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Preface

These lecture notes are designed to accompany a course on �Geometry: Combinatorics
& Algorithms� that we teach at the Department of Computer Science, ETH Zürich,
for the �rst time in the winter term 2014. The course is a synthesis of topics from
computational geometry, combinatorial geometry, and graph drawing that are centered
around triangulations, that is, geometric representations of maximal planar graphs. The
selection of topics has been done according to three criteria.

Importance. What are the most essential concepts and techniques that we want our stu-
dents to know? (for instance, if they plan to write a thesis in the area)

Overlap. What is covered and to which extent in other courses of our curriculum?

Coherence. How closely related is something to the focal topic of triangulations and how
well does it �t with the other topics selected?

Our focus is on low-dimensional Euclidean space (mostly 2D), although we sometimes
discuss possible extensions and/or remarkable di�erences when going to higher dimen-
sions. At the end of each chapter there is a list of questions that we expect our students
to be able to answer in the oral exam.

In the current setting, the course runs over 14 weeks, with two hours of lecture and
two hours of exercises each week. In addition, there are three sets of graded homeworks
which students have to hand in spread over the course. The target audience are third-year
Bachelor or Master students of Mathematics or Computer Science.

Most parts of these notes have been used within earlier courses of a similar type.
Hence they have gone through a number of iterations of proof-reading. But experience
tells that there are always a few mistakes that escape detection. So in case you notice
some problem, please let us know, regardless of whether it is a minor typo or punctuation
error, a glitch in formulation, or a hole in an argument. This way the issue can be �xed
for the next edition and future readers pro�t from your �ndings.

We thank Kate°ina Böhmová, Tobias Christ, Anna Gundert, Gabriel Nivasch, Júlia
Pap, Marek Sulovský, May Szedlák, and Hemant Tyagi for pointing out errors in pre-
ceding versions.

Bernd Gärtner, Michael Ho�mann, and Emo Welzl
Department of Computer Science, ETH Zürich
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Chapter 1

Fundamentals

1.1 Models of Computation

When designing algorithms, one has to agree on a model of computation according to
which these algorithms can be executed. There are various such models, but when it
comes to geometry some are more convenient to work with than others. Even using
very elementary geometric operations�such as taking the center of a circle de�ned by
three points or computing the length of a given circular arc�the realms of rational
and even algebraic numbers are quickly left behind. Representing the resulting real
numbers/coordinates would be a rather painful task in, for instance, a Turing machine
type model of computation.

Therefore, other models of computation are more prominent in the area of geometric
algorithms and data structures. In this course we will be mostly concerned with two
models: the Real RAM and the algebraic computation/decision tree model. The
former is rather convenient when designing algorithms, because it sort of abstracts from
the aforementioned representation issues by simply assuming that it can be done. The
latter model typically appears in the context of lower bounds, that is, proofs that certain
problems cannot be solved more e�ciently than some function depending on the problem
size (and possibly some other parameters).

So let us see what these models are in more detail.

Real RAM Model. A memory cell stores a real number (that is what the �Real� stands
for)1. Any single arithmetic operation (addition, subtraction, multiplication, division,
and k-th root, for small constant k) or comparison can be computed in constant time.2

This is a quite powerful (and somewhat unrealistic) model of computation, as a single
real number in principle can encode an arbitrary amount of information. Therefore we

1RAM stands for random access machine, meaning that every memory cell can be accessed in constant
time. Not like, say, a list where one always has to start from the �rst element.

2In addition, sometimes also logarithms, other analytic functions, indirect addressing (integral), or �oor
and ceiling are used. As adding some of these operations makes the model more powerful, it is usually
speci�ed and emphasized explicitly when an algorithm uses them.
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Chapter 1. Fundamentals Geometry: C&A 2014

have to ensure that we do not abuse the power of this model. For instance, we may want
to restrict the numbers that are manipulated by any single arithmetic operation to be
bounded by some �xed polynomial in the numbers that appear in the input.

