
IP (Fukuda) v.2013-02-12 31

5 Duality of Polyhedra

Duality in convex polyhedra is a very interesting notion not only in the theory of poly-
hedra but also in polyhedral computation. Duality implies that two basic representation
conversions between V-representation and H-representation of a polyhedron are essentially
the same thing. Yet, in order to convert one to the other is sometimes tricky because there
are certain assumptions under which any specific conversion can work.

5.1 Face Lattice

Let P be a convex polytope in Rd. Each face F of P is a convex polytope again by definition.
The dimension dim(P) of P is the maximum number of affinely independent points in P
minus one. The number of k-dimensional faces of P is denoted by fk(P). By Theorem 3.14,
fk(P) is finite. A k-dimensional face (polytope) is called simply k-face (k-polytope). For a
d-polytope P , the vector

f(P) := (f−1, f0, f1, . . . , fd) (5.1)

is called the f-vector of P . Clearly f−1 = fd = 1.
The 0-faces of a d-polytope are called the vertices , the 1-faces the edges , the (d−1)-faces

the facets , and the (d− 2)-faces the ridges .
We denote by F(P) the finite set of all faces of P ordered by set inclusion. This is called

the face lattice of P . Recall that a lattice is a partially ordered set (poset in short) where the
join (the least upper bound) and the meet (the greatest lower bound) of any two elements
a and b exist in the set. The face lattice of a polytope is also known as the combinatorial
structure of the polytope. In Figure 5.1, the face lattices of 1-, 2- and 3-cubes are depicted,
whose f-vectors are {1, 2, 1}, {1, 4, , 4, 1} and {1, 8, 12, 6, 1}. One can easily show that all
1-polytopes are finite line segments and thus are combinatorially the same diamond.

Figure 5.1: The Hasse diagram of the face lattices of 1-, 2- and 3-cubes

A lattice is called polytopal if it is isomorphic to the lattice of a polytope. Polytopal
lattices are very special. The following proposition summarizes this.

Proposition 5.1 Every polytopal lattice satisfies the follow properties.

(a) It satisfies the Jordan-Dedekind chain property, i.e., all maximal chains between any
two ordered elements a < b have the same length.

IP (Fukuda) v.2013-02-12 32

(a) Fny two ordered elements a < b, the interval [a, b], the set of elements between a and b,
is again a polytopal lattice. In particular, this means that every interval of hight 2 is a
diamond.

We shall prove these properties in a later section, as we do not use them to prove the
polytopal duality to be described below.

For a polytope P , a polytope P ′ is called a dual of P if F(P ′) is anti-isomorhic to F(P).
It follows that a polytope P and a dual polytope P ′ have the same dimension, and their
f-vectors are reversed, fi(P) = fd−i−1(P ′) for all i = −1, 0, . . . , d. The following is the
fundamental theorem of duality.

Theorem 5.2 Every polytope admits a dual polytope.

It is easy to see that a dual polytope is not unique. Any d-simplex is a dual of a d-simplex.
A 3-cube is a dual of an octahedron but there are many geometrically different polytopes
with isomorphic face lattices.

Yet, there is a simple construction of a dual polytope which is extremely useful, both
theoretically and computationally. For a convex body C in Rd containing the origin 0 in its
interior, define its polar denoted by C∗ as

C∗ = {y ∈ Rd : xTy ≤ 1, ∀x ∈ C}. (5.2)

Theorem 5.3 Let P be a polytope containing the origin 0 in its interior. Then its polar P ∗

is a dual polytope of P .

5.2 Active Sets and Face Representations

As we learned from Theorem 3.9, every polyhedron has two representations, H-reprentation
and V-representation. These two representations are closely linked to duality. Intuitively,
by setting the transpose of an H-representation as a V-reprentation, we obtain a dual. This
statement is in general incorrect and can be stated correctly with proper assumptions.

Let P be a polyhedron with an H-representation (A, b) and a V-representation (V,R).
Each row of (A, b) is denoted by (Ai, bi), representing the inequality Aix ≤ bi. Each column
of V and R is denoted by vj and rk, respectively, the jth vertex generator and the kth
ray generator. We employ a little abuse of language here. An H-representation (A, b) is
considered as the set of all its rows (Ai, bi), and similarly V (R) is considered as the set of
all its columns vj ’s (rk’s).

Let F be a non-empty face of P . An inequality (Ai, bi) is called active at F if the
inequality is satisfied with equality at all points in F . The set of all active inequalities is
called the active inequality set at F .

Similarly, a vertex generator vj is called active at F if vj ∈ F . A ray generator rk is called
active at F if moving from any point on F along the direction rk won’t leave the polyhedron,
i.e., x+ θrk ∈ F for any x ∈ F and θ ≥ 0. The pair (V ′, R′) of sets of all active vertices and
active rays are called the active generator sets at F . We extend the set inclusion for pairs of
sets in the natural way, we define (V ′′, R′′) ⊆ (V ′, R′) if and only if V ′′ ⊆ V ′ and R′′ ⊆ R′.

Active inequalities and generators are very important for representation of faces and face
lattices.

IP (Fukuda) v.2013-02-12 33

Theorem 5.4 Let P be a polyhedron with a V-representation (V,R), and let F be a nonempty
face of P . Then the active generator set pair (V ′, R′) at F is a V-representation of F .

Proof. Let (J,K) be the column index sets of (V ′, R′), namely, V ′ = (vj : j ∈ J) and
R′ = (rk : k ∈ K). Let

F = {x ∈ Rd : x = V ′µ′ +R′λ′, µ′ ≥ 0, 1Tµ′ = 1,λ′ ≥ 0}.

We need to show F = F . By definition of active generators, we have F ⊇ F . For the
converse inclusion, let p ∈ F and suppose p (∈ F . Since p ∈ P ,

p = V µ+Rλ (5.3)

for some µ ≥ 0, 1Tµ = 1 and some λ ≥ 0. Because p (∈ F , we have µj > 0 for j (∈ J or
λk > 0 for k (∈ K. Suppose there is j (∈ J such that µj > 0. Then, vj (∈ F . Let (A, b)
be an H-representation of P . Since vj (∈ F , there is an inequality (Ai, bi) active at F such
that Aivj < bi. Since this is active at F, Aip = bi and this implies that there is a ray or
vertex generator in the RHS representation 5.3 of p which violates this active inequality.
This is impossible. The second case is impossible by a similar argument. Thus, p ∈ F . This
completes the proof.

Theorem 5.5 Let P be a polyhedron with an H-reprentation (A, b) and a V-representation
(V,R). Then

(a) the face poset F(P)\{∅} is anti-isomorphic to the set of all active inequality sets ordered
by set inclusion;

(b) the face poset F(P) \ {∅} is isomorphic to the set of all active generator sets ordered by
set inclusion.

Proof.

(a) It is clear that the larger a face is, the smaller its active inequality set is. The main
question is if the strictly larger a face is, the strictly smaller its active inequality set
is. This follows directly from Theorem 3.14.

(b) Using a similar argument to (a), (b) follows from Theorem 5.4.

5.3 Duality of Cones

Before proving the duality of polytopes, we show the duality of cones is a straightforward
consequence of Theorem 5.5, a basic theorem on face lattice representations by active sets.

The notion of dual (polyhedral) cone is essentially the same as that of polytopes, the
face lattice of a dual is the polar (upside-down) lattice. There is a small technical differ-
ence. Cones are different from polytopes in the sense that every cone has a unique minimal
nonempty face (containing the origin), which plays exactly like the empty face of every poly-
tope. For this reason, we define the face lattice F(C) of a cone C as the set of all nonempty
faces of C ordered by set inclusion. Accordingly, we say that a cone C ′ is a dual cone of a
cone C if F(C) and F(C ′) are anti-isomorphic.

IP (Fukuda) v.2013-02-12 34

Theorem 5.6 Every (polyhedral) cone admits a dual cone.

Our proof is by construction. For this, we define two cones. For a real m× d matrix A,
we denote by CH(A) the cone with A as its H-representation:

CH(A) = {x : Ax ≤ 0}. (5.4)

For a real d× s matrix R, we denote by CV (R) the cone with R as its V-representation:

CV (R) = {x : x = Rλ,λ ≥ 0}. (5.5)

Using this notation, Minkowski-Weyl Theorem, Theorem 3.10, says that a set C is of form
C = CH(A) for some matrix A if and only if C = CV (A) for some matrix R.

The following is a stronger (constructive) version of the cone duality, Theorem 5.6.

Theorem 5.7 For any real m×d matrix A, the cone CH(A) and the cone CV (AT) are dual
to each other.

1

2

CH(A)

A2

x1

CV(A
T)

Figure 5.2: Cone Duality

Proof. Let A be a real m × d matrix. Let F be any nonempty face of CH(A), and let
I ⊆ [m] be the set of active inequality row indices at F , i.e., F = {x ∈ CH(A) : AIx = 0}
and

∃c ∈ Rd such that Aic = 0, ∀i ∈ I, and

Ajc < 0, ∀j ∈ [m] \ I.

Or equivalently,

∃c ∈ Rd such that cT (Ai)
T = 0, ∀i ∈ I, and

cT (Aj)
T < 0, ∀j ∈ [m] \ I.

Noting that the vectors (Ai)T (i ∈ [m]) are the generators of the cone CV (AT), the relations
above show exactly that {(Ai)T :∈ I} is the active generator set at the face of CV (AT)

IP (Fukuda) v.2013-02-12 35

determined by the valid inequality cTx ≤ 0 for the cone CV (AT). The reverse direction is
obvious.

This provides a one-to-one correspondence between the set of nonempty faces of CH(A)
and the set of nonempty faces of CV (AT), reversing the set inclusion. This completes the
proof.

5.4 Duality of Polytopes

As we learned in the previous section, the duality of cones arises very naturally, and in fact,
an H-representation of a cone immediately gives a V-representation of a dual cone, and vice
visa: the cones CH(A) and CV (AT) are dual to each other for any matrix A.

To derive a similar construction for polytopes, one can use the cone duality carefully.
The main idea is to express a d-polytope P as the intersection of (d + 1)-cone C in such a
way that P is embedded in C as the intersection of C with hyperplane xd+1 = −1. This is
easy to do if P is a V-polytope. This gives some matrix R and the cone CV (R) in Rd+1.
We know how to construct a dual of CV (R): CH(RT). The hard part is the rest: we have
to make sure that it is “nicely” intersected by a hyperplane so that the intersection is a
polytope and has the same face lattice as CH(RT). If this is done, we have the construction
of a dual of P .

Let P be a d-polytope with V-reresentation V = [v1, . . . , vm]. Let

V̂ :=

[
v1 v2 · · · vm
−1 −1 · · · −1

]
. (5.6)

By Theorem 5.7, the following cones C and D defined below are dual to each other

C := CV (V̂) = {x : x = V̂ λ,λ ≥ 0}, (5.7)

D := CH(V̂
T) = {x : V̂ Tx ≤ 0}. (5.8)

Furthermore, by construction, the cone C represents P nicely.

Proposition 5.8 The face lattices F(P) and F(C) are isomorphic.

Proof. Consider the cut section P ′ of C with the hyperplane h−1 := {x ∈ Rd+1 : xd+1 =
−1}. It follows that P and P ′ are affinely equivalent, and in particular, their face lattices
are isomorphic. It is left to show that F(C) and F(P ′) are isomorphic. This follows from
the fact that V̂ is not only a V-representation of C but also a V-representation of P ′.

A proof of Theorem 5.2 is almost complete, because we know the face lattice of D
is the target lattice we need to realize as the face lattice of a polytope. The only thing
we have to show is that the cone D can be cut nicely by a hyperplane so that the cut
section, say Q′, has the face lattice isomorphic to D. For this, consider the hyperplane
h+1 := {x ∈ Rd+1 : xd+1 = +1}. define

Q′ := D ∩ h+1. (5.9)

IP (Fukuda) v.2013-02-12 36

Observe that

Q′ =






[
x

xd+1

]
∈ Rd+1 :




vT1 −1
...

...
vTm −1




[

x
xd+1

]
≤ 0





∩ {x ∈ Rd+1 : xd+1 = +1} (5.10)

=

{[
x
1

]
∈ Rd+1 : vTi x ≤ 1, ∀i = 1, . . . , m

}
. (5.11)

Thus, the polyhedron Q′ is affinely equivalent to the polyhedron

Q = {x ∈ Rd : vTi x ≤ 1, ∀i = 1, . . . , m} = {x ∈ Rd : V Tx ≤ 1}. (5.12)

The polyhedron Q (and Q′) may not have the face lattice isomorphic to D in general.
Construct a small example to show this fact. The following lemma gives a right assumption
for duality to work.

Theorem 5.9 If P contains the origin in its interior, the polyhedron Q is a polytope dual
to P .

Proof. Assume that P contains the origin in its interior. The only thing left to be
shown is that the face lattices of the cone D and the polyhedron Q′ are isomorphic. For
this, it is sufficient to show that Q′ is bounded and a V-representation of Q′ is in fact a
V-representation of D. (Figure 5.3 shows that the assumption is in fact necessary.)

- 1

0

xd+1

C

D

+1

x1

- 1

0

xd+1

C

D

+1

x1

Figure 5.3: Polytope Duality: When it works and When it does not

IP (Fukuda) v.2013-02-12 37

Observe that the assumption is equivalent to

rankV = d, and (5.13)

∃λ > 0 such that V λ = 0. (5.14)

By (a variation of) Gordan’s Theorem (Exercise 3.4), the statement (5.14) is equivalent to

!x such that V Tx " 0. (5.14’)

In order to show that Q (and Q′) is bounded, suppose the contrary: there is a unbounded
direction in Q, i.e., a nonzero vector z such that V T z ≤ 0. By (5.14’), this implies V T z = 0
and z (= 0, which is impossible by the assumtion (5.14).

Now, we shall show a V-representation of Q′ is a V-representation of D. For this, we take
any nonzero vector (x, xd+1)T ∈ D, and show that xd+1 > 0. This means that the normalized
vector (x/xd+1, 1)T is in Q′. Thus, any V-representation of Q′ represents the cone D. To see
that xd+1 > 0, observe that

[
x

xd+1

]
(= 0 and V̂ T

[
x

xd+1

]
≤ 0

=⇒

[
x

xd+1

]
(= 0 and V Tx− 1xd+1 ≤ 0

=⇒ xd+1 > 0.

The last implication is valid because if xd+1 ≤ 0, V Tx ≤ 0 for x (= 0 which is impossible by
the assumptions (5.13) and (5.14).

5.5 Examples of Dual Pairs

In Section 3.7, we introduced a few examples of polytopes. Let’s look at their duals.
First of all, one can easily see that a d-simplex is self-dual.
What is a dual of an d-cube? The simple way to see is to use the centrally symmetric

cube Cube(d) whose vertex set is {−1, 1}d. Namely,

Cube(d) = conv{−1, 1}d = {x ∈ Rd : ±(ei)
Tx ≤ 1, ∀i = 1, . . . , d}. (5.15)

The polar of Cube(d) is known as the d-cross polytope:

Cross(d) = {x : aTx ≤ 1, ∀a ∈ {−1, 1}d} = conv{±ei : i = 1, . . . , d}. (5.16)

Among all five regular polytopes in 3 dimension, the remaining duality is between a
dodecahedron and an icosahedron.

An icosa-dodecahedron is a truncated dodecahedron, obtained from a dodecahedron trun-
cated at each vertex to the midpoint of incident edges. The number of facets is clearly
30 = 12 + 20, the sum of the numbers of facets of an icosahedron and a dodecahedron.
Its dual is known as a rhombic triacontahedron, which is a very special zonotope arising as
quasicrystal.

IP (Fukuda) v.2013-02-12 38

Type Figure # Vertices # Facets # i-Faces

Cube(d) 2d 2d
(
d
i

)
2d−i

Cross(d) 2d 2d
(

d
i+1

)
2i+1

Dodecahedron 20 12

Icosahedron 12 20

Rhombic Triacontahedron 32 30

Icosa-Dodecahedron 30 32

IP (Fukuda) v.2013-02-12 39

5.6 Simple and Simplicial Polyhedra

Both a 3-cube and a dodecahedron are simple polytopes and their duals are simplicial poly-
topes.

More generally, the simple d-polytopes are such that each vertex is contained in exactly
d facets, while the simplicial d-polytopes are such that each facet contains exactly d vertices.

Proposition 5.10 For a d-polytope P , the following statements are equivalent:

(a) P is simple.

