x) :
This is to free the space allocated to a mytype variable x.

void dd set si(x, a) :
This is to set a mytype variable x to the value of signed long integer a.

void dd set si2(x, a, b) :
This is to set a mytype variable x to the value of the rational expression a/b, where a is
signed long and b is unsigned long integers.

void dd set d(x, b) :
This is to set a mytype variable x to the value of double b. This is available only when the
library is compiled without -DGMPRATIONAL compiler option.

4.3.2 Arithmetic Operations for mytype Numbers

Below x, y, z are of type mytype.

void dd add(x, y, z) :
Set x to be the sum of y and z.

void dd sub(x, y, z) :
Set x to be the substraction of z from y.

void dd mul(x, y, z) :
Set x to be the multiplication of y and z.

void dd div(x, y, z) :
Set x to be the division of y over z.

void dd inv(x, y) :
Set x to be the reciplocal of y.

4.3.3 Predefined Constants

There are several mytype constants defined when dd set global constants(void) is called.
Some constants depend on the double constant dd almostzero which is normally set to 10−7

in cdd.h. This value can be modified depending on how numerically delicate your problems are
but an extra caution should be taken.

mytype dd purezero :
This represents the mathematical zero 0.

mytype dd zero :
This represents the largest positive number which should be considered to be zero. In the
GMPRATIONAL mode, it is equal to dd purezero. In the C double mode, it is set to the
value of dd almostzero.

mytype dd minuszero :
The negative of dd zero.

mytype dd one :
This represents the mathematical one 1.

9

4.3.4 Sign Evaluation and Comparison for mytype Numbers

Below x, y, z are of type mytype.

dd boolean dd Positive(x) :
Returns dd TRUE if x is considered positive, and dd FALSE otherwise. In the GMPRA-
TIONAL mode, the positivity recognition is exact. In the C double mode, this means the
value is strictly larger than dd zero.

dd boolean dd Negative(x) works similarly.

dd boolean dd Nonpositive(x) :
Returns the negation of dd Positive(x). dd Nonnegative(x) works similarly.

dd boolean dd EqualToZero(x) :
Returns dd TRUE if x is considered zero, and dd FALSE otherwise. In the GMPRATIONAL
mode, the zero recognition is exact. In the C double mode, this means the value is
inbetween dd minuszero and dd zero inclusive.

dd boolean dd Larger(x, y) :
Returns dd TRUE if x is strictly larger than y, and dd FALSE otherwise. This is implemented
as dd Positive(z) where z is the subtraction of y from x. dd Smaller(x, y) works similarly.

dd boolean dd Equal(x, y) :
Returns dd TRUE if x is considered equal to y, and dd FALSE otherwise. This is implemented
as dd EqualToZero(z) where z is the subtraction of y from x.

4.3.5 Polyhedra Data Manipulation

dd MatrixPtr dd PolyFile2Matrix (f, err) :
Read a Polyhedra data from stream f and store it in matrixdata and return a pointer to
the data.

dd MatrixPtr dd CopyInequalities(poly) :
Copy the inequality representation pointed by poly to matrixdata and return dd MatrixPtr.

dd MatrixPtr dd CopyGenerators(poly) :
Copy the generator representation pointed by poly to matrixdata and return dd MatrixPtr.

dd SetFamilyPtr dd CopyIncidence(poly) :
Copy the incidence representation of the computed representation pointed by poly to
setfamily and return dd SetFamilyPtr. The computed representation is Inequality if
the input is Generator, and the vice visa.

dd SetFamilyPtr dd CopyAdjacency(poly) :
Copy the adjacency representation of the computed representation pointed by poly to
setfamily and return dd SetFamilyPtr. The computed representation is Inequality if
the input is Generator, and the vice visa.

dd SetFamilyPtr dd CopyInputIncidence(poly) :
Copy the incidence representation of the input representation pointed by poly to setfamily
and return d SetFamilyPtr.

10

dd SetFamilyPtr dd CopyInputAdjacency(poly) :
Copy the adjacency representation of the input representation pointed by poly to setfamily
and return d SetFamilyPtr.

void dd FreePolyhedra(poly) :
Free memory allocated to poly.

4.3.6 LP Data Manipulation

dd LPPtr dd MakeLPforInteriorFinding(lp) :
Set up an LP to find an interior point of the feasible region of lp and return a pointer to
the LP. The new LP has one new variable xd+1 and one more constraint: maxxd+1 subject
to b − Ax − xd+1 ≥ 0 and xd+1 ≤ K, where K is a positive constant.

dd LPPtr dd Matrix2LP(matrix, err) :
Load matrix to lpdata and return a pointer to the data.

dd LPSolutionPtr dd CopyLPSolution(lp) :
Load the solutions of lp to lpsolution and return a pointer to the data. This replaces
the old name dd LPSolutionLoad(lp).

void dd FreeLPData(lp) :
Free memory allocated to lp.