On the positive side, the real RAM model allows to abstract from the lowlands of
numeric and algebraic computation and to concentrate on the algorithmic core from a
combinatorial point of view.

But there are also downsides to using such a powerful model. In particular, it may
be a challenge to e�ciently implement a geometric algorithm designed for the real RAM
on an actual computer. With bounded memory there is no way to represent general
real numbers explicitly, and operations using a symbolic representation can hardly be
considered constant time.

When interested in lower bounds, it is convenient to use a model of computation that
encompasses and represents explicitly all possible execution paths of an algorithm. This
is what the following model is about.

Algebraic Computation Trees (Ben-Or [1]). A computation is regarded as a binary tree.

≤ 0

a− b

b− ca− c

≤ 0 ≤ 0

a c b c

� The leaves contain the (possible) results of the compu-
tation.

� Every node v with one child has an operation of the
form +,−, ∗, /,√, . . . associated to it. The operands of
this operation are constant input values, or among the
ancestors of v in the tree.

� Every node v with two children has associated to it a
branching of the form > 0, > 0, or = 0. The branch
is with respect to the result of v's parent node. If the
expression yields true, the computation continues with
the left child of v; otherwise, it continues with the right
child of v.

The term decision tree is used if all of the �nal results (leaves) are either true or
false. If every branch is based on a linear function in the input values, we face a linear
decision tree. Analogously one can de�ne, say, quadratic decision trees.

The complexity of a computation or decision tree is the maximum number of vertices
along any root-to-leaf path. It is well known that Ω(n logn) comparisons are required
to sort n numbers. But also for some problems that appear easier than sorting at �rst
glance, the same lower bound holds. Consider, for instance, the following problem.

Element Uniqueness

Input: {x1, . . . , xn} ⊂ R, n ∈ N.
Output: Is xi = xj, for some i, j ∈ {1, . . . ,n} with i 6= j?

8



Geometry: C&A 2014 1.2. Basic Geometric Objects

Ben-Or [1] has shown that any algebraic decision tree to solve Element Uniqueness
for n elements has complexity Ω(n logn).

1.2 Basic Geometric Objects

We will mostly be concerned with the d-dimensional Euclidean space Rd, for small
d ∈ N; typically, d = 2 or d = 3. The basic objects of interest in Rd are the following.

Points. A point p, typically described by its d Cartesian
coordinates p = (x1, . . . , xd).

p = (−4, 0)

q = (2, −2)

r = (7, 1)

Directions. A vector v ∈ Sd−1 (the (d − 1)-dimensional
unit sphere), typically described by its d Cartesian coor-

dinates v = (x1, . . . , xd), with ||v|| =

√∑d
i=1 xi

2 = 1.

Lines. A line is a one-dimensional a�ne subspace. It can
be described by two distinct points p and q as the set of
all points r that satisfy r = p+ λ(q− p), for some λ ∈ R.

p

q

While any pair of distinct points de�nes a unique line, a line in R2 contains in�nitely
many points and so it may happen that a collection of three or more points lie on a line.
Such a collection of points is termed collinear 3.

Rays. If we remove a single point from a line and take
the closure of one of the connected components, then we
obtain a ray. It can be described by two distinct points p
and q as the set of all points r that satisfy r = p+λ(q−p),
for some λ > 0. The orientation of a ray is the direction
(q− p)/‖q− p‖.

p

q

Line segment. A line segment is a compact connected sub-
set of a line. It can be described by two points p and q
as the set of all points r that satisfy r = p+ λ(q− p), for
some λ ∈ [0, 1]. We will denote the line segment through
p and q by pq. Depending on the context we may allow
or disallow degenerate line segments consisting of a single
point only (p = q in the above equation).

p

q

Hyperplanes. A hyperplane H is a (d−1)-dimensional a�ne subspace. It can be described
algebraically by d + 1 coe�cients λ1, . . . , λd+1 ∈ R, where ‖(λ1, . . . , λd+1)‖ = 1, as the
set of all points (x1, . . . , xd) that satisfy the linear equation H :

∑d
i=1 λixi = λd+1.