(b) Each vertex v of P is incident to exactly d-edges.

(c) For each vertex v of P , and for any k distinct edges incident to v, there exists a unique
k-face containing the k edges.

(d) For each vertex v of P , and for any 2 distinct edges incident to v, there exists a unique
2-face containing the 2 edges.

Proposition 5.11 For a d-polytope P , the following statements are equivalent:

(a) P is simplicial.

(b) Each facet f of P contains exactly d-ridges.

(c) For each facet f of P , the intersection of any k distinct ridges contained in f is a
(d− k − 1)-face.

(d) For each vertex v of P , the intersection of any 2 distinct ridges contained in f is a
(d− 3)-face.

5.7 Graphs and Dual Graphs

Proposition 5.1 shows that every interval of hight 2 is a diamond. This means one can define
two types of graphs of a polytope. The graph of a polytope P is G(P) = (V (P), E(P)), where
V (P) is the set of vertices of P and E(P) is the set of all edges each of which is represented as
the pair of its two vertices. The dual graph of a polytope P is GD(P) = (F (P), R(P)), where
F (P) is the set of facets of P and R(P) is the set of all ridges each of which is represented
as the pair of the two facets containing it. By the definition of duality, if Q is a dual of a
polytope P , G(P) is isomorphic to GD(Q).

IP (Fukuda) v.2013-02-12 40

6 Line Shellings and Euler’s Relation

6.1 Line Shelling

Let P = {x ∈ Rd : Ai x ≤ 1, i = 1, 2, . . . , m} be a polytope. P has such a representation iff
it contains the origin in its interior.

A shelling of the boundary of P is a sequence F1, F2, . . ., Fm of its facets such that
(∪k−1

i=1Fi) ∩ Fk is a topological (d− 2)-ball for each 2 ≤ k ≤ m− 1.

F1 F2

F3

F4

F5

F6

F7

F12F11

F10

F9

F8

Figure 6.1: A Shelling of a Dodecahedron

The following is a fundamental theorem on polytopes which is extremely useful both
theoretically and computationally.

Theorem 6.1 (Bruggesser-Mani [11] (1971)) The boundary of every polytope admits a
shelling.

IP (Fukuda) v.2013-02-12 41

This theorem was used without proof by a Swiss mathematician Ludwig Schläfli (1901)
to compute the Euler characteristic (to be discussed later) of convex polytopes. Seventy
years later, an elegant proof was given. Here is the main idea. Bruggesser-Mani [11] proved
a stronger theorem where any line in general position through an interior point of a polytope
induces a particular shelling, known as a line shelling. Figure 6.2 illustrates this.

z1

z3

z2

z4

z5

z12

z4

L

F4

(a)

(b)

Figure 6.2: A Line Shelling

Imagine that a given polytope P is a planet earth and you are traveling along a generic
oriented line L starting from some interior point. The first point z1 to meet the boundary
of P is a point on a facet. Let’s call this facet F1. Then you meet another point z2 on the
boundary of a halfspace spanned by a facet. Let’s call this facet F2. If you move a little
forward from z2, you ”see” only two facets F1 and F2. This travel induces an ordering of
facets as they become visible to you one by one. These facets are not all, and in the figure
above, we have a sequence from F1 up to F6. The rests are to be ordered in a similar manner
but from the opposite side of infinity on L. More precisely, you travel from the other side of
infinity and follow the line along the orientation. From a point far from P , you see all facets
not yet ordered. Now moving toward P , some facet becomes invisible. Let’s call this facet

IP (Fukuda) v.2013-02-12 42

F7. Then another facet becomes invisible that is F8. When we reach the last facet F12, all
facets of P are ordered. Such an ordering of facets can be shown to be a shelling of P .

For any point z in Rd \ P , the union of all facets visible from z forms a very special
subset of the boundary. Let’s all it the visible hemisphere from z. Similarly, we define the
invisible hemisphere from z. The proof uses the fact that both the visible and the invisible
hemispheres are shellable.

Before giving a formal proof of Theorem 6.1, let us interpret the line shelling in a dual
polytope.

Consider a polytope P in Rd which contains the origin 0 in its interior. Thus, its H-
representation can be of form

P = {x ∈ Rd : Ax ≤ 1}.

for some m× d matrix A. The polar dual of P is

P ∗ = conv{AT
i : i = 1, . . . , m},

where Ai is the ith row of A.
For a generic c ∈ Rd, sort the vertices AT

i ’s of the dual polytope by the linear function
cTx. Namely, we suppose

A1 c > A2 c > · · · > Am c.

What is the meaning of this sorting for the original polytope P ?
Geometrically, the parameterized line L(λ) = {λ c | λ ∈ R} meets each hyperplane

determined by Ai x = 1 at a point, say zi. Let λi denotes the parameter value at the
intersection. Thus,

zi = λi c and Ai zi = 1.

Consequently:

1/λ1 > 1/λ2 > · · · > 1/λk > 0 > 1/λk+1 > · · · > 1/λm.

F1

F3

F4

F2

0

c

F5

x

z1

z2

x
z3

z4

z5
P

IP (Fukuda) v.2013-02-12 43

This ordering is exactly the ordering produced by the space travel. (For any positive
1/λi, the smaller its value, the farther away the point zi is from the origin. What about for
negative case?)

6.2 Cell Complexes and Visible Hemispheres

A cell complex or simply a complex K in Rd is a finite set of polytopes in Rd such that

(a) If P ∈ K and F is a face of P , then F ∈ K.

(b) If P ∈ K and Q ∈ K, then P ∩Q is a common face of P and Q.

The dimension dimK of a complex K is the largest dimension of its members. A complex
of dimension d is called a d-complex. The body |K| of a complex K is the union of all
members of K. The boundary complex ∂K of a complex K is defined as the subcomplex of
K consisting of all elements in K contained in the boundary of its body.

The complex K(P) of a polytope P is the set of all faces of P . The boundary complex
∂K(P) is simply the set of all proper faces of P . Both the complex and the boundary
complex of a polytope are pure, i.e., the maximal members have the same dimension.

A pure complex K is called B-shellable if the maximal members can be arranged in a
sequence F1, F2, . . ., Fm in such a way that the subcomplex induced by (∪k−1

i=1Fi) ∩ Fk is
B-shellable for each 2 ≤ k ≤ m. By definition, the complex of a 0-polytope is B-shellable,
and those are the only B-shellable 0-complexes.

A pure complex K is called S-shellable if the maximal members can be arranged in a
sequence F1, F2, . . ., Fm in such a way that the subcomplex induced by (∪k−1

i=1Fi) ∩ Fk is
B-shellable (S-shellable, respectively) for each 2 ≤ k ≤ m − 1 (k = m). By definition,
the boundary complex of a 1-polytope is S-shellable, and those are the only S-shellable
0-complexes.

These notions B-shellability and S-shllability are motivated by topological notions of
balls and spheres. However, it should be observed that a B-shellable (S-shellable) complex is
not necessarily a ball (a sphere). For example, the complex consisting of three 1-polytopes
having a single vertex in common is B-shellable but not homeomorphic to a ball. We can
add extra conditions to B-shellability (S-shellability) to enforce the resulting complexes to
be topologically a ball (a sphere). The following is a combinatorial analogue of Theorem 6.1.

Theorem 6.2 The boundary complex ∂K(P) of a polytope is S-shellable.

Before presenting a proof, we will give a nice application of this theorem. We define the
Euler characteristic of a complex K as

χ(K) =
dimK∑

i=0

(−1)ifi(K), (6.1)

where fi(K) is the number of i-dimensional members of K. It is easy to see that, for any
two subcomplexes A and B of a complex, we have

χ(A ∪B) + χ(A ∩B) = χ(A) + χ(B). (6.2)

IP (Fukuda) v.2013-02-12 44

Theorem 6.3 (Euler’s Relation) The following statements hold.

(a) If K is B-shellable, χ(K) = 1.

(b) If K is S-shellable, χ(K) = 1 + (−1)dimK.

Proof. Both statements are obvious if dimK = 0. By induction, we assume that both
statements are true if dimK < d (≥ 1). First consider a B-shellable d-complex K. Since
K is B-shellable, its d-polytopes can be ordered F1, F2, . . ., Fm in such a way that the
subcomplex induced by (∪k−1

i=1Fi) ∩ Fk is B-shellable for each 2 ≤ k ≤ m. When m = 1,
clearly we have χ(K) = χ(∂K) + (−1)d. Since ∂K is S-shellable by Theorem 6.2 and has
dimension d− 1, the induction hypothesis implies

χ(K) = χ(∂K) + 1 = 1 + (−1)d−1 + (−1)d = 1.

Now we use the second induction on m. We assume that (a) is valid if fd(K) < m, and
then consider the case fd(K) = m. Since the subcomplex A induced by (∪m−1

i=1 Fi) is B-
shellable by the second induction, it satisfies (a). We denote by B the subcomplex induced
by Fm. By using the fact that the subcomplex C induced by (∪m−1

i=1 Fi)∩Fm is a B-shellable
(d− 1)-complex, by the first induction and (6.2), we have

χ(K) = χ(A) + χ(B)− χ(C) = 1 + 1− 1 = 1.

The remaining proof of (b) is straightforward as we already established (a). Let K be
a S-shellable d-complex. Then, its d-polytopes can be ordered F1, F2, . . . Fm such that
the subcomplex induced by (∪k−1

i=1Fi) ∩ Fk is B-shellable (S-shellable, respectively) for each
2 ≤ k ≤ m − 1 (k = m). Note that the subcomplex A induced by (∪m−1

i=1 Fi) is B-shellable
and satisfies (a). The subcomplex induced by Fm is also B-shellable and satisfies (a). The
subcomplex C induced by (∪m−1

i=1 Fi) ∩ Fm is a S-shellable (d − 1)-complex, by the first
induction and (6.2), we have

χ(K) = χ(A) + χ(B)− χ(C) = 1 + 1− (1− (−1)d−1) = 1 + (−1)d.

This completes the proof.

Of special interest are topological properties of visible and invisible hemispheres of a
polytope P . Please recall that for any point z in general position in Rd \ P , the union of
all facets of P is the visible hemisphere from z, denoted by vi(P, z). Similarly, we define the
invisible hemisphere from z, denoted by iv(P, z).

Theorem 6.4 Let P be a d-polytope in Rd for d ≥ 1 and let z be any point in general
position in Rd \ P . Then the two subcomplexes of K(P) induced by the visible hemisphere
vi(P, z) and the invisible hemisphere iv(P, z) from z are B-shellable.

Proof. We use induction on d. By inductive hypothesis, we assume that (*) the visible
hemisphere vi(P, z) and invisible hemisphere iv(P, z) from z induce B-shellable subcomplexes
when d < k, with k ≥ 2. The statement (*) is obvious for d = 1.

IP (Fukuda) v.2013-02-12 45

Now we try to show that (*) is true for d = k. We take an oriented line L through z
in general position which intersects the interior of P , and let z1, z2, . . . , zm be the distinct
intersections of L and the hyperplanes spanned by the facets F1, . . ., Fm. Without loss of
generality, the ordering is the one obtained by the space travel on L.

We first show that the visible hemisphere vi(P, z) induces a B-shellable subcomplex. The
point z is between zi and zi+1 for some 1 ≥ i < m. If i = 1, vi(P, z) = F1 and thus
obviously vi(P, z) induces a B-shellable subcomplex. We use induction again, on i, and
assume by induction hypothesis that vi(P, z) induces a B-shellable subcomplex for i < h
for some h ≥ 2. We consider the case i = h. Note that vi(P, z) = vi(P, zi) ∪ Fi, where
vi(P, zi) induces a B-shellable subcomplex by the inductive hypothesis. Now, we claim that
vi(P, zi) ∩ Fi induces a B-shellable (d − 2)-subcomplex. This is true because this set is in
fact the visible hemisphere vi(Fi, zi) from zi in the (d − 1)-dimensional space spanned by
Fi. Since Fi is a (d − 1)-ball and vi(P, zi) ∩ Fi induces a B-shellable subcomplex, vi(P, z)
induces a B-shellable subcomplex. Essentially the same argument shows that the invisible
hemisphere iv(P, z) induces a B-shellable subcomplex.

This completes the double induction proof.

Proof. (of Theorem 6.2) By definition, the boundary complex of any 1-polytope is S-
shellable. We assume by induction that ∂K(P) of any polytope of dimension k − 1 or less
is shellable. Consider any k-polytope P . Let F be a facet of P , and let z be a point from
which F is the only visible facet of P . This means that iv(P, z) is a subcomplex of ∂K(P)
induced by all facets of P except F . By Theorem 6.4, iv(P, z) is B-shellable. We claim that
any shelling ordering of iv(P, z) with F appended at the end is a shelling of iv(P, z). For
this, we only need to show that ∂K(F) is S-shellable. Since F has dimension k − 1, this
follows from the inductive hypothesis. This completes the proof.

6.3 Many Different Line Shellings

The proof of shellability of polytope boundaries using the notion of line shelling provides
many different ways to shell a polytope boundary. The choice of a line is restricted only
by the two conditions (1) it has to intersects with the interior of the polytope, (2) it must
intersects the hyperplanes spanned by the facets at distinct points.

Proposition 6.5 The boundary of every polytope admits a shelling F1, F2, . . ., Fm with any
one of the following prescribed conditions:

(a) both F1 and Fm can be prefixed arbitrarily.

(b) all facets incident to a given vertex can be ordered earlier than any other facets.

(c) all facets incident to a given vertex can be ordered later than any other facets.

IP (Fukuda) v.2013-02-12 46

7 McMullen’s Upper Bound Theorem

7.1 Cyclic Polytops and the Upper Bound Theorem

The moment curve in Rd is the image of the real space R by the function m(t) defined by

m(t) := (t, t2, t3, . . . , td)T . (7.1)

The function m(·) is thus a parametric representation of the moment curve.
A cyclic polytope is the convex hull of n (> d) distinct points on the moment curve,

that is, conv{m(t1), m(t2), . . . , m(tn)} for some t1 < t2 < · · · < tn. The following is a basic
property of the moment curve.

Proposition 7.1 Any (d + 1) distinct points on the moment curve m(t) are affinely inde-
pendent.

Proof. Suppose m(t1), m(t2), . . . , m(td+1) are affinely dependent for some t1 < t2 < · · · <
td+1. Them they must lie in some hyperplane, and thus there is a linear equation

a0 + a1x1 + a2x2 · · ·+ adxd = 0

is satisfied by all m(ti)’s. It follows that the polynomial equation

a0 + a1t
1 + a2t

2 · · ·+ adt
d = 0

is satisfied by (d+ 1) distinct values of t, which contradicts to the fundamental theorem of
algebra.

Proposition 7.1 implies that the cyclic polytope c(d, n) is a simplicial polytope and its
dual is a simple polytope.

As we will see that for any fixed d and n, its combinatorial structure is unique. Thus,
we will denote anyone of them by c(d, n), and their duals by c∗(d, n).

McMullen’s upper bound theorem is one of the most important theorems in the theory
of convex polytopes.

Theorem 7.2 (McMullen’s Upper Bound Theorem [38] (1970)) For any fixed d and
n, the maximum number of j-faces of a d-polytope with n vertices is attained by the cyclic
polytope c(d, n) for all j = 0, 1, . . . , d− 1. Equivalently, for any fixed d and n, the maximum
number of j-faces of a d-polytope with n facets is attained by the dual cyclic polytope c∗(d, n)
for all j = 0, 1, . . . , d− 1.

There is an explicit formula for fj(c(d, n)) for j = 0, 1, . . . , d − 1. The following gives
essentially a half of these formulas.

Lemma 7.3 For any d ≥ 0 and n ≥ d+ 1,

(a) fj−1(c(d, n)) =
(
n
j

)
, for 0 ≤ j ≤

⌊
d
2

⌋
.

(b) fk(c∗(d, n)) =
(

n
d−k

)
, for

⌈
d
2

⌉
≤ k ≤ d.

IP (Fukuda) v.2013-02-12 47

Proof. By duality, two statements (a) and (b) are equivalent. Let’s prove (a).
Consider the cyclic polytope P = conv{m(t1), m(t2), . . . , m(tn)} with t1 < t2 < · · · < tn.

Let 0 ≤ j ≤
⌊
d
2

⌋
. Take the first j points m(t1), m(t2), . . . , m(tj), and consider the hyperplane

h determined by

a0 + a1x1 + · · ·+ adxd = 0, (7.2)

where the coefficients ai’s coincide with those in the polynomial

p(t) :=a0 + a1t+ · · ·+ adt
d ≡ Πj

i=1(t− ti)
2. (7.3)

Note that the assumption j ≤
⌊
d
2

⌋
implies that the polynomial p(t) has degree at most d.

