A GENERALIZATION OF THE SYLVESTER-GALLAI THEOREM

Flavio Wicki

November 2012

This article describes Sten Hansen’s paper A GENERALIZATION OF A THEOREM OF SYLVESTER ON THE LINES DETERMINED BY A FINITE POINT SET. In the whole paper, the action is assumed to take place in the d-dimensional real projective space if not stated differently.

The projective Sylvester-Gallai theorem: Given any finite set of noncollinear points in the real projective plane, there exists at least one line which contains exactly two of the given points.

Hansen generalized this result to higher dimensions. In order to prove Hansen’s theorem, we need some preparation:

An ordinary hyperplane (in the d-dimensional space) is a hyperplane such that all of the given points in this hyperplane but one are in a (d−2)-dimensional subspace. An elementary hyperplane is a hyperplane which contains exactly d of the given points. Every elementary hyperplane is ordinary.

Γ₀ is the set of all 0-dimensional subspaces spanned by the given points. E.g. Γ₀ is the given points itself. Γ is the union of all Γ₀, p = 0,...,d, and is called the configuration.

A d-dimensional configuration is called elementary, if it consists of exactly d+1 points. In this case all hyperplanes are elementary as well.

The hyperplanes spanned by Γ₀ divide the space into regions. A region whose interior is not met by any hyperplane spanned by Γ₀ is called a cell.

AB shall denote the subspace spanned by the subspaces A and B.

Lemma 1. Let σₙ be a d-dimensional simplex whose vertices belong to Γ₀ and A₀ a point outside of the simplex. Then there is a (d−2)-dimensional face σₙ₋₂ of the simplex such that the hyperplane Bₙ₋₁ spanned by A₀ and the face satisfies:

\[Bₙ₋₁ \cap σₙ = σₙ₋₂. \]

(1)
Figure 1: Example for Lemma 1

Figure 2: wedges

Figure 3
PROOF OF LEMMA 1. Every two hyperplanes divide the space into two wedges. According to Hanson a simplex is the intersection of closed wedges (why?)(which is not the case for a general polytope: Every closed wedge in Figure 3 contains the point A_0.) Since A_0 is not in the simplex, there must be at least one wedge which contains the simplex but not A_0. Define B_{d-1} as the hyperplane spanned by A_0 and the intersection of the two hyperplanes building this wedge. B_{d-1} is in the other wedge built by the same two hyperplanes and thus does not intersect the simplex but in the face contained int the intersection of these two hyperplanes.

LEMMA 2. Let A_0 be in Γ_0, C_{d-1} in Γ_{d-1}, δ_{d-1} a cell of C_{d-1}, Q_0 an interior point of the cell δ_{d-1}, A_0 not in C_{d-1}, P_0 such that A_0P_0 does not meet the cell δ_{d-1}. Then, both segments of P_0Q_0 intersect a hyperplane spanned by A_0 and a $(d - 2)$-dimensional face of δ_{d-1}.

PROOF OF LEMMA 2. A_0 together with the $(d - 2)$-dimensional faces of the cell δ_{d-1} build a cone. Both closed segments of the line P_0Q_0 have one point outside the cone, namely P_0, and one point inside the cone, namely Q_0. Therefore, the line somewhere has to meet the boundary of the cone. But a boundary of the cone is exactly a hyperplane spanned by A_0 and a $(d - 2)$-dimensional face of δ_{d-1}.

HANSEN’S THEOREM. Suppose the configuration Γ is not elementary and let δ_d be a d-dimensional cell. Then there is an ordinary hyperplane $A_{d-1} = B_0C_{d-2}$ where $B_0 \in \Gamma_0$ is the only point outside C_{d-2}

$$A_{d-1} \cap \Gamma_0 \setminus \{B_0\} \subset C_{d-2} \in \Gamma_{d-2}$$

such that A_{d-1} does not intersect the cell too much in the following sense:

$$A_{d-1} \cap \delta_d \subset C_{d-2}.$$

PROOF OF HANSEN’S THEOREM.

The proof is made by induction over the dimension. After a moment of thought, for $d = 1$ the theorem is obvious. Use the convention that a (-1)-dimensional subspace is the empty set.
Figure 5: Counterexample for Hansen’s theorem in the case of an elementary configuration. Every hyperplane intersects too much of the cell, which is the simplex itself here.

Induction Hypothesis: assume the theorem to be true for dimension $d - 1$.

Choose a simplex whose vertices belong to Γ_0 including the given cell δ_d such that this simplex contains no other points of Γ_0 than its vertices. This is possible by just combining the points, which lie outside the interior of the cell by definition, in a suitable way (possibly in the projective sense). Notice also that no hyperplane can intersect δ_d by definition of a cell. Call this simplex σ_d.