3Not colinear, which refers to a notion in the theory of coalgebras.
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Chapter 1. Fundamentals Geometry: C&A 2014

If the above equation is converted into an inequality, we obtain the algebraic descrip-
tion of a halfspace (in R2: halfplane).

Spheres and balls. A sphere is the set of all points that are equidistant to a �xed point.
It can be described by a point c (center) and a number ρ ∈ R (radius) as the set of all
points p that satisfy ||p − c|| = ρ. The ball of radius ρ around p consists of all points p
that satisfy ||p− c|| 6 ρ.

1.3 Graphs

In this section we review some basic de�nitions and properties of graphs. For more
details and proofs, refer to any standard textbook on graph theory [2, 3, 5].

An (undirected) graph G = (V,E) is de�ned on a set V of vertices. Unless explicitly
stated otherwise, V is always �nite. Vertices are associated to each other through edges
which are collected in the set E ⊆ (V

2

)
. The two vertices de�ning an edge are adjacent

to each other and incident to the edge.
For a vertex v ∈ V, denote by NG(v) the neighborhood of v in G, that is, the set

of vertices from G that are adjacent to v. Similarly, for a set W ⊂ V of vertices de�ne
NG(W) :=

⋃
w∈W NG(w). The degree degG(v) of a vertex v ∈ V is the size of its

neighborhood, that is, the number of edges from E incident to v. The subscript is often
omitted when it is clear which graph it refers to.

Lemma 1.1 (Handshaking Lemma) In any graph G = (V,E) we have
∑
v∈V deg(v) = 2|E|.

Two graphs G = (V,E) and H = (U,W) are isomorphic if there is a bijection
φ : V → U such that {u, v} ∈ E ⇐⇒ {φ(u),φ(v)} ∈ W. Such a bijection φ is called
an isomorphism between G and H. The structure of isomorphic graphs is identical and
often we do not distinguish between them when looking at them as graphs.

For a graph G denote by V(G) the set of vertices and by E(G) the set of edges. A
graph H = (U, F) is a subgraph of G if U ⊆ V and F ⊆ E. In case that U = V the graph
H is a spanning subgraph of G. For a setW ⊆ V of vertices denote by G[W] the induced
subgraph of W in G, that is, the graph (W,E ∩ (W

2

)
). For F ⊆ E let G \ F := (V,E \ F).

Similarly, forW ⊆ V let G\W := G[V \W]. In particular, for a vertex or edge x ∈ V ∪ E
we write G \ x for G \ {x}. The union of two graphs G = (V,E) and H = (W, F) is the
graph G ∪ H := (V ∪ W,E ∪ F).

For an edge e = {u, v} ∈ E the graph G/e is obtained from G \ {u, v} by adding a new
vertex w with NG/e(w) := (NG(u) ∪NG(v)) \ {u, v}. This process is called contraction
of e in G. Similarly, for a set F ⊆ E of edges the graph G/F is obtained from G by
contracting all edges from F.

Graph traversals. A walk in G is a sequence W = (v1, . . . , vk), k ∈ N, of vertices such
that vi and vi+1 are adjacent in G, for all 1 6 i < k. The vertices v1 and vk are referred

10
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to as the walk's endpoints, the other vertices are called interior. A walk with endpoints
v1 and vk is sometimes referred to as a walk between v1 and vk. For a walk W denote
by V(W) its set of vertices and by E(W) its set of edges (pairs of vertices adjacent along
W). We say that W visits the vertices and edges in V(W) ∪ E(W). A walk for which
both endpoints coincide, that is, v1 = vk, is called closed. Otherwise the walk is open.