Observe that h contains all the points x(ti) for i = 1, . . . , j. Furthermore, the remaining
points x(ti) for i = j + 1, . . . , n are strictly on the positive side of the hyperplane. This
means that conv{x(t1), . . . , x(tj)} is a face of P . Since the above discussion works exactly
the same way if we take any j points, every j points from {m(t1), m(t2), . . . , m(tn)} determine
a (j − 1)-face.

Lemma 7.3 implies an interesting property of the cyclic polytope. Namely, if d ≥ 4, then
every pair of vertices forms an edge. This means that the graph of c(d, n) is a complete
graph for d ≥ 4. This is not very intuitive because this phenomenon does not occur in the
3-dimensional space.

The proof of Lemma 7.3 gives some ideas on how to determine the facets of c(d, n).
Which d-tuples of points from {m(t1), m(t2), . . . , m(tn)} span a facet? Since any d-tuple
{m(tj1), m(tj2), . . . , m(tjd)} is affinely independent and thus spans a hyperplane. Whether
or not it defines a facet is thus equivalent to whether or not all the remaining points are on
one side of the hyperplane. This turns out to be quite easy to check through a combinatorial
condition, known as Gale’s evenness condition.

Exercise 7.1 Find a necessary and sufficient condition for a set of d points m(tj1), m(tj2),
. . ., m(tjd)} to determine a facet of the cyclic polytope.

Lemma 7.3 gives essentially a half of the f -vector of the cyclic polytope. Yet, by using
the fact that it is simplicial, the remaining information on the f -vector will be shown to be
determined uniquely.

7.2 Simple Polytopes and h-vectors

To establish the Upper Bound Theorem, Theorem 7.2, we shall prove the dual statement:

For any fixed d and n, the maximum number of j-faces of a d-polytope with n
facets is attained by the dual cyclic polytope c∗(d, n) for all j = 0, 1, . . . , d− 1.

We have two basic steps. The first step is to show that it is sufficient to consider only
simple polytopes as maximizers of the number of j-faces, for a fixed number of facets. More
precisely, we have:

IP (Fukuda) v.2013-02-12 48

Theorem 7.4 For any d-polytope P with n facets in Rd, there exists a simple d-polytope P ′

with n facets such that fj(P) ≤ fj(P ′) for all j = 0, 1, . . . , d− 1.

Proof. We only have to argue that a small perturbation of each inequality defining P
does not decrease the number of j-faces. We leave the proof to the reader. Use Theorem 3.14
and analyze how a face changes as an inequality gets perturbed slightly toward enlarging
the polytope.

The second step is to show that among all simple d-polytopes with n facets, the dual
cyclic polytope c∗(d, n) maximizes the number of j-faces for all j = 0, 1, . . . , d− 1.

For the rest of this section,

(*) we only consider simple d-polytopes with n facets.

We denote by !(d, n) the set of all simple d-polytopes in Rd with n facets.
For any P ∈ !(d, n), consider a linear program cTx subject to x ∈ P . Assume that

c is generic and in particular, the LP orientation
−→
G(P) of the graph G(P) is well-defined,

namely,
−→
G(P) is a directed graph with the unique sink (maximizer) vertex and the unique

source (minimizer) vertex.

Now, we denote by hk(
−→
G (P)) the number of vertices of indegree k, for each k = 0, 1, . . . , d.

Clearly, h0(
−→
G (P)) = hd(

−→
G (P)) = 1. We shall eventually write hk(P) instead of hk(

−→
G (P)),

as we will see below that this number does not depend on c at all.

Lemma 7.5 For any polytope P ∈ !(d, n) and any generic c ∈ Rd, the value hk(
−→
G(P))

depends only on P , and in particular, it does not depend on c. Thus, it can be denoted as
hk(P).

Proof. Let P be a polytope P ∈ !(d, n) and take generic c ∈ Rd. We denote by (F, v) a
pair of a face F of P and a vertex v on F which is the unique sink on F . It is clear that the
number of such pairs (F, v) is the number of k-faces, fk(P).

Now, fix a vertex v of P and fix k. The number of such pairs (F, v) can be counted by
using Proposition 5.10. Namely, there are exactly

(
r
k

)
k-faces incident to v whose sink is v,

where r is the indegree of v in
−→
G(P). Now ranging v over all vertices, we have

d∑

r=0

hr(
−→
G (P))

(
r

k

)
= fk(P), for k = 0, 1, . . . , d. (7.4)

Now the system of linear equations can be written using a matrix and vectors as




(
0
0

) (
1
0

)
· · ·

(
d
0

)

0
(
1
1

) (
2
1

)
· · ·

(
d
1

)

0 0
. . . · · ·

...
0 0 0

(
k
k

)
· · ·

(
d
k

)

0 0 0 0
. . .

...
0 0 0 0 0 · · ·

(
d
d

)









h0

h1
...
hk
...
hd





=





f0
f1
...
fk
...
fd





. (7.5)

The matrix on the LHS is obviously nonsingular, because it is upper triangular and the
diagonal entries are all 1’s. This means that hj ’s are determined uniquely by fj ’s, and thus
hj’s are independent of c. This completes the proof.

IP (Fukuda) v.2013-02-12 49

There are different ways to solve the equation (7.5) in terms of the h-vector h(P) :=
(h0, h1, . . . , hd). The resulting formula for h in terms of f is given by

hi(P) =
d∑

k=0

(−1)k−i

(
k

i

)
fk(P), for i = 0, 1, . . . , d. (7.6)

This together with Lemma 7.3 provides us with simple explicit formulas for a half of the
h-vector of the dual cyclic polytope.

Lemma 7.6

hi(c
∗(d, n)) =

(
n− i− 1

d− i

)
, for i = 1d/22 , . . . , d. (7.7)

Proof. Substitute fk(P) in (7.6) with the explicit formula for fk(c∗(d, n)) in Lemma 7.3
(b). Exercise.

The remaining part of the h vector comes for free, as we observe that the h-vector is sym-
metric, namely, by the definition of hi,

hi(P) = hd−i(P), , for i = 0, 1, . . . , 3d/24 , (7.8)

where the RHS counts the LHS using the h-vector with the reversed orientation by the
vector −c. These equations, expressed in terms of f -vector via (7.6), are known as the
Dehn-Sommerville Relations.

Theorem 7.7 (The Dehn-Sommerville Relations) Every simple d-polytope P satisfies
the following equations.

d∑

k=i

(−1)k
(
k

i

)
fk(P) =

d∑

k=d−i

(−1)k−d

(
k

d− i

)
fk(P), for i = 0, 1, . . . , 3d/24 . (7.9)

More explicitly, the first two equations are

d∑

k=0

(−1)kfk(P) = fd(P) = 1, , (i.e. Euler’s Relation), (7.10)

− f1(P) + 2f2(P)− 3f3(P) + · · ·+ (−1)ddfd(P) = −fd−1(P) + dfd(P). (7.11)

The equation (7.5) shows that each fj is a nonnegative combination of hj’s. Therefore,
the following is a strengthening of the Upper Bound Theorem, saying that the h-vector is
component-wise maximized by the dual cyclic polytope.

Theorem 7.8 (A Strengthened Upper Bound Theorem) For any simple d-polytope
P with n facets the following inequalities hold.

hi(P) ≤ hi(c
∗(d, n)), for i = 0, 1, . . . , d. (7.12)

IP (Fukuda) v.2013-02-12 50

Proof. Let P be a simple d-polytope with n facets. The claimed inequalities are trivial
for i = 0 and i = d. By the symmetry of the h-vector, we only need to show

hi(P) ≤ hi(c
∗(d, n)) ≡

(
n− i− 1

d− i

)
, for i = 1d/22 , . . . , d.

We use induction on i but with decreasing values. Suppose the theorem is valid for i = k+1
(k < d), and consider the case i = k.

We claim two inequalities for h-vectors. First we observe that for any facet F of P and
for any i,

hi(F) ≤ hi+1(P). (7.13)

This is valid because we can select a generic c such that all the vertices in F take the object
value higher than any other vertices of P . Note that the values hi(F) and hi+1(P) are
invariant over choices of c. Secondly, we have

∑

F

hi(F) = (i+ 1)hi+1(P) + (d− i)hi(P). (7.14)

The summation in LHS is over all faces F of P . This equation can be verified once we
observe that every vertex of a face with indegree i in the face has indegree i or i+1 in P . If
it has indegree i in P , there are exactly (d − i) facets containing it that preserve the same
indegree. If it has indegree i + 1 in P , there are exactly (i + 1) facets containing it that
decrease its indegree by one.

Now we look at the inductive step for i = k. By the two inequalities (7.14) and (7.13),
we have

(k + 1)hk+1(P) + (d− k)hk(P) =
∑

F

hk(F) ≤ nhk+1(P). (7.15)

This implies

(d− k)hk(P) ≤ (n− k − 1)hk+1(P), or equivalently, (7.16)

hk(P) ≤
n− k − 1

d− k
hk+1(P). (7.17)

Now we use the inductive hypothesis for i = k + 1 to get

hk(P) ≤
n− k − 1

d− k
hk+1(P) ≤

n− k − 1

d− k

(
n− k − 2

d− k − 1

)
=

(
n− k − 1

d− k

)
. (7.18)

This completes the proof.

While the h-vector of the cyclic polytope is extremely simple, its f -vector is rather
complicated. The formula can be written explicitly using (7.5), (7.6) and (7.8). We here
present a formula for f0(c∗(d, n)) which is quite simple.

IP (Fukuda) v.2013-02-12 51

Theorem 7.9 The maximum number of vertices a d-polytope with n facets can have is
realized by the dual cyclic polytope and is

f0(c
∗(d, n)) =

(
n− 1d/22
n− d

)
+

(
n− 3d/24 − 1

n− d

)
. (7.19)

By duality, this number coincides with fd−1(c(d, n)).

Proof. Left to the reader. Hint: use the identity:
(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+ s

s

)
=

(
n + s+ 1

s

)
.

IP (Fukuda) v.2013-02-12 52

8 Basic Computations with Polyhedra

Consider a system of m linear inequalities in d variables

Ax ≤ b. (8.1)

An inequality Aix ≤ bi is called redundant in (8.1) if the set of solutions to (8.1) stays
unchanged when the inequality is removed from the system. An equivalent condition is that
there is no x satisfying Aix > bi and Ajx ≤ bj for all j (= i.

In this section, we study basic problems in polyhedral computation such as the following
two problems:

Problem 8.1 [Single H-Redundancy]
Input: A rational matrix A ∈ Qm×d, a rational vector b ∈ Qm and an index k ∈ [m] :=
{1, . . . , m}
Output: Yes if Akx ≤ bk is redundant in Ax ≤ b, No otherwise.

Problem 8.2 [H-Redundancy Removal]
Input: A rational matrix A ∈ Qm×d, a rational vector b ∈ Qm

Output: An equivalent subsystem of Ax ≤ b which is free of redundancies.

The second problem can be solved by solving the first problem for each inequalities, but
interestingly, one can do better than that by dynamically selecting the ordering of inequalities
to be processed.

The figure above illustrates the H-redundancy problem. The blue region is the feasible
region P = {x : Ax ≤ b}. The output of the computation is the set of inequalities indicated
in red that are essential in the H-representation. Often, the size of output is much smaller
than the size of input.

Naturally one can pose the same problems for V-polyhedra. It turns out that those
problems can be reduced to the H-redundancy problems. We will see that the H-redundancy
problems can be reduced further to the H-redundancy problems for the special case of H-
cones. These transformations are discussed in Section 8.4.

Here is a closely related problem that should be solved before the H-Redundancy Removal
is solved.

IP (Fukuda) v.2013-02-12 53

Problem 8.3 [H-Dimension]
Input: A rational matrix A ∈ Qm×d, a rational vector b ∈ Qm

Output: The dimension of the polyhedron P = {x : Ax ≤ b}.

A typical algorithm for this computes not only the dimension of P , but also a relative interior
point of P , see Section 8.3. One can then embed the polytope in a lower-dimensional space
so that P becomes full-dimensional.

These problems are much easier than other problems in polyhedral computation such as
the representation conversion between V- and H-representations and computing the volume
of a polytope. In fact, the problems discussed in this section are all polynomially solvable
in the size of input.

The main goal of this section is to present many algorithms which are not only polynomial-
time but also best possible in terms of the number of LP’s that must be solved, or of the
size of LP’s that must be solved when the number of LP’s to be solved is fixed.

For this purpose, we use the notion of LP complexity, where we count the number of
LP’s and their sizes as a complexity measure. This makes sense only when solving LP’s
dominates other computations such as solving systems of linear equations of sizes of same
order. This applies very well to all problems in this Section.

We denote by LP(d,m) the time necessary to solve any LP with d variables and m
inequality constraints: max cTx subject to Ax ≤ b, where A is m × d rational matrix.
We consider LP(d,m) is an upper bound time measured by big-oh O notation, such as
O(md3) or O(e

√
d logm). Unlike the usual way to measure the LP complexity using the binary

encoding length L of input, we simply ignore L. The main reason is that practically all of
implementations of LP algorithms depend hardly on L, but essentially and polynomially on
d and m. Further more, we are mostly interested in the case when m is much larger than d
and at least as large as 2d. This practical observation leads to that

Assumption 8.4 We assume that LP(d,m) satisfy the following assumptions.

(a) LP(d,m) = LP(d+ c1, m+ c2) for any constants c1 and c2.

(b) LP(d,m) is at least of order md2, that is, Ω(md2).

The first assumption is based on the fact that LP is solvable in a polynomial time. The
second assumption is based on the fact that solving a system of linear inequalities is at least
as hard as solving a system of linear equations of the same size (up to constant factor),
and the Gaussian elimination has Ω(md2) complexity. This second assumption will be used
throughout this chapter to argue that the time to solve a linear equality system or to compute
a rank of an m× d matrix is dominated by LP(d,m).

8.1 Single H-Redundancy Checking

Here we show that Problem 8.1 is linearly equivalent to the linear programming. The one
direction is rather obvious, that is, the Single H-redundancy checking can be done by a single
LP of the same size.

IP (Fukuda) v.2013-02-12 54

Proposition 8.5 Problem 8.1 has No answer if and only if the following LP with I = [m]:

Test(I, k): maximize Akx
subject to

Aix ≤ bi, ∀i ∈ I \ {k}
Akx ≤ bk + 1

(8.2)

has an optimal solution whose optimal value is strictly greater than bk.

Note that the reduction is not only polynomial but linear. Surprisingly, there is a linear
reduction from the linear programming (the linear feasibility) to the Single H-redundancy.

Proposition 8.6 The system Ax ≤ b is consistent if and only if a special case of Problem
8.1:

is the inequality x0 ≤ 0 redundant in Ax ≤ b x0 and x0 ≤ 0 (8.3)

has No answer.

Proof. Suppose the x0 ≤ 0 is redundant. This is equivalent to the statement that
there exists no (x, x0) such that Ax ≤ b x0 and x0 > 0. This in turn is equivalent to the
inconsistency of Ax ≤ b.

We have shown the linear equivalence of the Single H-redundancy checking and the
LP. This implies that any redundancy checking algorithm is at least as powerful as an LP
algorithm.

In the next section, we will see that removing all H-redundancies can be easier than
solving m LP’s of size (d,m) that takes time m×LP(d,m) if the system is highly redundant.

8.2 H-Redundancy Romoval

Here we discuss the problem of removing all redundancies from an H-representation of a
polyhedron, i.e., Problem 8.2.

We shall assume that the input of Problem 8.2 is “clean” in the sense that the underlying
polyhedron P = {x : Ax ≤ b} is full-dimensional and no inequality is a positive multiple of
another one. This assumption can be met if the preprocessing is done, namely, by embedding
the polyhedron in an appropriate subspace. This part will be discussed in Section 8.3.

As we have seen in Section 8.1, removing all redundancies can be done in m× LP(d,m)
time. Can one do better than this? Here we present an algorithm due to Clarkson [15] which
runs much faster than the naive algorithm when the number s of nonredundant inequalities
is small relative to m.