There is no point of Γ_0 in the simplex but its vertices and Γ is not elementary, therefore there is a point F_0 outside the simplex and Lemma 1 can be applied. Lemma 1 ensures the existence of a $(d - 2)$-dimensional face σ_{d-2} and hyperplane $B_{d-1} = F_0 \sigma_{d-2}$ such that

\[B_{d-1} \cap \sigma_d = \sigma_{d-2}. \tag{4} \]

Note that $\delta_d \subset \sigma_d$ and the σ_{d-2} face is part of a $d - 2$-dimensional subspace S_{d-2}. Therefore:

\[B_{d-1} \cap \delta_d \subset B_{d-1} \cap \sigma_d = \sigma_{d-2} \subset S_{d-2}. \tag{5} \]

This is exactly property (3) in Hansen’s theorem. If B_{d-1} is elementary, property (2) is satisfied as well and the proof is complete. Hence, we assume B_{d-1} to be non-elementary from now on.

Choose any point $P_0 \in \Gamma_0$ outside B_{d-1}.

Choose a line L_1 which passes P_0 and an interior point of the cell δ_d such that it does not intersect any of the $(d - 2)$-dimensional subspaces arising from the intersections of the hyperplanes (no $(d - 2)$-dimensional subspace but the one containing P_0). In other words, the line L_1 intersects every $(d - 1)$-dimensional cell (but the cells containing P_0) only in an interior point.
The point where the line L_1 intersects a hyperplane will be called Q_0. Choose a non-elementary hyperplane not containing P_0 (there are some of them, e.g. B_{d-1}) such that one of the two open segments of P_0Q_0 intersects neither the given cell δ_d nor any non-elementary hyperplane. Note that you might need to use the properties of the projective space for this. Call this hyperplane Q_{d-1}.

By construction of L_1, Q_0 is an interior point of a cell δ_{d-1} of Q_{d-1}. This cell together with the point P_0 define a cone which contains the originally given cell δ_d. This cone consists of the lines starting from P_0 and passing a point of the cell δ_{d-1}. It will be called γ_d.

As Q_{d-1} is non-elementary we can use the induction hypothesis: there is a subspace C_0S_{d-3} in Q_{d-1} where C_0 is the only point in Γ_0 outside S_{d-3}, i.e. $C_0S_{d-3} \cap \Gamma_0 \{C_0\} \subset S_{d-3}$, such that this subset does not intersect δ_{d-1} too much in the following sense: $C_0S_{d-3} \cap \delta_{d-1} \subset S_{d-3}$.

We are now looking for a hyperplane satisfying the properties of the theorem in dimension d. Define $S_{d-2} = P_0S_{d-3}$ and consider the hyperplane C_0S_{d-2}.

$C_0S_{d-2} \cap \gamma_d \subset S_{d-2}$ (A). This is true thanks to the analogue property of C_0S_{d-3} and δ_{d-1}. In sloppy words: C_0S_{d-3} does not intersect δ_{d-1} too much, therefore $C_0S_{d-3}P_0 = C_0S_{d-2}$ does not intersect the cone(P_0, δ_{d-1}) too much.

Since $\delta_d \subset \gamma_d$: $C_0S_{d-2} \cap \delta_d \subset S_{d-2}$. This is 3 of Hansen’s theorem. If C_0 is the only point of Γ_0 outside S_{d-2} the proof is complete. Hence, we assume there is a $A_0 \in \Gamma_0$ outside S_{d-2} but in C_0S_{d-2} (B).

A_0 is not in S_{d-2}, so it is not in S_{d-3} ($S_{d-3} \subset S_{d-2}$). C_0 is the only point of C_0S_{d-3} outside S_{d-3}, therefore A_0 is not in C_0S_{d-3}. Also note that $C_0S_{d-2} \cap Q_{d-1} = C_0S_{d-3}$. All this implies that A_0 is not in Q_{d-1}.
(A) together with (B) imply that \(A_0 \) is not in the cone \(\gamma_d \). Therefore \(P_0A_0 \) does not meet \(\delta_{d-1} \) and Lemma 2 can be applied: the segment of \(P_0Q_0 \) which does not meet the originally given cell \(\delta_d \) (such a segment exists by construction of \(Q_{d-1} \)) intersects a hyperplane \(A_0T_{d-2} \), where \(T_{d-2} \) contains a \((d-2)\)-dimensional cell of \(\delta_{d-1} \).

The way \(Q_{d-1} \) was chosen implies that \(A_0T_{d-2} \) is elementary and thus satisfies property 2 in Hansen’s theorem.

\(Q_{d-1} \) divides the cone \(\gamma_d \) into two parts one of which contains the cell \(\delta_d \). \(A_0T_{d-2} \) intersects the closure of this part only in \(T_{d-2} \). Therefore we have property 3 in Hansen’s theorem: \(A_0T_{d-2} \cap \delta_d \subset T_{d-2} \) and the proof is complete.

References

Sten Hansen, A Generalization of a Theorem of Sylvester on the Lines determined by a finite Point Set, Math. Scand. 16 (1965), 175-180