If a walk uses each edge of G at most once, it is a trail. A closed walk that visits each
edge and each vertex at least once is called a tour of G. An Euler tour is both a trail
and a tour of G, that is, it visits each edge of G exactly once. A graph that contains an
Euler tour is termed Eulerian.

If the vertices v1, . . . , vk of a closed walk W are pairwise distinct except for v1 = vk,
then W is a cycle of size k − 1. If the vertices v1, . . . , vk of a walk W are pairwise
distinct, then W is a path of size k. A Hamilton cycle (path) is a cycle (path) that
visits every vertex of G. A graph that contains a Hamilton cycle is Hamiltonian.

Two trails are edge-disjoint if they do not share any edge. Two paths are called
(internally) vertex-disjoint if they do not share any vertices (except for possibly common
endpoints). For two vertices s, t ∈ V any path with endpoints s and t is called an (s, t)-
path or a path between s and t.

Connectivity. De�ne an equivalence relation �∼� on V by setting a ∼ b if and only if
there is a path between a and b in G. The equivalence classes with respect to �∼� are
called components of G and their number is denoted by ω(G). A graph G is connected
if ω(G) = 1 and disconnected, otherwise.

A set C ⊂ V of vertices in a connected graph G = (V,E) is a cut-set of G if G \ C is
disconnected. A graph is k-connected, for a positive integer k, if |V | > k + 1 and there
is no cut-set of size less than k. Similarly a graph G = (V,E) is k-edge-connected, if
G \ F is connected, for any set F ⊆ E of less than k edges. Connectivity and cut-sets are
related via the following well-known theorem.

Theorem 1.2 (Menger [4]) For any two non-adjacent vertices u, v of a graph G = (V,E),
the size if a minimum cut that disconnects u and v is the same as the maximum
number of pairwise internally vertex-disjoint paths between u and v.

Speci�c families of graphs. A graph with a maximum number of edges, that is, (V,
(
V
2

)
), is

called a clique. Up to isomorphism there is only one clique on n vertices; it is referred to
as the complete graph Kn, n ∈ N. At the other extreme, the empty graph Kn consists of
n isolated vertices that are not connected by any edge. A set of U of vertices in a graph G
is independent if G[U] is an empty graph. A graph whose vertex set can be partitioned
into at most two independent sets is bipartite. An equivalent characterization states
that a graph is bipartite if and only if it does not contain any odd cycle. The bipartite
graphs with a maximum number of edges (unique up to isomorphism) are the complete
bipartite graphs Km,n, for m,n ∈ N. They consist of two disjoint independent sets of
size m and n, respectively, and all mn edges in between.
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A forest is a graph that is acyclic, that is, it does not contain any cycle. A connected
forest is called tree and its leaves are the vertices of degree one. Every connected graph
contains a spanning subgraph which is a tree, a so called spanning tree. Beyond the
de�nition given above, there are several equivalent characterizations of trees.

Theorem 1.3 The following statements for a graph G are equivalent.

(1) G is a tree (i.e., it is connected and acyclic).

(2) G is a connected graph with n vertices and n− 1 edges.

(3) G is an acyclic graph with n vertices and n− 1 edges.

(4) Any two vertices in G are connected by a unique path.

(5) G is minimally (edge-)connected, that is, G is connected but removal of any
single edge yields a disconnected graph.

(6) G is maximally acyclic, that is, G is acyclic but adding any single edge creates
a cycle.

Directed graphs. In a directed graph or, short, digraph D = (V,E) the set E consists of
ordered pairs of vertices, that is, E ⊆ V2. The elements of E are referred to as arcs. An
arc (u, v) ∈ E is said to be directed from its source u to its target v. For (u, v) ∈ E we
also say �there is an arc from u to v in D�. Usually, we consider loop-free graphs, that
is, arcs of the type (v, v), for some v ∈ V, are not allowed.