4.3.7 Matrix Manipulation

dd MatrixPtr dd CopyMatrix(matrix) :
Make a copy of matrixdata pointed by matrix and return a pointer to the copy.

dd MatrixPtr dd AppendMatrix(matrix1, matrix2) :
Make a matrixdata by copying *matrix1 and appending the matrix in *matrix2 and
return a pointer to the data. The colsize must be equal in the two input matrices. It
returns a NULL pointer if the input matrices are not appropriate. Its rowsize is set to the
sum of the rowsizes of matrix1 and matrix2. The new matrixdata inherits everything else
(i.e. numbertype, representation, etc) from the first matrix.

int dd MatrixAppendTo(& matrix1, matrix2) :
Same as dd AppendMatrix except that the first matrix is modified to take the result.

int dd MatrixRowRemove(& matrix, i) :
Remove the ith row of matrix.

dd MatrixPtr dd MatrixSubmatrix(matrix, set) :
Generate the submatrix of matrix by removing the rows indexed by set and return a
matrixdata pointer.

dd MatrixPtr dd CopyMatrix(matrix) :
Make a copy of matrixdata pointed by matrix and return a pointer to the copy.

dd SetFamilyPtr dd Matrix2Adjacency(matrix, err) :
Return the adjacency list of the representation given by matrix. The computation is
done by the built-in LP solver. The representation should be free of redundancy when
this function is called. See the function dd rowset dd RedundantRows and the example
program adjacency.c.

11

4.4 Input/Output Functions

dd MatrixPtr dd PolyFile2Matrix (f, err) :
Read a Polyhedra data from stream f and store it in matrixdata and return a pointer to
the data.

boolean dd DDFile2File(ifile, ofile, err) :
Compute the representation conversion for a polyhedron given by a Polyhedra file ifile,
and write the other representation in a Polyhedra file ofile. *err returns dd NoError if
the computation terminates normally. Otherwise, it returns a value according to the error
occured.

void dd WriteMatrix(f, matrix) :
Write matrix to stream f.

void dd WriteNumber(f, x) :
Write x to stream f. If x is of GMP mpq t rational p/q, the output is p/q. If it is of C
double, it is formated as a double float with a decimal point.

void dd WritePolyFile(f, poly) :
Write tt poly to stream f in Polyhedra format.

void dd WriteErrorMessages(f, err) :
Write error messages given by err to stream f.

void dd WriteSetFamily(f, setfam) :
Write the set family pointed by setfam to stream f. For each set, it outputs its index, its
cardinality, a colon “:” and a ordered list of its elements.

void dd WriteSetFamilyCompressed(f, setfam) :
Write the set family pointed by setfam to stream f. For each set, it outputs its index, its
cardinality or the negative of the cardinality, a colon “:” and the elements in the set or its
complements whichever is smaller. Whenever it outputs the complements, the cardinality
is negated so that there is no ambiguity. This will be considered standard for outputing
incidence (*.icd, *ecd) and adjacency (*.iad, *.ead) data in cddlib. But there is some
minor incompatibility with cdd/cdd+ standalone codes.

void dd WriteProgramDescription(f) :
Write the cddlib version information to stream f.

void dd WriteDDTimes(f, poly) :
Write the representation conversion time information on poly to stream f.

4.5 Obsolete Functions

boolean dd DoubleDescription(poly, err) : (removed in Version 0.90c)
The new function dd DDMatrix2Poly(matrix, err) (see Section 4.2) replaces (and actu-
ally combines) both this and dd Matrix2Poly(matrix, err).

dd PolyhedraPtr dd Matrix2Poly(matrix, err) : (removed in Version 0.90c)
See above for the reason for removal.

dd LPSolutionPtr dd LPSolutionLoad(lp) : (renamed in Version 0.90c)
This function is now called dd CopyLPSolution(lp).

12

5 An Extension of the CDD Library in GMP mode

Starting from the version 093, the GMP version of cddlib, libcddgmp.a, contains all cdd library
functions in two arithmetics. All functions with the standard prefix dd are computed with the
GMP rational arithmetics as before. The same fuctions with the new prefix ddf are now added
to the library libcddgmp.a that are based on the C double floating-point arithmetics. Thus
these functions are equivalent to libcdd.a functions, except that all functions and variable types
are with prefix ddf and the variable type mytype is replaced by myfloat.

In this sense, libcdd.a is a proper subset of libcddgmp.a and in principle one can do
everything with libcddgmp.a. See how the new dd LPSolve is written in cddlp.c.

6 Examples

See example codes such as testcdd*.c , testlp*.c, redcheck.c, adjacency.c, and simplecdd.c in the
src and src-gmp subdirectories of the source distribution.