Let Ax ≤ b be an input system. We assume that a point z ∈ Qd is given satisfying
Az < b, an interior point of the feasible region P = {x : Ax ≤ b}. At the general stage of
the algorithm, we have already detected a row index set I such that the inequality Aix ≤ bi
is nonredundant for Ax ≤ b, for each i ∈ I. Let j be an row index which is not tested yet,
i.e. j ∈ [m] \ I. Clarkson’s algorithm either detects kth inequality is redundant or finds a
row index j ∈ [m] \ I such that Ajx ≤ bj is nonredundant.

IP (Fukuda) v.2013-02-12 55

procedure Clarkson(A,b,z,I,k)
begin

test whether Akx ≤ bk is redundant in AI∪{k}x ≤ bI∪{k}
by solving the LP Test(I ∪ {k}, k) with optimal solution x∗

if nonredundant then
(c1) return (1, RayShoot(A,b,z,x∗ − z)) //Returns an essential index

else
(c2) return (0, k) //Returns an redundant index

endif
end

Here, the procedure RayShoot(A,b,z,r) returns an index j of a facet-inducing hyperplane
{x : Ajx = bj} hit by the ray starting from z along the direction r. It can be easily
implemented by analyzing symbolically the ray starting from z + (ε, ε2, . . . , εd)T along the
direction r for sufficiently small ε > 0.

x*

k

z

x*

k

j
AI x ≤ bI AI x ≤ bI

Figure 8.1: Clarkson’s Algorithm: Left (k is redundant), Right(An essential j is found)

Exercise 8.1 Write a procedure RayShoot(A,b,z,r) following the specification above. It
should be specific enough to be implemented with high level computer languages like C and
C++.

Here is the complete algorithm to remove all redundancies. We assume that an interior
point z of P = {x : Ax ≤ b} is given.

procedure RedundacyRemovalClarkson(A,b,z)
begin

set I := ∅, J := [m]
repeat

select an index k from J

IP (Fukuda) v.2013-02-12 56

(α, j) =Clarkson(A,b,z,I,k)
if α = 1 then I := I ∪ {j} //Increment the essential set I
J := J \ {j}

until J = ∅
return I

end

Theorem 8.7 The complexity of Clarkson’s algorithm to find a minimal equivalent subsys-
tem of Ax ≤ b is m×LP(d, s) where s is the number of nonredundant constraints in Ax ≤ b.

Proof. At each step, Clarkson’s algorithm either finds an row index k to be a redundant
inequality row index or discovers a new row index j (= k for which Ajx ≤ bj is essential.
Since the size of an LP solved has d variables and at most s+ 1 constraints, the complexity
follows. Note that the complexity of a ray shooting is O(md). Since the number of ray
shooting is at most s, the total time O(smd) of ray shooting is dominated by m× LP(d, s).

8.3 Computing H-Dimension

It is often important to know the dimension of a polyhedron. When a polyhedron is a V-
polyhedron with representation, it is very easy to compute its dimension. More precisely, if
P is a V-polyhedron for some generator matrices d× s matrix V and d× t matrix R, i.e.,

P = {x : x = V λ+Rµ, 1Tλ = 1,λ ≥ 0, µ ≥ 0},

then the dimension of P is easily computable, namely by the formula,

dimP = rank

[
V R
1T 0T

]
− 1.

However, for an H-polyhedron
P = {x : Ax ≤ b}

its dimension is nontrivial to compute. Why nontrivial? It is simply because if one knows the
dimension, one can decide whether P is empty or not, that is the linear feasibility problem,
equivalent to LP. Then, the next question is how many LP’s one has to solve to determine
the dimension. Obviously, at least one. It is not hard to see that at most m LP’s is sufficient.

In this section, we show that one can compute the dimension by solving at most d LP’s.
As a byproduct, one also finds a point in the relative interior of P .

The first step is to try to find an interior point of P . If it is successful, the dimension is
of course d. One can easily see that the following LP will detect the full-dimensionality:

maximize x0

subject to
Ax+ 1x0 ≤ b,

x0 ≤ 1.

(8.4)

More precisely, we have three cases, depending on the outcome of the LP. Let x∗ be an
optimal solution and let x∗

0 be the optimal value.

IP (Fukuda) v.2013-02-12 57

Case 1: x∗
0 > 0 . In this case, an optimal solution x∗ is an interior point and dimP = d.

Case 2: x∗
0 < 0 . In this case, the polyhedron P is empty and dimP = −1.

Case 3: x∗
0 = 0 . In this case, the polyhedron P is neither full-dimensional nor empty.

In case 3, we must do more computation. For that, we can make use of a dual optimal
solution (s∗, t∗) for the dual LP:

minimize bT s + t
subject to

AT s = 0,
1T s + t = 1,

s ≥ 0, t ≥ 0.

(8.5)

By strong duality, the dual optimal value is zero. This means that s∗ cannot be totally zero.
Let I = {i : s∗i > 0}. By the complementary slackness, at any feasible solution (x, x0) with
x0 = 0 (i.e., at any solution x for Ax ≤ b), every inequality in AIx ≤ bI must be tight.
We might do even further. By Gaussian elimination, we can recognize all other inequalities
in Ax ≤ b that are forced to be equalities provided AIx = bI . Let us merge I with these
dependent equality indices, and call it Î. Now we are ready to solve another LP to find more
implicit equalities in the remaining system. For this, let C := Î, and D := [m] \ C, and set
up an LP:

maximize x0

subject to
ACx = bC ,
ADx +1x0 ≤ bD,

x0 ≤ 1.

(8.6)

At an optimal solution (x∗, x∗
0), there are only two cases because x∗ cannot be negative this

time. When x∗
0 > 0, the solution x∗ is a relative interior point, and the dimension of P is

easily computed. It is d minus the maximum number of independent equalities in AIx = bI .
When x∗

0 = 0, we do essentially the same thing as we did at the very first stage: use the
dual optimal solution to recognize implicit equalities in ADx ≤ bD. Then extend them
with possible dependent equalities. Another LP should be solved with extended C and its
complement D. Since every time an LP is solved, at least one independent implicit equality
is found. This shows that at most d LP’s will be solved until a relative interior point is
found. Thus we have:

Theorem 8.8 Problem 8.3 can be solved in d× LP(d,m) time.

Exercise 8.2 (Embedding a Polyhedron) Given a point z in the relative interior of P =
{Ax ≤ b}, explain a method to embed P to a lower dimensional space so that it is full-
dimensional there.

IP (Fukuda) v.2013-02-12 58

8.4 Reducing the Nonhomogeneous Case to the Homogeneous
Case

We define the homogenization of a system Ax ≤ b as the new system with one extra non-
negative variable x0,

Ax ≤ b x0 and x0 ≥ 0. (8.7)

Proposition 8.9 Let Ax ≤ b be a consistent system. An inequality Aix ≤ bi is redundant
in the system if and only if the corresponding inequality Aix ≤ bi x0 is redundant in the
homogenization.

Exercise 8.3 Prove the proposition above. Show that the assumption that Ax ≤ b being
consistent is necessary by providing a small example in which Aix ≤ bi is redundant in
Ax ≤ b but Aix ≤ bi x0 is nonredundant in the homogenization.

What we have shown above is that the H-redundancy removal for cones solves the more
general problem for polyhedra.

What about for a V-polyhedron? Can we reduce the redundancy removal for V-polyhedra
to the one for V-cones? Consider a V-polyhedron with generator pair (V,R) where V ∈ Qd×s

and R ∈ Qd×t:

PV (V,R) := {x : x = V λ +Rµ, 1Tλ = 1,λ ≥ 0, µ ≥ 0}.

Let vj denote the jth column of V , and rk denote the kth column of R. We say a generator
vj (rk) is redundant for PV (V,R) if removing vj from V (rk from R, respectively) does not
alter the polyhedron.

Proposition 8.10 For V ∈ Qd×s and R ∈ Qd×t, a generator vj (rk) is redundant for

PV (V,R) if and only if the corresponding generator

[
vj
1

]
(

[
rj
0

]
, respectively) is redundant in

the homogenization

CV (R̂) := {x : x = R̂µ, µ ≥ 0},where R̂ =

[
V R
1T 0T

]
.

Proof. The proof is straightforward. Left to the reader.

Now, we know that both the H-redundancy removal and the V-redundancy romoval
for cones are as powerful as those for polyhedra. Finally, we have the duality of H- and
V-redundancy removals which implies that an algorithm for one problem solves both.

Proposition 8.11 Let A ∈ Qm×d. Then, each inequality Aix ≤ 0 is redundant in Ax ≤ 0
if and only if the corresponding generator AT

i is redundant for CV (AT).

Proof. Let Aix ≤ 0 be redundant in Ax ≤ 0. This means there exists no x such that
Aix > 0 and Ajx ≤ 0 for all j (= i. By the Farkas Lemma (Exercise 3.4), this is equivalent
to the existence of µ ≥ 0 such that AT

i =
∑

j '=i A
T
j µj. This is equivalent to saying AT

i is
redundant for CV (AT). This completes the proof.

Exercise 8.4 (Dimensionality and Linearity) Given a point z in the relative interior of
CH(A) := {Ax ≤ 0}, explain a method to find a basis of the linearity space of CV (AT).

IP (Fukuda) v.2013-02-12 59

9 Polyhedral Representation Conversion

The Minkowski-Weyl Theorem, Theorem 3.9, shows that every convex polyhedron has two
representations, an H-representation and a V-representation. The associated problem of
computing a (minimal) V-representation from a H-representation or its converse is known
as the representation conversion problem for polyhedra.

One important characteristic of the representation conversion problem is that the size of
output is not easy to measure in terms of the size of input. For example, for a d-cube having
2d facets and 2d vertices, the H-to-V conversion has output whose size is exponential in the
input size and the V-to-H conversion has the output size very small relative to the input
size.

Given this diversity of output sizes, an ideal algorithm for the conversion problem must
be sensitive to the output size, as opposed to optimal for the worst-case output size of a
given input size. An algorithm is called output-polynomial if its running time is bounded by
a polynomial function of both the input size and the output size.

Also, we must take account of the memory footprint. Some algorithms need to store a
large amount of data in the memory, while others simply do not store anything except the
input data and a few more. We say an algorithm is compact if its space is bounded by a
polynomial function of the input size only.

One might call an algorithm ideal if it is both compact and output-polynomial. For
the representation conversion problem, there is no known output-polynomial algorithm in
general. However for the special cases of various nondegeneracy, compact output-polynomial
algorithms are known, typically based on the reverse-search paradigm, see Section 9.2.

9.1 Incremental Algorithms

In this section, we present a classical finite algorithm, known as the double description (DD)
method [40]. It can be also considered as a constructive proof of Minkowski’s Theorem, the
implication of (a) =⇒ (b) in the Minkowski-Weyl Theorem, Theorem 3.10. The algorithm
is not output-polynomial as it was shown by Bremner [10]. However, it is extremely useful
for certain representation conversion problems, in particular, for highly degenerate inputs.

Suppose that an m × d matrix A is given, and let C(A) = {x : Ax ≤ 0}. We call any
vector r ∈ C(A) a ray of C(A). The DD method is an incremental algorithm to construct a
d× n matrix R such that (A,R) is a DD pair.

Let K be a subset of the row indices {1, 2, . . . , m} of A and let AK denote the submatrix
of A consisting of rows indexed by K. Suppose we already found a generating matrix R for
C(AK), or equivalently (AK , R) is a DD pair. If A = AK , clearly we are done. Otherwise
we select any row index i not in K and try to construct a DD pair (AK+i, R′) using the
information of the DD pair (AK , R). Note that K + i is a simplified notation for K ∪ {i}.

Once this basic procedure is described, we have an algorithm to construct a generating
matrix R for C(A). This procedure can be easily understood geometrically and the reader
is strongly encouraged to draw some simple example in the three dimensional space.

IP (Fukuda) v.2013-02-12 60

The newly introduced inequality Ai x ≤ 0 partitions the space Rd into three parts:

H+
i = {x ∈ Rd : Ai x > 0}

H0
i = {x ∈ Rd : Ai x = 0}

H−
i = {x ∈ Rd : Ai x < 0}.

(9.1)

Let J be the set of column indices of R and let rj denote the jth column of R. The rays rj
(j ∈ J) are then partitioned into three parts:

J+ = {j ∈ J : rj ∈ H+
i }

J0 = {j ∈ J : rj ∈ H0
i }

J− = {j ∈ J : rj ∈ H−
i }.

(9.2)

We call the rays indexed by J+, J0, J− the positive, zero, negative rays with respect to i,
respectively. To construct a matrix R′ from R, we generate new |J+| × |J−| rays lying on
the ith hyperplane H0

i by taking an appropriate positive combination of each positive ray rj
and each negative ray rj′ and by discarding all positive rays.

The following lemma ensures that we have a DD pair (AK+i, R′), and provides the key
procedure for the most primitive version of the DD method.

Lemma 9.1 (Main Lemma for Double Description Method) Let (AK , R) be a DD
pair and let i be a row index of A not in K. Then the pair (AK+i, R′) is a DD pair,
where R′ is the d× |J ′| matrix with column vectors rj (j ∈ J ′) defined by

J ′ = J− ∪ J0 ∪ (J+ × J−), and

rjj′ = (Ai rj)rj′ − (Ai rj′)rj for each (j, j′) ∈ J+ × J−.

Proof. Let C = C(AK+i) and let C ′ be the cone generated by the matrix R′. We must
prove that C = C ′. By the construction, we have rjj′ ∈ C for all (j, j′) ∈ J+ × J− and
C ′ ⊂ C is clear.

Let x ∈ C. We shall show that x ∈ C ′ and hence C ⊆ C ′. Since x ∈ C, x is a nonnegative
combination of rj ’s over j ∈ J , i.e., there exist λj ≥ 0 for j ∈ J such that

x =
∑

j∈J

λjrj . (9.3)

If there is no positive λj with j ∈ J+ in the expression above then x ∈ C ′. Suppose there is
some k ∈ J+ with λk > 0. Since x ∈ C, we have Ai x ≤ 0. This together with (9.3) implies
that there is at least one h ∈ J− with λh > 0. Now by construction, hk ∈ J ′ and

rhk = (Ai rh)rk − (Ai rk)rh. (9.4)

By subtracting an appropriate positive multiple of (9.4) from (9.3), we obtain an expression
of x as a positive combination of some vectors rj (j ∈ J ′) with new coefficients λj where the
number of positive λj ’s with j ∈ J+ ∪ J− is strictly smaller than in the first expression. As
long as there is j ∈ J+ with positive λj, we can apply the same transformation. Thus we
must find in a finite number of steps an expression of x without using rj with j ∈ J+. This
proves x ∈ C ′, and hence C ⊆ C ′.

IP (Fukuda) v.2013-02-12 61

This algorithm can be used to prove Minkowski’s Theorem constructively.

Proof. (of Theorem 3.10) By Lemma 9.1, it is sufficient to show that one can find an
initial DD pair (AK , R) for some K. The trivial case is when K = ∅ and C(AK) = Rd. In
this case, the set of 2d vectors R = {e1,−e1, e2,−e2, . . . , ed,−ed} generates the space Rd by
their nonnegative combinations. (Actually, one can find d+ 1 vectors which positively span
Rd. How?) This completes the proof.
Here we write the DD method in procedural form.

procedure DoubleDescriptionMethod(A);
begin

Obtain any initial DD pair (AK , R)
while K (= {1, 2, . . . , m} do
begin

Select any index i from {1, 2, . . . , m} \K
Construct a DD pair (AK+i, R′) from (AK , R)

/* by using Lemma 9.1 */
R := R′ K := K + i;

end
Output R

end.

The DD method given here is very primitive, and the straightforward implementation is
not quite useful, because the size of J increases very fast and goes beyond any tractable
limit. One reason for this is that many (perhaps, most) vectors rjj′ the algorithm generates
(defined in Lemma 9.1), are unnecessary. To avoid generating redundant generators, we
store and update the adjacency of generators. Such a refinement can reduce the size of the
output drastically.

(AK, R) (AK+i, R')

New rays should be generated
only for adjacent pairs (,)

J -

J+

hi

Figure 9.1: The Double Description Algorithm

IP (Fukuda) v.2013-02-12 62

Figure 9.1 depicts a general step of adding the ith inequality with a refined double
description algorithm. The polytopes should be considered as a cut section of 4-dimensional
pointed cones with some hyperplane so that each vertex represents one dimensional extreme
ray starting from the origin.

Two generators are said to adjacent if the common set of active constraints is maximal
among all pairs of generators. This means that the line segment connecting a adjacent pair
meets the new hyperplane hi = {x : Aix = 0} at a point lying on a minimal face of the cone
C(AK+i). It is easy to see that such a point must be in any V-representation.

The double description algorithm at the ideal form not generating any redundant gener-
ators is still not easy to analyze. The main problem is that the size of a V-representation
of intermediate cone is not easy to estimate. The size also depends heavily on the insertion
order of constraints.

Here are somewhat surprising behaviors of the refined double desciption method with
respect to different insertion orders. In the figure below, the input is (the homogenized cone
of) a 15-dimensional polytope with 32 facets. The output is a list of 368 vertices. It is
important to note that the conversion is highly degenerate, meaning that the number of
active inequalities at each output vertex is much higher than the dimension.

We consider the five different orderings of the inequalities. The ordering lexmin is simply
sort the rows of A by lexicographic ordering, comparing the first component first, then the
second in case of tie, and the third, etc. The ordering maxcutoff (mincutoff)is a dynamic
ordering in which at each iteration the next inequality is selected to maximize (minimize)
the size |J+|. The lexmin is a sort of shelling ordering which appears to perfom the best
among all orderings tested.

20 22 24 26 28 30 32
Iteration

250

500

750

1000

1250

1500

Size INTERMEDIATE SIZES FOR CCP6

maxcutoff

mincutoff
random

lexmin

Figure 9.2: Comparison of Intermediate Sizes for a Degenerate Input

IP (Fukuda) v.2013-02-12 63

A more striking comparison is given below where the input is a 10-dimensional cross
polytope with 210 facets. The output is a list of 20 vertices. The highest peak is attained
by maxcutoff ordering, following by random and mincutoff. The ordering lexmin is the best
among all and the peak intermediate size is less than 30. Note that the graph of lexmin is
too low to see it in the figure below.

200 400 600 800 1000

5000

10000

15000

20000

25000

30000

Iteration

Size

Random

Maxcutoff

Mincutoff

Figure 9.3: Comparison of Intermediate Sizes for a Highly Degenrate Input

9.2 Pivoting Algorithms

One can design pivoting algorithms to visit all vertices of a convex polytope systematically.
The idea is quite simple. The graph of a convex polytope is connected, and in fact d-
connected if the polytope is d-dimensional, due to Balinski [7]. Thus, one can trace the
graph systematically until no new vertex can be found.

A polytope P and its graph (1-skeleton)

IP (Fukuda) v.2013-02-12 64

Historically, there are many pivoting algorithms proposed by Balinski [6], Murty [42], Dyer
and Proll [19], etc. The weakness of pivoting algorithms is that when the polytope is degen-
erate, i.e., non-simple, pivoting may not be able to trace the graph of a polytope efficiently.
Typical way to resolve degeneracy is a symbolic perturbation of constraints which may create
an exponentially large number of new extreme points. Under the nondegeneracy assumption
that the number of active constraints at each vertex is exactly d, the algorithm due to Dyer
and Proll [19] is an output-polynomial algorithm. Yet, it must store all visited vertices in
memory and thus is not a compact algorithm.

In this section, we present a compact output-polynomial algorithm for the nondegenerate
case, based on the reverse search technique due to Avis and Fukuda.

The main idea is to reverse the simplex method from the optimal vertex in all possible
ways. Here the objective function is set to any generic one so that the optimal vertex is
unique and no edge of the polytope is parallel to an objective contour.

!!

!$

"*

#"

$"

min x1 + x2 + x3

Also, another important thing is to make sure that the simplex algorithm is finite and selects
a next pivot uniquely at each vertex. This can be achieved, for example, by employing the
minimum index rule (Bland’s rule). Under these, the edges used by the refined simplex
method form a directed spanning tree of the graph G(P) of a polytope P rooted at the
optimal vertex. We will see that the resulting algorithm enumerates all f0 vertices in time
O(mdf0) and O(md)-space under nondegeneracy when the input H-polytope is given by m
inequalities in d variables. Thus, it is compact and output-polynomial.

For a formal description, let us define two functions. A finite local search f for a graph
G = (V,E) with a special node s ∈ V is a function: V \ {s} → V satisfying

(L1) {v, f(v)} ∈ E for each v ∈ V \ {s}, and

IP (Fukuda) v.2013-02-12 65

(L2) for each v ∈ V \ {s}, ∃k > 0 such that fk(v) = s.

For example, let P = {x ∈ Rd : A x ≤ b} be a simple polytope, and cTx be any generic
linear objective function. Let V be the set of all vertices of P , s the unique optimal, and f(v)
be the vertex adjacent to v selected by the simplex method which selects a pivot uniquely if
v is not the optimal vertex.

A adjacency oracle or simply A-oracle Adj for a graph G = (V,E) is a function (where δ
a upper bound for the maximum degree of G) satisfying:

(i) for each vertex v and each number k with 1 ≤ k ≤ δ the oracle returns Adj(v, k), a
vertex adjacent to v or extraneous null (null),

(ii) if Adj(v, k) = Adj(v, k′) (= 0 for some v ∈ V , k and k′, then k = k′,

(iii) for each vertex v, {Adj(v, k) : Adj(v, k) (= 0, 1 ≤ k ≤ δ} is exactly the set of vertices
adjacent to v.

For example, when P = {x ∈ Rd : A x ≤ b} is a simple polytope, let V be the set of all
vertices of P , δ be the number of nonbasic variables and Adj(v, k) be the vertex adjacent to
v obtained by pivoting on the kth nonbasic variable at v.

Now we are ready to describe a general reverse search algorithm to generate all vertices
of the underlying graph G assuming that the two functions f and Adj are given.

procedure ReverseSearch(Adj,δ,s,f);
v := s; j := 0; (* j: neighbor counter *)
repeat

while j < δ do
j := j + 1;

(r1) next := Adj(v, j);
if next (= null then

(r2) if f(next) = v then (* reverse traverse *)
v := next; j := 0
endif

endif
endwhile;
if v (= s then (* forward traverse *)

(f1) u := v; v := f(v);
(f2) j := 0; repeat j := j + 1 until Adj(v, j) = u (* restore j *)

endif
until v = s and j = δ

We can evaluate the complexity of reverse search above as follows. Below we denote by
t(f) and t(Adj) the time to evaluate the functions f and Adj, respectively.

Theorem 9.2 Suppose that a local search (G, s, f) is given by an A-oracle. Then the time
complexity of ReverseSearch is O(δ t(Adj)|V |+ t(f)|E|).

IP (Fukuda) v.2013-02-12 66

Proof. It is easy to see that the time complexity is determined by the total time spent
to execute the four lines (r1), (r2), (f1) and (f2). The first line (r1) is executed at most δ
times for each vertex, and the total time spent for (r1) is O(δ t(Adj)|V |). The line (r2) is
executed as many times as the degree deg(v) for each vertex v, and thus the total time for
(r2) is O(t(f)|E|). The third line (f1) is executed for each vertex v in V \ {s}, and hence the
total time for (f1) is O(t(f)(|V |− |S|)). Similarly, the total time for (f2) is O(δ t(Adj)(|V |)).
Since |V | ≤ |E|, by adding up the four time complexities above, we have the claimed result.

Corollary 9.3 Suppose that a local search (G, s, f) is given by an A-oracle. Then the time
complexity of ReverseSearch is O(δ (t(Adj) + t(f))|V |). In particular, if δ, t(f) and t(Adj)
are independent of the number |V | of vertices in G, then the time complexity is linear in the
output size |V |.

Proof. The claim follows immediately from Theorem 9.2 and the fact that 2|E| ≤ δ|V |.

One can improve the complexity of reverse search algorithms by exploiting special struc-
tures. We give the best known complexity of reverse search for the representation conversion
for convex polytopes without proof, see [4] for details.

Theorem 9.4 There is an implementation of reverse search algorithm to enumerate all
vertices of a nondegenerate H-polytope P = {x : Ax ≤ b} in time O(mdf0) and space O(md),
where A ∈ Qm×d, b ∈ Qm and f0 is the number of vertices of P . In particular, it is a compact
output-polynomial algorithm for nondegenerate inputs.

There are many applications of reverse search in geometry and combinatorics, see [5].
Finally, what is the difference between reverse search and depth-first search? The quick

answer is: reverse search is a memory-free search while depth-first search must store all nodes
visited so far to distinguish those vertices from the rest. In other words, reserve search is
depth-first search applied to a unique spanning tree of the graph defined by local search
function f .

9.3 Pivoting Algorithm vs Incremental Algorithm

• Pivoting algorithms, in particular the reverse search algorithm (lrs, lrslib [2]), work
well for high dimensional cases.

• Incremental algorithms work well for low (say, up to 12) dimensional cases and highly
degenerate cases. For example, the codes cdd/cddlib [22] and porta [13] are imple-
mented for highly degenerate cases and the code qhull [8] for low (up to 10) dimensional
cases.

• The reverse search algorithm seems to be the only method that scales very efficiently
in massively parallel environment.

• Various comparisons of representation conversion algorithms and implementations can
be found in the excellent article [3] by Avis, Bremner and Seidel.

IP (Fukuda) v.2013-02-12 67

10 Hyperplane Arrangements and Point Configurations

In Sections 5, 6 and 7, we studied the combinatorial structure of convex polytopes. In this
section, we look at not only polytopes but also the dissection of the whole space by a set of
hyperplanes which induces a polyhedral complex. Formally, it is known as an arragement of
hyperplanes and its dual structure is known as a configuration of points or vectors.

10.1 Cake Cutting

An intuitively appealing way to study the dissection of the plane by a set of lines is through
cake cutting. Just consider a round cake from above (i.e, a 2-dimensional disk), and try to
cut it by a knife a few times. With m straight cuts, how many pieces can one produce? Of
course, it depends on cut intersection patterns, as one can see in Figure 10.1.

Figure 10.1: Cake Cutting Problem

Let us denote by p2(m) the maximum number of pieces one can produce by m cuts in
2D. Clearly, p2(0) = 1 and p2(1) = 2. It is not hard to give an explicit formula for this by
looking at a simple recursive formula. We can easily see that if the mth cut intersects with
the previous m − 1 cuts at distinct points (in the interior of the cake), then it generates
additional m pieces. It is obvious that this is an upper bound of the number of pieces one
can generate.

2

3 m=4

IP (Fukuda) v.2013-02-12 68

Is this upper bound attainable? We argue that this is always attainable by placing
cuts properly. A 2D cake cutting with m cuts is defined to be nondegenerate if any two
distinct cuts intersect in the interior of the cake and no three distinct cuts have a common
intersection. For any m, nondegenerate cuts exist. Just place m cuts so that no two cuts
are parallel and no three cuts intersect. If some two cuts do not intersect in the interior of
the cake, just dilate the cake (centered at the origin) without changing the cut placements.
If the dilation is large enough, all intersections of the lines will be placed inside the cake.
Then, shrink the whole space so that the cake becomes the original size.

This observation leads to a simple recursion:

p2(m) = p2(m− 1) +m (10.1)

which implies

p2(m) = p2(0) + 1 + 2 + · · ·+m = 1 +
(m+ 1)m

2
. (10.2)

Now we go up to one higher dimension. The cake looks like a 3-dimensional ball, and we
try to cut out the largest number of pieces with m cuts. We now imagine how a “watermelon”
can be dissected into pieces by a knife into pieces, see Figure 10.2. (A cut does not go through
the center although the figure shows such a case.)

Figure 10.2: 3-Dimensional Cake Cutting Problem

Let us denote by p3(m) the maximum number of pieces one can produce by m cuts
in 3 dimension. Can one write a simple recursive formula for p3(m)? Yes, it is possible,
once one notices that the cut section at mth cut in the 3D cake could look like a 2D cake
cutting at (m− 1)st step, as long as the mth cut intersects with the previous (m− 1) cuts
at distinct lines. A key observation is that the number of 2D pieces at the cut section is
exactly the increment of the number of pieces by mth cut. Thus, when the mth cut section

IP (Fukuda) v.2013-02-12 69

is nondegenerate, the increment is largest and thus the observation leads to the recursion

p3(m) = p3(m− 1) + p2(m− 1) (10.3)

= p3(m− 1) + 1 +
m(m− 1)

2

= p3(0) +m+
m∑

i=1

i(i− 1)

2

= 1 +m+
1

2

(
m∑

i=1

i2 −
m∑

i=1

i

)

= 1 +m+
1

6
(m+ 1)

(
m+

1

2

)
m−

1

4
m(m+ 1). (10.4)

(Recall the identity:
m∑

i=1

i2 =
1

6
(m+ 1)(2m+ 1)m)

We have two explicit formulas, one for 2D (10.2) and the other for 3D (10.4). Can we guess
a general formula for pd(m)? Well, not quite easy to guess from what we have. But, it is
much easier once we rewrite the two equations in the following form:

p2(m) =

(
m

0

)
+

(
m

1

)
+

(
m

2

)

p3(m) =

(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

(
m

3

)
.

(10.5)

Exercise 10.1 Verify the correctness of the equations (10.5).

Now, we are ready to prove the general cake cutting theorem.

Theorem 10.1 The number pd(m) of the maximum number of pieces dissected from the
d-dimensional ball by m (hyperplane) cuts is given by

pd(m) =
d∑

i=0

(
m

i

)
. (10.6)

Proof. We prove the correctness of the formula and the fact that the the value is attained
by any nondegenerate cake cut, by induction on d. Here, we say a d-dimensional cake cutting
of a d-ball (cake) with m cuts is defined to be nondegenerate if any d distinct cuts intersect
in the interior of the cake and no (d + 1) distinct cuts have a common intersection. The
formula is correct for d = 2 and attained by any nondegenerate cutting. Consider any
unknown case d assuming that the formula is correct for any smaller dimension. First of all,
m = 0, the formula pd(m) is correct that is 1. Here we use second induction on m. Consider
any unknown case m assuming that the formula is correct for any smaller values of m. By
extending the recursion (10.3), we have

pd(m) = pd(m− 1) + pd−1(m− 1). (10.7)

IP (Fukuda) v.2013-02-12 70

By induction hypothesis, one can apply the formula to the RHS and we have:

pd(m) =

(
m− 1

0

)
+

(
m− 1

1

)
+ · · ·+

(
m− 1

d

)

+

(
m− 1

0

)
+ · · ·+

(
m− 1

d− 1

)
.

Finally, since
(
m−1
−1

)
= 0, the last equation above leads to

pd(m) =
d∑

k=0

((
m− 1

k

)
+

(
m− 1

k − 1

))

=
d∑

k=0

(
m

k

)
. (10.8)

This completes the proof.

10.2 Arrangements of Hyperplanes and Zonotopes

Cake cutting is a less formal way of presenting the mathematical notion of arrangements of
hyperplanes in Rd. A finite family A = {hi : i = 1, 2, . . . , m} of hyperplanes in Rd is called
an arrangement of hyperplanes.

h1

h2

h3

h4
h5

We are mostly interested in combinatorial structures underlying hyperplane arrange-
ments. For this, it is convenient to define the partition of the space Rd into three sets:

h+
i = {x : Ai x < bi}, (10.9)

h0
i = {x : Ai x = bi}, (10.10)

h−
i = {x : Ai x > bi}. (10.11)

IP (Fukuda) v.2013-02-12 71

h1

h2

h3

h4
h5

+−

−

−+ +
_

+

_

+

(0-0-+) (+++++)

(++++0)

There is a natural way to associate each point x in the space Rd with the sign vector
σ(x) ∈ {−, 0,+}m defined by:

σ(x)i =






+ if x ∈ h+
i

0 if x ∈ h0
i

− if x ∈ h−
i

i ∈ E.

The set of points with a given sign vector is a relatively open polyhedron, is called a open
face of the arrangement, and its topological closure is called a face of the arrangement. The
full dimensional faces are called the cells or regions of the arrangement. The set of all faces
forms a polyhedral complex, called the complex of the arrangement . One can represent the
facial incidence in the complex by a binary relation among sign vectors. For two sign vectors
X, Y ∈ {−, 0,+}m, we say X conforms to Y (denoted as X " Y) if i ∈ [m] and Xi (= 0
implies Xi = Yi. The poset σ(Rd) := {σ(x) : x ∈ Rd} ordered by conformal relation is
a combinatorial representation of the complex. This poset is the face poset F(A) of the
arrangement A.