7 Numerical Accuracy

A little caution is in order. Many people have observed numerical problems of cddlib when the
floating version of cddlib is used. As we all know, floating-point computation might not give a
correct answer, especially when an input data is very sensitive to a small perturbation. When
some strange behavior is observed, it is always wise to create a rationalization of the input (for
example, one can replace 0.3333333 with 1/3) and to compute it with cddlib compiled with gmp
rational to see what a correct behavior should be. Whenever the time is not important, it is
safer to use gmp rational arithmetic.

If you need speedy computation with floating-point arithmetic, you might want to “play
with” the constant dd almostzero defined in cdd.h:

#define dd_almostzero 1.0E-7

This number is used to recognize whether a number is zero: a number whose absolute value is
smaller than dd almostzero is considered zero, and nonzero otherwise. You can change this to
modify the behavior of cddlib. One might consider the default setting is rather large for double
precision arithmetic. This is because cddlib is made to deal with highly degenerate data and it
works better to treat a relatively large “epsilon” as zero.

Another thing one can do is scaling. If the values in one column of an input is of smaller
magnitude than those in another column, scale one so that they become comparable.

8 Other Useful Codes

There are several other useful codes available for vertex enumeration and/or convex hull com-
putation such as lrs, qhull, porta and irisa-polylib. The pointers to these codes are available
at

1. lrs by D. Avis [2] (C implementation of the reverse search algorithm [4]).

2. qhull by C.B. Barber [5] (C implementation of the beneath-beyond method, see [8, 15],
which is the dual of the dd method).

13

3. porta by T. Christof and A. Löbel [7] (C implementation of the Fourier-Motzkin elimina-
tion).

4. IRISA polyhedral library by D.K. Wilde [16] (C implementation of a variation of the dd
algorithm).

5. pd by A. Marzetta [13] (C implementation of the primal-dual algorithm [6]).

6. Geometry Center Software List by N. Amenta [1].

7. Computational Geometry Pages by J. Erickson [9].

8. Linear Programming FAQ by R. Fourer and J. Gregory [10].

9. ZIB Berlin polyhedral software list:
ftp://elib.zib-berlin.de/pub/mathprog/polyth/index.html.

10. Polyhedral Computation FAQ [11].

Acknowledgements.

I am grateful to Th. M. Liebling who provided me with an ideal opportunity to visit EPFL for
the academic year 1993-1994. Without his support, the present form of this program would not
have existed. Later, H.-J. Lüthi (ETHZ) joined to support the the development of cdd codes
(cdd, cdd+, cddlib). There are many people who helped me to improve cdd, in particular, I
am indebted to David Avis, Alexander Bockmayr, David Bremner, Henry Crapo, Istvan Csabai,
Francois Margot, Marc Pfetsch, Alain Prodon, Jörg Rambau, Shawn Rusaw, Matthew Saltzman,
Masanori Sato and those listed in the HISTORY file.

References

[1] N. Amenta. Directory of computational geometry.
http://www.geom.umn.edu/software/cglist/.

[2] D. Avis. User’s Guide for lrs - Version 3.2, 1997. available from lrs homepage
ftp://mutt.cs.mcgill.ca/pub/C/lrs.html.

[3] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms. Computational
Geometry: Theory and Applications, 7:265–302, 1997.

[4] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra. Discrete Comput. Geom., 8:295–313, 1992.

[5] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. qhull, Version 2.1. The Ge-
ometry Center, Minnesota, U.S.A., 1995. program and report available from
ftp://geom.umn.edu/pub/software/qhull.tar.Z.

[6] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet
enumeration. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 49–56, 1997.

[7] T. Christof and A. Löbel. PORTA: Polyhedron representation transformation algorithm
(ver. 1.3.1), 1997. http://www.zib.de/Optimization/Software/Porta/.

14

[8] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[9] J. Erickson. Computational geometry pages, list of software libraries and codes.
http://compgeom.cs.uiuc.edu/˜jeffe/compgeom/.

[10] R. Fourer and J.W. Gregory. Linear programming frequently asked questions (LP-FAQ).
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html.

[11] K. Fukuda. Polyhedral computation FAQ, 1998. Both html and ps versions available from
http://www.ifor.math.ethz.ch/˜fukuda/fukuda.html.

[12] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler,
and I. Manoussakis, editors, Combinatorics and Computer Science, volume 1120 of Lecture
Notes in Computer Science, pages 91–111. Springer-Verlag, 1996. ps file available from
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/ddrev960315.ps.gz.

[13] A. Marzetta. pd – C-implementation of the primal-dual algoirithm, 1997. code available
from http://wwwjn.inf.ethz.ch/ambros/pd.html.

[14] T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall. The double description method.
In H.W. Kuhn and A.W.Tucker, editors, Contributions to theory of games, Vol. 2. Princeton
University Press, Princeton, RI, 1953.

[15] K. Mulmuley. Computational Geometry, An Introduction Through Randamized Algorithms.
Prentice-Hall, 1994.

[16] D.K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State
University, Corvallis, Oregon, Dec 1993. Also published in IRISA technical report PI 785,
Rennes, France; Dec, 1993.

15