The poset F(A) behaves nicely if all the hyperplanes contains the origin. An arrangement
of hyperplanes in which all its hyperplanes contain the origin 0 is called a central arrangement
of hyperplanes.

h1

h2

h3

0

h4

+
-

- + + -
-
+

For example, F(A) contains the zero vector 0 which is the unique smallest element. Also,
it is symmetric with respect to the origin: if a sign vector X is in F(A), its negative −X is
in F(A). By adding the artificial greatest element 1 of all 1’s to F(A), we obtain what we
call the face lattice F̂(A) of the central arrangement. We will see this lattice is isomorphic
to the lattice of a very special polytope.

IP (Fukuda) v.2013-02-12 72

Let A be a central arrangement of hyperplanes represented by a matrix A, i.e, hi =
{x : Ai x = 0}, ∀i = 1, . . . , m. Geometrically, it is convenient to look at the cut section
of the arrangement with the unit (d − 1)-sphere Sd−1 := {x ∈ Rd : ||x|| = 1}, where each
hyperplane becomes a (d−2)-sphere si := hi∩Sd−1. Thus, the cut section is an arrangement
of (d − 2)-spheres in the unit sphere Sd−1. The complex of the arrangement is essentially
represented in the sphere arrangement, namely, σ(Rd) = σ(Sd) ∪ {0}.

S1

S2

S4

S3

+
-

+ -

+
-

+-

(-+++)

(00++)

(-0++)

Consider the following H-polyhedron given by 2m inequalities:

PA = {x : yT A x ≤ 1, ∀ y ∈ {−1,+1}m}.

Theorem 10.2 Let A be a column full rank matrix representing a central arrangement A.
Then PA is a polytope, and the face lattice F̂(A) of A is isomorphic to the face lattice of the
polytope PA.

The central arrangement A and the polytope PA

The polar of the polytope PA is a very special polytope. In fact, it is a zonotope.

(PA)
∗ = conv{yTA ∈ Rd : y ∈ {−1,+1}m}

= {yTA ∈ Rd : y ∈ [−1,+1]m}

= L1 + L2 + · · ·+ Lm,

where each generator Li is the line segment [−Ai, Ai].

IP (Fukuda) v.2013-02-12 73

(PA)
*

10.3 Face Counting Formulas for Arrangements and Zonotopes

We denote by fk(A) the number of k-dimensional faces of an arrangement A of hyperplanes
in Rd. We assume all arrangements are central and thus can be seen as a sphere arrangement
in Sd−1.

S1

S2

S4

S3

+
-

+ -

+
-

+-

(-+++)

(00++)

(-0++)

With the sphere arrangement setting, it is not hard to relate any central arrangement of m
hyperpanes in Rd to a cake cutting. Let s0m be the last sphere in the arrangement. It is the
boundary of two hemispheres s+m := h+

m ∩ Sd−1 and s−m := h−
m ∩ Sd−1. The arrangement of

spheres restricted to one of the hemispheres is combinatorially equivalent to the cake cutting
of a d − 1-dimensional ball by m − 1 cuts. This observation together with Theorem 10.1
implies the following theorem.

Theorem 10.3 (Upper Bound Theorem for Arrangements) For any central arrange-
ment A of m hyperplanes in Rd,

fd(A) ≤ 2
d−1∑

i=0

(
m− 1

i

)
and f1(A) ≤ 2

(
m

d− 1

)
.

Note that if one restrict the arrangement to the unit sphere, the LHS expressions represent
fd−1(A ∩ Sd−1) and f0(A ∩ Sd−1).

Using the duality of arrangements and zonotopes, Theorem 10.3 implies the upper bound
theorem for zonotopes.

IP (Fukuda) v.2013-02-12 74

Theorem 10.4 (Upper Bound Theorem for Zonotopes) Let P be a d-dimensional zono-
tope given by m generators (m ≥ d). Then,

f0(P) ≤ 2
d−1∑

i=0

(
m− 1

i

)
and fd−1(P) ≤ 2

(
m

d− 1

)
.

For fixed d, both fd−1(P) and f0(P) are O(md−1).

10.4 A Point Configuration and the Associated Arrangement

A point configuration is a set P = {p1, p2, . . . , pn} of points in Rd. The relative locations of
the points with respect to an arbitrary hyperplane represent the underlying combinatorial
structure.

1

5

4

3
2

6

h

+

Let p̂i =

[
pi
1

]
be the lifted points in Rd+1, and the hyperplanes hi = {x : p̂Ti x = 0}. The

resulting arrangement A = {h1, . . . , hn} in Rd+1 encodes the combinatorial structure of P
nicely.

A open halfspace h+ is represented by the sign vector X ∈ {+,−, 0}n of a region in the
dual hyperplane arrangement with j ∈ X+ iff pj ∈ h+.

xd+1

4
h4 1 2

3

5
6

primal

x1

h

xd+1=1

(+,-,-,+,+,-)

h2

The partition ({1, 4, 5}, {2, 3, 6}) by the hyperplane h corresponds to the region (+,−,−,+,+,−).

IP (Fukuda) v.2013-02-12 75

10.4.1 Application: Largest Feasible Subsystem

Given an inconsistent linear inequality system Ax < b, find a subsystem that is consistent
and largest possible. In other words, try to remove as few inequalities as possible to make
it feasible.

1

2

5

4

3

-4

-3

-3

-2

-2

-3 -3

-4

-3

-4-3

-4

-5

-3

-5

6

-3

-4

-3

-2

This problem is known to be NP-hard. One must rely on some kind of enumeration or
approximation algorithms to solve this.

10.4.2 Applications: Best Separation of Points by a Hyperplane

Given two blue and red sets of points in Rd, find a (separation) hyperplane which is best
possible, i.e. the number of misclassified points is minimized.

This problem is NP-hard, and in fact, one can reduce this to the largest feasible subsystem
problem. The number of separations represents the underlying complexity of enumeration.

IP (Fukuda) v.2013-02-12 76

11 Computing with Arrangements and Zonotopes

As we learned in the previous section that central arrangements of hyperplanes and zono-
topes are essentially the same object mathematically. More specifically, if A(A) is a central
arrangement with an m×d representation matrix A, then its face lattice Â is anti-isomorphic
to the zonotope Z(A) generated by the line segments Li = [−Ai, Ai], j ∈ [m].

This duality implies that one can translate an algorithm for arrangements to an algorithm
for zonotopes. In particular, the following pairs of problems with input matrix A given are
equivalent.

Problem 11.1 Cell Enumeration for Arrangements/Vertex Enumeration for Zonotopes

(a) Generating all cells of A(A).

(b) Generating all vertices of Z(A).

Problem 11.2 Vertex Enumeration for Arrangements/Facet Enumeration for Zonotopes

(a) Generating all 1-faces (rays) of A(A).

(b) Generating all facets of Z(A).

Problem 11.3 Face Enumeration for Arrangements/Face Enumeration for Zonotopes

(a) Generating all faces of A(A).

(b) Generating all faces of Z(A).

There is a compact output-polynomial algorithm [5] due to Avis and Fukuda for Problem
11.1. Also, there is a worst-case optimal algorithm [20] due to Edelsbrunner, O’Rourke and
Seidel for Problem 11.1.

There is a output-polynomial algorithm [49] due to Seymour for Problem 11.2. No com-
pact output-polynomial algorithm is known for Problem 11.2. When input is nondegenerate,
Problem 11.2 has a trivial algorithm which is compact and output-polynomial, just go though
all
(

m
d−1

)
combinations. This suggests that when input is only “slightly” degenerate, the naive

algorithm might be practical.
The paper [27] shows that there is an output-polynomial algorithm to generate all faces

of A(A) from the list of cells. This means that together with the compact output-polynomial
algorithm [5] for Problem 11.1, Problem 11.3 can be solved by an output-polynomial algo-
rithm.

11.1 Cell Generation for Arrangements

Here we present the reverse search algorithm [5] which is the only compact output-polynomial
algorithm for generating all cells of an arrangement. By duality, this is a compact output-
polynomial algorithm for enumerating all vertices of a zonotope.

Let A be an arrangement of distinct hyperplanes {hi : i ∈ [m]} in Rd, where each
hyperplane is given by a linear equality hi = {x : Aix = bi}. The two sides of hi are

IP (Fukuda) v.2013-02-12 77

h+
i = {x : Aix ≥ bi} and h−

i = {x : Aix ≤ bi}. For each x ∈ Rd, the sign vector σ(x) of x is
the vector in {−, 0,+}m defined by

σ(x)i =






− if x ∈ h−
i

0 if x ∈ hi

+ if x ∈ h+
i

(i ∈ [m]).

Let VCELL be the set of sign vectors of points in Rd whose nonzero support is [m]. We can
identify each vector c in VCELL with the open cell (open d-face) of the arrangement defined
by {x : σ(x) = c}. For two cells c and c′, let sep(c, c′) be the set of separators of c and c′,
that is, the set of elements i in [m] such that ci and c′i have opposite signs. We say that two
cells c and c′ are adjacent in GCELL if they differ in only one component, or equivalently,
|sep(c, c′)| = 1. The following lemma is important.

Lemma 11.4 For any two distinct cells c and c′ in VCELL, there exists a cell c′′ which is
adjacent to c and sep(c, c′′) ⊂ sep(c, c′).

Proof. Let c and c′ be two distinct cells, and let x (x′) be a point in c (in c′, respectively)
in general position. Moving from x toward x′ on the line segment [x, x′], we encounter the
sequence of cells: co = c, c1, c2, . . . , ck = c′, and we can easily verify that c1 is adjacent to c
and sep(c, c1) ⊂ sep(c, c′).

Let us assume that V contains the cell c∗ of all +’s. Lemma 11.4 implies that for each cell
c different from c∗, there is a cell c′′ which is adjacent to c and sep(c∗, c′′) ⊂ sep(c∗, c). Let
us define fCELL(c) as such c′′ that is lexico-largest (i.e., the unique element in sep(c, c′′) is
smallest possible). Then, (GCELL, SCELL, fCELL) is a finite local search with SCELL = {c∗}.

Figure 11.1 describes the trace of the local search on a small example with d = 2 and
m = 4.

By reversing this local search, we obtain an algorithm to list all cells in an arrangement.
There are a few things to be explained for an implementation. First, we assumed that the
cell c∗ of all +’s is given, but we can pick up any cell c in the arrangement, and consider it as
the cell of all +’s since replacing some equality Aix = bi by −Aix = −bi does not essentially
change the arrangement. Note that one can obtain an initial cell by picking up any random
point in Rd and perturbing it if it lies on some hyperplanes.

Now, how can we realize ReverseSearch(AdjCELL,δCELL,SCELL,fCELL) in an efficient way?
First we can set δCELL = m and SCELL = {c∗}. For any cell c ∈ VCELL and k ∈ M , the
function AdjCELL(c, k) can be realized via solving an LP of the form

minimize (maximize) yk
subject to y = Ax− b,

yi ≥ 0 for all i (= k with ci = +,
yi ≤ 0 for all i (= k with ci = −,

(11.1)

where minimization (maximization) is chosen when ck = + (ck = −, respectively). The
function returns the adjacent cell c′ with sep(c, c′) = {k} if and only if LP (11.1) has a
feasible solution with negative (positive) objective value. The time t(AdjCELL) depends on
how an LP with d variables and m − 1 inequalities is solved. We denote this as a function
LP(d,m) of m and d, as we used this notation in Section 8.

IP (Fukuda) v.2013-02-12 78

1

2

3

4

1

2

3

4

++++

+−++

+++−

++−−

++−+

−+−+

−−−+−−++

−−+−

+−+−

Figure 11.1: An arrangement of hyperplanes and the trace of fCELL

There is a straightforward implementation of fCELL, which solves a sequence of LP’s
similar to (11.1) with objective functions y1, y2, y3, This means we may have to solve
O(m) LP’s in the worst case. Presently we don’t know how to implement it in a more
efficient manner.

Theorem 11.5 There is an implementation of ReverseSearch(AdjCELL, δCELL, SCELL, fCELL)
for the cell enumeration problem with time complexity O(m d LP(d,m)|VCELL|) and space
complexity O(m d).

Proof. To prove this, first we recall that Theorem 9.2 says, the time complexity of
ReverseSearch isO(δ t(Adj)|V |+t(f)|E|). As we remarked earlier, δCELL = m, t(AdjCELL) =
O(LP(d,m)), and t(fCELL) = O(m LP(d,m)). Since |ECELL| ≤ d |VCELL| holds for any
arrangement (see [27]), the claimed time complexity follows. The space complexity is clearly
same as the input size O(m d).

IP (Fukuda) v.2013-02-12 79

12 Minkowski Additions of Polytopes

A zonotope is a very special Minkowski sum of polytopes, namely, a Minkowski of line
segments. In this section, we study the complexity of Minkowski sums of polytopes P1, . . .,
Pk in Rd and some algorithms for computing Minkowski sums of polytopes.

+ =

There are three basic variations of the problem. When input is H-polytopes and output is
also H-polytope, Tiwary [50] has recently proved that the associated decision problem is NP-
hard for k = 2. Here the associated decision problem is to test whether a given H-polytope
P is the Minkowski sum of given H-polytopes P1, . . ., Pk. When input is V-polytopes and
output is H-polytope, the problem contains the representation conversion for polytopes as a
special case (k = 1) whose complexity is still unknown. The last case when both input and
output are V-polytopes is the only case for which an output-polynomial algorithm is known.

In this section, we present a compact output-polynomial algorithm for the last case. The
algorithm is a natural extension of (the dual form of) the reverse search algorithm given in
Section 11.1.

Faces, Minkowski Decomposition and Adjacency

For a polytope P and for any vector c ∈ Rd, the set of maximizers x of the inner product
cTx over P is denoted by S(P ; c). Thus each nonempty face of P is S(P ; c) for some c.
We denote by F (P) the set of faces of P , by Fi(P) the set of i-dimensional faces, and by
fi(P) the number of i-dimensional faces, for i = −1, 0, . . . , d, For each nonempty face F ,
the relatively open polyhedral cone of outer normals of P at F is denoted by N (F ;P).
Thus, c ∈ N (F ;P) if and only if F = S(P ; c). The normal fan N (P) of P is the cell
complex {N (F ;P)|F ∈ F (P)} whose body is Rd. If F is i-dimensional (i = 0, 1, . . . , d), the
normal cone N (F ;P) is (d− i)-dimensional. Thus the extreme points of P are in one-to-one
correspondence with the full dimensional faces (which we call the regions or cells) of the
complex.

Proposition 12.1 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + · · · + Pk.
Then a nonempty subset F of P is a face of P if and only if F = F1+F2+ · · ·+Fk for some
face Fi of Pi such that there exists c ∈ Rd (not depending on i) with Fi = S(Pi; c) for all i.
Furthermore, the decomposition F = F1 + F2 + · · ·+ Fk of any nonempty face F is unique.

Proof. The equivalence follows directly from the obvious relation [30, Lemma 2.1.4]

S(P1 + P2 + · · ·+ Pk; c) = S(P1; c) + S(P2; c) + · · ·+ S(Pk; c) for any c ∈ Rd.

IP (Fukuda) v.2013-02-12 80

For the uniqueness, let F be a nonempty face with F = S(P ; c) for some c and let F =
F1 + F2 + · · · + Fk be any decomposition. First, note that Fi ⊆ S(P;c) for all i, because
the value cTx for any x ∈ F is the sum of the maximum values cTxi subject to xi ∈ Pi for
i = 1, . . . , k, and thus if x ∈ F and x = x1 + x2 + · · · + xk for xi ∈ Fi, then xi ∈ S(Pi, c).
Now suppose there exists Fi properly contained in S(Pi; c). Let v be an extreme point of
S(Pi; c) not in Fi. Then there is a linear function wTx such that wTv is strictly greater than
any value attained by x ∈ Fi. Now let x∗ be any point attaining the maximum of wTx over
the polytope F1 + F2 + · · ·Fi−1 + Fi+1 + · · ·+ Fk. Clearly x∗ + v ∈ F but this point cannot
be in F1 + F2 + · · ·+ Fk, a contradiction. This proves the uniqueness.

We refer the unique decomposition F = F1 + F2 + · · ·+ Fk of a nonempty face F as the
Minkowski decomposition. Here, the dimension of F is at least as large as the dimension of
each Fi. Thus we have the following.

Corollary 12.2 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + · · · + Pk. A
vector v ∈ P is an extreme point of P if and only if v = v1 + v2 + · · ·+ vk for some extreme
point vi of Pi and there exists c ∈ Rd with {vi} = S(Pi; c) for all i.

For our algorithm to be presented in the next section, it is important to characterize the
adjacency of extreme points in P .

Corollary 12.3 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + · · · + Pk. A
subset E of P is an edge of P if and only if E = E1 +E2 + · · ·+Ek for some face Ei of Pi

such that dim(Ei) = 0 or 1 for each i and all faces Ei of dimension 1 are parallel, and there
exists c ∈ Rd with Ei = S(Pi; c) for all i.

The following variation of the above is useful for the algorithm to be presented. The
essential meaning is that the adjacency of extreme points is inherited from those of Minkowski
summands.

Proposition 12.4 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + · · · + Pk.
Let u and v be adjacent extreme points of P with the Minkowski decompositions: u = u1 +
u2 + · · ·+ uk and v = v1 + v2 + · · ·+ vk. Then ui and vi are either equal or adjacent in Pi

for each i.

Proof. Let u and v be adjacent extreme points. It is sufficient to show that [u, v] =
[u1, v1] + [u2, v2] + · · · + [uk, vk] and each [ui, vi] is a face of Pi. Let c ∈ Rd be such that
[u, v] = S(P ; c). Because [u, v] = S(P1; c) + S(P2; c) + · · ·+ S(Pk; c) and by the uniqueness
of decomposition of u and v, both uj and vj are in S(Pj, c), for all j. This implies that
[uj, vj] ⊆ S(Pj, c), for all j. On the other hand, one can easily see that in general [u, v] ⊆
[u1, v1] + [u2, v2] + · · ·+ [uk, vk]. The last two relations give [uj, vj] = S(Pj , c) for all j. This
completes the proof.

This proposition immediately provides a polynomial algorithm for listing all neighbors
of a given extreme point using linear programming.

IP (Fukuda) v.2013-02-12 81

12.1 Complexity of Minskowski Sums of V-Polytopes

The nontriviality of computing Minkowski sums of V-polytopes can be understood by how
the complexity of Minkowski sums varies from some instances to another. In particular, we
are most concerned with the complexity of sums in terms of the size of summands.

The first proposition shows that the vertex complexity of Minknowski sums is linearly
bounded by the vertex complexity of summand polytopes.

Proposition 12.5 (Linearly Bounded Minkowski-Addition) . For each k ≥ 2 and
d ≥ 2, there is an infinite family of Minkowski additions for which f0(P1 + P2 + · · ·+ Pk) ≤
f0(P1) + f0(P2) + · · ·+ f0(Pk).

Proof. Suppose k ≥ 2 and d ≥ 2. First pick up any d-polytope, say Q, with at least k
extreme points, and select k extreme points. For each jth selected extreme point vj, make a
new polytope Pj from Q by truncating only vj with one or more hyperplanes. Now we claim
that the number f0(P1 + P2 + · · · + Pk) ≤ f0(P1) + f0(P2) + · · · + f0(Pk). See Figure 12.1
for an example for k = 2, d = 3 and Q is a 3-cube. To see this, let v be an extreme point of
Pj for some fixed j. There are three cases. The first case is when v is an unselected one, i.e.
an extreme point of Q not selected. In this case, it can be an Minkowski summand of an
extreme point of P in a unique way, since any linear function maximized exactly at v over
Pj is maximized exactly at v over other Pi’s. The second case is when v is a newly created
vertex by the truncation of vj. Since it is obtained by the truncation of vj , any linear function
maximized exactly at v over Pj is maximized exactly at vj over other other Pi’s. The last
case is when v = vi for some i (= j. This case is essentially the same as the second case
where v contributes uniquely to a new extreme point with each truncation vertex of Pi. By
Corollary 12.2, every extreme point of Pj contributes at most once to f0(P1+P2+ · · ·+Pk).
This completes the proof.

+ =

Figure 12.1: Minkowski Sum of Truncated Cubes

The following theorem gives the other extreme to the previous proposition. Namely, the
obvious upper bound of the vertex complexity can be achieved for a large class of Minkowski
sums of polytopes.

IP (Fukuda) v.2013-02-12 82

Theorem 12.6 (Tight Upper Bound [28]) .
In dimension d ≥ 3, it is possible to choose k (≤ d − 1) polytopes P1, . . . , Pk so that the
trivial upper bound for the number of vertices is attained by their Minkowski sum.

f0(P1 + P2 + · · ·+ Pk) = f0(P1)× f0(P2)× · · ·× f0(Pk).

Proof. Here we give outline only, see [28] for a precise construction. On k (≤ d − 1)
orthogonal planes in Rd, place vi points in convex position. Perturb the points slightly to
make each Pi full dimensional. Figure 12.2 shows the case when f0(P1) = f0(P2) = 4 and
f0(P) = f0(P1)× f0(P2) = 16

+ =

Figure 12.2: Minkowski Sum of (d− 1) Thin Polytopes in Orthogonal Spaces

12.2 Extension of a Zonotope Construction Algorithm

We assume in this section that P1, P2, ..., Pk are polytopes in Rd given by the sets V1,
V2, ..., Vk of extreme points. We also assume that the graph G(Pj) of Pj is given by the
adjacency list (Adjj(v, i) : i = 1, . . . , δj) of vertices adjacent to vertex v ∈ Vj in graph G(Pj),
where δj is the maximum degree of G(Pj) for each j = 1, . . . , k. If the degree degj(v) of
v is less than δj in G(Pj), we assume that Adjj(v, i) = null for all i > degj(v). Finally
we define δ = δ1 + δ2 + · · · + δk, an upper bound of the maximum degree of G(P), due to
Proposition 12.4. For example, when the input polytopes are simple and full dimensional
then δj = d for all j and δ = k d. Note that for a given set Vj, one can compute the adjacency
list in polynomial time using linear programming.

Recall that the Minkowski addition problem is to compute the set V of extreme points of
P = P1+P2+ · · ·+Pk. We shall present a compact polynomial algorithm for the Minkowski
addition problem.

The key idea in our algorithm design

The main algorithmic idea is quite simple. Just like for the vertex enumeration for convex
polyhedra using reverse search given in Section 9.2, it traces a directed spanning tree T of
the graph G(P) of P rooted at an initial extreme point v∗. The difference from the vertex
enumeration algorithm is that the polytope P is not given by a system of inequalities (i.e.
not an H-polytope) in the present setting but as a Minkowski-addition of V-polytopes. Thus

IP (Fukuda) v.2013-02-12 83

we need to introduce a new way of defining a directed spanning tree that is easy to trace.
We shall use the following simple geometric property of normal fans.

Proposition 12.7 Let v and v′ be two distinct extreme points of P , and let c ∈ N (v;P)
and c′ ∈ N (v′;P). Then there exists an extreme point v′′ adjacent to v such that N (v′′;P)
contains a point of form (1− θ)c + θc′ for some 0 ≤ θ ≤ 1.

Proof. Since v (= v′, their outer normal cones are two distinct full dimensional cones
in the normal fan N (P). This means that the parameterized point t(θ) := c + θ(c′ − c)
(0 ≤ θ ≤ 1) in the line segment [c, c′] must leave at least one of the bounding halfspaces of
the first cone N (v;P) as θ increases from 0 to 1. Since the bounding halfspaces of N (v;P)
are in one-to-one correspondence with the edges of G incident to v, any one of the halfspaces
violated first corresponds to a vertex v′′ adjacent to v claimed by the proposition.

Let us fix v∗ as an initial extreme point of P . Finding one extreme point of P is easy.
Just select any generic c ∈ Rd, and find the unique maximizer extreme point vi of cTx over
Pi, for each i. The point v = v1 + v2 + · · ·+ vk is an extreme point of P .

Now we construct a directed spanning tree of G(P) rooted at v∗ as follows. Let v ∈ V
be any vertex different from v∗. We assume for the moment that there is some canonical
way to select an interior point of the normal cone of P at any given vertex, as we shall give
one method to determine such a point later. Let c and c∗ be the canonical vector of N (v;P)
and N (v∗;P), respectively. By Proposition 12.7, by setting v′ = v∗, we know that there
is a vertex v′′ adjacent to v such that N (v′′;P) meets the segment [c, c∗]. In general there
might be several such vertices v′′ (degeneracy). We break ties by the standard symbolic
perturbation of c as c + (ε1, ε2, . . . , εd)T for sufficiently small ε > 0. Define the mapping
f : V \ {v∗} → V as f(v) = v′′. This mapping, called a local search function in reverse
search, determines the directed spanning tree T (f) = (V,E(f)) rooted at v∗, where E(f) is
the set of directed edges {(v, f(v))|v ∈ V \ {v∗}}.

Proposition 12.8 The digraph T (f) is a spanning tree of G(P) (as undirected graph) and
v∗ is a unique sink node of T (f).

Proof. By the construction, v∗ is a unique sink node of T (f). It is sufficient to show that
T (f) has no directed cycle. For this, take any edge (v, v′′ = f(v)) ∈ E(f). Let c, c∗ be the
canonical vector for v, v∗, respectively. Without loss of generality, we assume nondegeneracy,
since one can replace c with the perturbed vector c + (ε1, ε2, . . . , εd)T . Since c is an interior
point of N (v;P),

cT (v − v′′) > 0. (12.1)

Again, by the construction and because the canonical points are selected as interior points of
the associated normal cones, there exists 0 < θ < 1 such that ĉ := (1− θ)c+ θc∗ ∈ N (v′′;P).
This implies ĉT (v′′ − v) > 0, that is,

0 < ((1− θ)c + θc∗)T (v′′ − v)

= (1− θ)cT (v′′ − v) + θ(c∗)T (v′′ − v)

< θ(c∗)T (v′′ − v) (by (12.1)) .

IP (Fukuda) v.2013-02-12 84

This implies that the vertex v′′ attains a strictly higher inner product with c∗ than v. There-
fore, there is no directed cycle in T (f).

Figure 12.3 shows an example of the directed spanning tree T (f) in green.

v* v*

Figure 12.3: The Graph G(P) and A Rooted Spanning Tree T (f)

A reverse search algorithm, to be presented below, traces reversely the tree from the root
v∗ in depth-first manner, using an adjacency oracle.

The critical computation in our algorithm is solving a linear programming problem. We
denote by LP(d,m) the time, as we used in Section 8. necessary to solve a linear programming
in d variables and m inequalities.

Now we can state the complexity of our algorithm.

Theorem 12.9 There is a compact polynomial algorithm for the Minkowski addition of k
polytopes that runs in time O(δ LP(d, δ)f0(P)) and space linear in the input size.

The algorithm

The sequel of the section is devoted to present the technical details of a reverse search
algorithm that traces T (f) starting from its root vertex v∗ against the orientation of edges.
We shall prove Theorem 12.9 at the end.

As usual, our reverse search algorithm requires, in addition to the local search function
f , an adjacency oracle function that implicitly determines the graph G(P).

Let v be any vertex of P with the Minkowski decomposition v = v1 + v2 + · · ·+ vk (see,
Corollary ??). Let

∆ = {(j, i) : j = 1, . . . , k and i = 1, . . . , δj}. (12.2)

Recall that for any (j, i) ∈ ∆, Adjj(vj, i) is the ith vertex adjacent to vj whenever it is not
null . We shall call a pair (j, i) valid for v if Adjj(vj , i) (= null , and invalid otherwise. Let
us define the associated edge vectors ej (vj , i) by

ej (vj , i) =

{
Adjj(vj, i)− vj (j, i) is valid for v

null otherwise.
(12.3)

IP (Fukuda) v.2013-02-12 85

Proposition 12.4 shows that all edges of P incident to v are coming from the edges incident
to vj ’s, or more precisely, each edge of P incident to v is parallel to some ej (vj , i). This
immediately implies that δ is an obvious upper bound of the degree of v. For each (s, r) ∈ ∆,
let us group the same (parallel) directions together as

∆(v, s, r) = {(j, i) ∈ ∆ : ej (vj , i) ‖ es(vs , r)}. (12.4)

Consider it as the empty set if (s, r) is invalid. Now, for any given pair (s, r) ∈ ∆, checking
whether es(vs , r) determines an edge direction of P is easily reducible to an LP (or more
precisely, a linear feasibility problem):

es(vs , r)Tλ < 0,
ej (vj , i)Tλ ≥ 0 for all valid (j, i) (∈ ∆(v, s, r).

(12.5)

More precisely, the system (12.5) has a solution λ if and only if the direction es(vs , r)
determines an edge of P incident to v. If it has a feasible solution, then by Proposition 12.4,
the vertex v̂ adjacent to v along this direction is given by

v̂ = v̂1 + v̂2 + · · ·+ v̂k

v̂j =

{
Adjj(vj , i) if there exists i such that (j, i) ∈ ∆(v, s, r)

vj otherwise.

Let us denote by ∆(v) as the set of all pairs (s, r) ∈ ∆ such that es(vs , r) determines an edge
of P and (s, r) is a member of ∆(v, s, r) with the smallest first index. This set represents a
duplication-free index set of all edge directions at v.

Now we are ready to define our adjacency oracle as a function Adj : V ×∆ → V ∪{null}
such that

Adj(v, (s, r)) =

{
v̂ if (s, r) ∈ ∆(v)

null otherwise.
(12.6)

Lemma 12.10 One can evaluate the adjacency oracle Adj(v, (s, r)) in time LP(d, δ).

Proof. The essential part of the evaluation is solving the system (12.5). Since δ = |∆|,
the system has d variables and at most δ inequalities and the claim follows.

Lemma 12.11 There is an implementation of the local search function f(v) with evaluation
time O(LP(d, δ)), for each v ∈ V \{v∗} with the Minkowski decomposition v = v1+v2+· · ·+vk.

Proof. The implementation of f essentially depends on how we define the canonical
vector of the normal cone N (v;P). Like in the adjacency oracle implementation, we use
an LP formulation. Since the set of directions ej (v , i) for valid (j, i) ∈ ∆ include all edge
directions at v, the normal cone N (v;P) is the set of solutions λ to the system

ej (vj , i)Tλ ≤ 0 for all valid (j, i) ∈ ∆.

Since we need an interior point of the cone, we formulate the following LP:

max λ0

subject to
ej (vj , i)Tλ + λ0 ≤ 0 for all valid (j, i) ∈ ∆

λ0 ≤ K.

(12.7)

IP (Fukuda) v.2013-02-12 86

HereK is any positive constant. Since v is a vertex of P , this LP has an optimal solution. We
still need to define a unique optimal solution. For this, we use a very pragmatic definition: fix
one deterministic algorithm and define the canonical vector as the unique solution returned
by the algorithm. Since the number of variables is d + 1 and the number of inequalities is
at most δ + 1, the assumptions on LP implies the time complexity O(LP(d, δ)) to compute
the canonical vector. Note that for practical purposes, we should probably add bounding
inequalities for λ to the LP (12.7) such as −1 ≤ λi ≤ 1 for all i to make sure that the optimal
solution stays in a reasonable range. This does not change the complexity.

An execution of f requires to compute the canonical vectors c and c∗. Once they are
computed, the remaining part is to determine the first bounding hyperplane of the normal
cone N (v;P) hit by the oriented line t(θ) := c+ θ(c∗ − c) (as θ increases from 0 to 1). This
amounts to solving at most δ one-variable equations, and is dominated by the canonical
vector computation.

In Figure 12.4, we present the resulting reverse search algorithm, where we assume that
the δ index pairs (j, i) in ∆ are ordered as (1, 1) < (1, 2) < · · · < (1, δ1) < (2, 1) < · · · <
(k, δk).

procedure MinkowskiAddition(Adj,(δ1, . . . , δk), v∗,f);
v := v∗; (j, i) := (1, 0); (* (j, i): neighbor counter *)
output v;
repeat

while (j, i) < (k, δk) do
increment (j, i) by one;

(r1) next := Adj(v, (j, i));
if next (= null then

(r2) if f(next) = v then (* reverse traverse *)
v := next;(j, i) := (1, 0);
output v

endif
endif

endwhile;
if v (= v∗ then (* forward traverse *)

(f1) u := v; v := f(v);
(f2) restore (j, i) such that Adj(v, (j, i)) = u

endif
until v = v∗ and (j, i) = (k, δk).

Figure 12.4: Reverse Search Algorithm for Minkowski Sum

Finally, we are ready to prove the main theorem, Theorem 12.9.

Proof. We use the general complexity result, Corollary 9.3, saying the time complexity
of the reverse search in Figure 12.4 is O(δ(t(Adj) + t(f))|V |). By Lemma 12.10 and Lemma
12.11, both t(Adj) and t(f) can be replaced by LP(d, δ). Since f0(P) = |V |, the claimed

IP (Fukuda) v.2013-02-12 87

time complexity follows. The space complexity is dominated by those of the functions f and
Adj which are clearly linear in the input size.

IP (Fukuda) v.2013-02-12 88

13 Problem Reductions in Polyhedral Computation

In this section, we look at some basic problems in polyhedral computation. Just like in
combinatorial optimization, it is quite hard to distinguish hard problems (typically NP-hard
problems) from easy problems. Here there are two sorts of easy problems. The first group
consists of decision problems that are polynomially solvable. The second group consists of
enumeration problems that may require output whose size is exponential in the input size,
but are output-polynomially solvable.

We shall present some hard decision problems in Section 13.1, and discuss some hard
enumeration problems in Section 13.2.

13.1 Hard Decision Problems in Polyhedral Computation

We start with two decision problems in polyhedral computation that are related to linear
programming but are known to be hard.

For A ∈ Qm×d and b ∈ Qm, let PH(A, b) be the H-polyhedron

PH(A, b) := {x ∈ Rd : Ax ≤ b}, (13.1)

and let A(A, b) be the associated arrangement of hyperplanes:

A(A, b) := {h1, . . . , hm}, (13.2)

hi := {x ∈ Rd : Aix ≤ bi}. (13.3)

Problem 13.1 Optimal Vertex of a Polyhedron (OVP)

• Input: A ∈ Qm×d, b ∈ Qm, c ∈ Qd and K ∈ Q.

• Question: Does there exists a vertex v of PH(A, b) with cTv ≥ K?

Problem 13.2 K-Vertex of a Polyhedron (KVP

• Input: A ∈ Qm×d, b ∈ Qm, c ∈ Qd and K ∈ Q.

• Question: Does there exists a vertex v of PH(A, b) with cTv = K?

Theorem 13.3 ([26]) The decision problems OVP and KVP are both NP-complete.

Proof. It is clear that both problems are in the class NP. The proofs of the NP-
completeness will be obtained by a polynomial time transformation from the following prob-
lem, known to be NP-complete in the strong sense [29]:

Problem 13.4 Directed Hamiltonian Path (DHP)

• Input: A directed graph G = (V,A) and two distinct vertices s, t ∈ V .

• Question: Does G contain a directed Hamiltonian path from s to t ?

IP (Fukuda) v.2013-02-12 89

Let G = (V,A) be a directed graph and s (= t ∈ V . Associate a variable xij with each
arc (i, j) ∈ A. Let P (G) be the polytope given by:

∑

j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji = 0, for each i ∈ V − {s, t}, (13.4)

∑

j|(s,j)∈A

xsj −
∑

j|(j,s)∈A

xjs = 1, (13.5)

∑

j|(t,j)∈A

xtj −
∑

j|(j,t)∈A

xjt = −1, (13.6)

xij ≥ 0, for each (i, j) ∈ A. (13.7)

The matrix of the coefficients of these inequalities is totally unimodular ([43], Proposition
2.6, p. 542) implying that P (G) is integral. It follows that an extreme point x of P (G) is
the characteristic vector of a directed path joining s to t in G and, possibly, a set of circuits.
If a circuit C exists, then x is a convex combination of the two points obtained by adding
or subtracting small ε > 0 on all the arcs of the circuit, a contradiction. Hence x is the
characteristic vector of a simple directed path joining s to t. One verify easily that all such
paths are extreme points of P (G), proving that the extreme points of P (G) are exactly the
characteristic vectors of the simple directed paths joining s to t in G. These two facts thus
imply that, for K = |V | − 1 and c = 1 (the vector of all 1’s), both the OVP and the KVP
problems for P (G) are NP-complete in the strong sense. This completes the proof.

There are similar complexity results for arrangements of hyperplanes.

Problem 13.5 Optimal Vertex of an Arrangement (OVA)

• Input: A ∈ Qm×d, b ∈ Qm, c ∈ Qd and K ∈ Q.

• Question: Does there exists a vertex v of A(A, b) with cTv ≥ K?

Problem 13.6 Optimal Vertex of an Arrangement (KVA)

• Input: A ∈ Qm×d, b ∈ Qm, c ∈ Qd and K ∈ Q.

• Question: Does there exists a vertex v of A(A, b) with cTv = K?

Theorem 13.7 ([26]) The decision problems OVA and KVA are both NP-complete.

Proof. Consider an instance of DHP and build a corresponding instance for OVA and
KVA as follows: To each arc (i, j) ∈ A, we associate a variable xij . Let d := |A|, K := |V |−1,
c = 1 and define the arrangement generated by the following set of hyperplanes:

IP (Fukuda) v.2013-02-12 90

Hi := {x ∈ Rd|
∑

j|(i,j)∈A

xij −
∑

j|(j,i)∈A

xji = 0}, for each i ∈ V − {s, t}, (13.8)

Hs := {x ∈ Rd|
∑

j|(s,j)∈A

xsj −
∑

j|(j,s)∈A

xjs = 1}, (13.9)

Ht := {x ∈ Rd|
∑

j|(t,j)∈A

xtj −
∑

j|(j,t)∈A

xjt = −1}, (13.10)

Hij := {x ∈ Rd| xij = 0}, for each (i, j) ∈ A. (13.11)

First we observe that if DHP has a “yes” answer, so does the corresponding instance of
OVA and KVA, as the characteristic vector of any directed Hamiltonian path lies on the |V |
hyperplanes Hi for i ∈ V as well as on (|A|−(|V |−1)) = |A|− |V |+1 of the hyperplanes Hij

for i (= j ∈ V . Note that the |V | hyperplanes Hi for i ∈ V are not linearly independent, but
any subset of (|V |−1) of them are. Hence there are (|A|− |V |+1)+ (|V |−1) = |A| linearly
independent hyperplanes containing the characteristic vector of any directed Hamiltonian
path joining s to t in G, implying that the latter is a vertex of the given arrangement.

Now suppose that KVA or OVA has a “yes” answer produced by a vertex v of the con-
structed instance. One can write the |A| equations defining the hyperplanes of the instance
as a system of the form Ax = b. It is well known that the matrix [A, b] is totally unimodular
(see [43] for example). Thus any vertex of the arrangement has only +1,−1, or 0 coordinates,
as shown by Cramer’s rule for solving a linear system.

Let S be a set of n linearly independent hyperplanes of the given family whose intersection
is v. As the |V | hyperplanes in {Hi|i ∈ V } are not linearly independent, the number of these
hyperplanes which are in S is at most (|V |− 1). Hence the number of non zero coordinates
of v is at most (|V |− 1). As c = 1 and cTv ≥ K = (|V |− 1), we have that exactly (|V |− 1)
coordinates of v are (+1), all the others being (0)’s. Thus v is the characteristic vector of a
set P of (|V | − 1) arcs of A. This also implies that KVA has a “yes” answer if and only if
OVA has a “yes” answer

If P is a directed Hamiltonian path in G joining s to t, then we are done. Otherwise, P
contains a directed path joining s to t in G and at least one directed cycle C. But consider
v′ ∈ Rn defined by

v′ij =

{
0 if (i, j) ∈ C,
vij otherwise,

for each (i, j) ∈ A. (13.12)

This complete the proof.

IP (Fukuda) v.2013-02-12 91

13.2 Hard Enumeration Problems in Polyhedral Computation

For matrices V ∈ Qs×d and R ∈ Qt×d, the V-polyhedron with representation pair (V,R) is
denoted by PV (V,R), i.e.,

PV (V,R) := {x : x = V λ +Rµ, 1Tλ = 1,λ ≥ 0, µ ≥ 0}. (13.13)

The following decision problem is arguably the most important problem in polyhedral
computation.

Problem 13.8 Polyhedral Verification Problem (PVP)

• Input: A ∈ Qm×d, b ∈ Qm, V ∈ Qs×d and R ∈ Qt×d.

• Question: Is PH(A, b) (= PV (V,R) ?

It is not difficult to prove that if PVP is in P, then there is an output-polynomial algorithm
for the polyhedral representation conversion problem discussed in Section 9, see Polyhedral
Computation FAQ [23].

PVP is easily seen to be in NP, because if the polyhedra are not equal, there is a succinct
certificate for it, a point x in one of the polyhedra which is not in the other. Unfortunately,
the complexity of PVP is still open. The decision problem PVP was first posed by Lovasz,
see [49], and has been extensively studied by many researchers.

One of the most exciting progresses is the NP-completeness of a closely related problem,
due to Khachiyan et al. [35].

Problem 13.9 Vertex Enumeration for an Unbounded Polyhedron (VEU)

• Input: A ∈ Qm×d, b ∈ Qm and V ∈ Qs×d.

• Question: Does the H-polyhedron PH(A, b) contain a vertex not in V ?

Theorem 13.10 ([26]) The decision problems VEU is NP-complete.

Proof. (Outline) It is easily seen to be in NP, because if the answer is yes, then there is
at least one vertex not in V . The proof uses a reduction from the NP-complete problem:

Problem 13.11 Negative Circuit Enumeration (NCE)

• Input: A digraph G = (V,E) with edge weight w : E → Q, and a family S of negative
circuits of G.

• Question: Does G contain a negative circuit not in the family S?

Here, a negative circuit is a directed circuit C ⊂ E whose total weight
∑

e∈C is negative. It
is shown by Khachiyan et al. [35] that NCE is NP-complete from a reduction from SAT.

(This section is to be extended.)

IP (Fukuda) v.2013-02-12 92

14 Evolutions and Applications of Polyhedral Compu-
tation

Polyhedral Computation has been shaped and polished through actual demands from nu-
merous mathematicians, scientists, engineers and even social scientists. In this section, we
present the author’s personal involvements in various external or internal projects which
have driven the advancement of polyhedral computation and software developments.

1987 – 1992: The First Stage. The first generation of codes for polyhedral representa-
tion conversion were written first for mathematicians to understand certain combina-
torial polyhedra, such as cut polytopes, cut cones, and traveling salesman poly-
topes. It is extremely difficult to determine the facet inequalities of these polyhedra
because typical associated combinatorial optimization problems are NP-hard. How-
ever, by computing the H-representation from a V-representation for small instances,
many new facet inequalities were discovered and used for finding a stronger LP relax-
ation of NP-hard optimization problems. The first version of my implementation of
the double description algorithm described in Section 9.1 was released in January 1988
is called pdd where p stands for the programming language Pascal. It helped the early
stage of research on cut polytopes by Michel Deza and Monique Laurent, see [17, 18].

1993 – 1996: The Critical Second Stage. Then, a more computationally demanding
task was needed for research in material science. Two physicists G. Ceder and
G.D. Garbulsky at MIT contacted both David Avis and myself in 1993, and asked
for our computational help in enumerating all extreme points of a highly degenerate
polytope in dimension 8 given by 729 inequalities. The vertices represent physically
stable states of a ternary (3 elements) alloy. David had a C-implementation named
rs (which was replaced by lrs later) of the reverse search algorithm given in Section
9.2 then, and I had a C-version named cdd of the earlier code pdd. Both David and
myself devoted our effort to compute the vertices, and finally it took us about a month
to compute the results. Our greatest excitement came when we verified that the final
results computed by our implementations of two totally different algorithms returned
exactly the same results. This successful computation lead to a paper by the four of
us [12].

About the same time, then a doctoral student Francisco Valero of neuromuscular
systems laboratory at Stanford University contacted me. The application Valero
discovered then surprised me considerably. I did not imagine that one can find an
application of polyhedral computation in human bodies and muscles. He email in May
1994 describing his application reads

My application deals with finger muscles having force limits (i.e., form
zero force to their maximum physiological force for each finger muscle) which
defines a hypercube in a dimension equal to the number of muscles under
consideration. Other mechanical, functional or anatomical characteristics
produce further constrain equations (i.e., need the force of the finger to be
zero in certain directions, finger size/configuration, etc.). The vertex enu-
meration technique helps me identify the limits of muscle force production

IP (Fukuda) v.2013-02-12 93

under these constraints, which in turn maps into functional limits such as
maximum finger forces, accelerations, etc, which are independent of muscle
force coordination. Coordination can be studied with standard linear pro-
gramming techniques. The limits of function, however, require the explicit
enumeration of the vertices of convex polyhedra in n-dimensional space.

Valero has been a strong advocate of computational geometry techniques applied to
biomedical and biomechanics fields since then. A recent paper [36] shows the anal-
ysis of muscle redundancies using the vertex enumeration in polyhedra.

From the software development front, a new C++ version of cdd, called cdd+, was
released in April 1995 which has the capability of using both floating-point and rational
exact arithmetic using GMP [1].

1997 – 2007: Developments of Polyhedral Computation Libraries. Further advance-
ments were made during this period for the development of software C-libraries cddlib
and lrslib, based on cdd and lrs, respectively by Fukuda [22] and Avis [2]. Natu-
rally, these libraries have been integrated into other programs.

A versatile R-interface of cddlib was written by the statistician Charles Geyer of
University of Minnesota. It is available from

http://www.stat.umn.edu/˜charlie/

A webpage of computing all Nash equilibria of bimatrix games using lrslib written
by Rahul Savani became available at

http://banach.lse.ac.uk/form.html.

A Matlab toolbox for the study of control theory with an emphasis on parametric
optimization was written by a group of researchers at the system dynamics and control
group at ETH Zurich. It has an interface called cddmex to cddlib and is available at

http://control.ee.ethz.ch/research/software.en.html

A Python interface PyPolyhedron to cddlib was written by Pearu Peterson. He
wrote in his email in 2007 “I am using it for analyzing multi-soliton interactions. In
terms of computational geometry, I just construct special polyhedron in (N + 1)-D
space, project it to N -D space, and then find its intersection with 2-D hyperplane,
which after projecting to 2-D space gives an interaction pattern of the N -soliton solu-
tion.” It is available at http://cens.ioc.ee/projects/polyhedron/

Polymake is a platform to do polyhedral and algebraic computation mainly for
mathematicians whose two core engines are cddlib and lrslib. It is available at
http://www.polymake.org/doku.php

TOPCOM [45] is a package for computing Triangulations Of Point Configurations
and Oriented Matroids. It uses the LP code of cddlib for the recognition of regular
triangulations.

Minksum [http://www.cs.dartmouth.edu/˜weibel/minksum.php] is a program to com-
pute the V-representation (i.e. the set of vertices) of the Minkowski addition of several
convex polytopes given by their V-representation. It is an implementation in C++

IP (Fukuda) v.2013-02-12 94

language of the reverse search algorithm given in Section 12.2 whose time complexity
is polynomially bounded by the sizes of input and output. It relies on the exact LP
solver of cddlib.

Gfan [33] is a program to list all reduced Gröbner bases of a general polynomial
ideal given by a set of generating polynomials in -variables. It is an implementation in
C++ language of the reverse search algorithm [25]. It relies on the exact LP solver of
cddlib.

2004 – 2011: Expanding Application Fields. An application of Minkowski sum of
polytopes presented in Section 12 is given in a doctoral thesis of J.P. Petit [44] in
2004, which is computer aided tolerancing in design and manufacturing using
a mathematical model with convex polytopes in dimension 6. The dimension is simply
3 + 3 where the first 3 is the dimension of the space and the latter is the freedom of
movement in 3-space.

A polyhedral model was introduced in a doctoral research at Queen’s University Belfast
guided by Cecil Armstrong on aircraft stress load evaluation and optimization.
The essential problem is to detect the most critical parts of aircrafts against a set of
many likely stresses, which is reduced to the redundancy removal in linear inequality
systems, the theme of Section 8.2.

To analyze the effects of United Nations peacekeeping operations, the danger
of using the high dimensional analysis is pointed out in a paper by political scientists
in [46], after a few researchers in computational geometry including myself presented
counter-intuitive facts in higher dimensional spaces. In particular, one serious problem
of estimating the effect of a future operation, a relatively small set of past instances
represented by high dimensional points cannot be a reliable guidance, due to the fact
that a new point will most likely be (far) outside of the convex hull of the past
data points, and thus a wild extrapolation occurs at a high probability.

Future. From my personal involvements in polyhedral computation during the past 24
years, once reliable and efficient codes of polyhedral computation become available,
new users might show up from any field of science, engineering, humanities and even
arts. Thus, the main purpose of writing this book is to present the fundamental theory
of polyhedra and the basic computational problems associated polyhedra with most
efficient algorithmic techniques. My belief is that interesting applications should follow
once researchers have easy access to the theory and computational codes. After all,
convex polyhedra appear almost everywhere, implicitly or explicitly.