The in-degree deg−
D(v) := |{(u, v) | (u, v) ∈ E}| of a vertex v ∈ V is the number of

incoming arcs at v. Similarly, the out-degree deg+
D(v) := |{(v,u) | (v,u) ∈ E}| of a vertex

v ∈ V is the number of outgoing arcs at v. Again the subscript is often omitted when
the graph under consideration is clear from the context.

From any undirected graph G one can obtain a digraph on the same vertex set by
specifying a direction for each edge of G. Each of these 2|E(G)| di�erent digraphs is called
an orientation of G. Similarly every digraph D = (V,E) has an underlying undirected
graph G = (V, { {u, v} | (u, v) ∈ E or (v,u) ∈ E}). Hence most of the terminology for
undirected graphs carries over to digraphs.

A directed walk in a digraph D is a sequence W = (v1, . . . , vk), for some k ∈ N, of
vertices such that there is an arc from vi to vi+1 in D, for all 1 6 i < k. In the same way
we de�ne directed trails, directed paths, directed cycles, and directed tours.
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Chapter 2

Plane Embeddings

In this chapter we investigate properties of plane embeddings and under which conditions
they hold.

2.1 Embeddings and planarity

A curve is a set C ⊂ R2 that is of the form {γ(t) | 0 6 t 6 1}, where γ : [0, 1]→ R2 is a
continuous function. The function γ is called a parameterization of C. The points γ(0)
and γ(1) are the endpoints of the curve. For a closed curve, we have γ(0) = γ(1). A
curve is simple, if it admits a parameterization γ that is injective on [0, 1]. For a closed
simple curve we allow as an exception that γ(0) = γ(1). The following famous theorem
describes an important property of the plane. A proof can, for instance, be found in the
book of Mohar and Thomassen [15].

Theorem 2.1 (Jordan) Any simple closed curve C partitions the plane into exactly two
regions (connected open sets), each bounded by C.

Figure 2.1: A Jordan curve and two points in one of its faces (left); a simple closed
curve that does not disconnect the torus (right).

Observe that, for instance, on the torus there are closed curves that do not disconnect
the surface (and so the theorem does not hold there).

An embedding or drawing of a (multi-)graph G = (V,E) into the plane is a function
f : V ∪ E→ R2 that assigns

15
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� a point f(v) to every vertex v ∈ V and

� a simple curve f({u, v}) with endpoints f(u) and f(v) to every edge {u, v} ∈ E,
such that f is injective on V and f({u, v}) ∩ f(V) = {f(u), f(v)}, for every edge {u, v} ∈ E.
A common point f(e)∩f(e ′) between two curves that represent edges e 6= e ′ ∈ E is called
a crossing, unless it is a common endpoint of e and e ′. In many cases it is convenient
to demand that no three edges share a crossing.

Planar vs. plane. A multigraph is planar if it admits an embedding without crossings
into the plane. Such an embedding is also called a plane or crossing-free embedding. A
planar graph together with a particular plane embedding is called a plane graph. Note
the distinction between �planar� and �plane�: the former indicates the possibility of an
embedding, whereas the latter refers to a concrete embedding (Figure 2.2).

Figure 2.2: A planar graph (left) and a plane drawing of it (right).

A geometric graph is a graph together with an embedding, in which all edges are
realized as straight-line segments. Note that such an embedding is completely de�ned by
the mapping for the vertices. A plane geometric graph is also called a plane straight-line
graph (PSLG). In contrast, a plane graph in which the edges may form arbitrary simple
curves is called a topological plane graph.

The faces of a plane multigraph are the maximally connected regions of the plane
that do not contain any point used by the embedding (as the image of a vertex or an
edge). Each embedding of a �nite multigraph has exactly one unbounded face, also
called outer or in�nite face. Using stereographic projection, it is not hard to show that
the role of the unbounded face is not as special at it may seem at �rst glance.

Theorem 2.2 If a graph G has a plane embedding in which some face is bounded by
the cycle (v1, . . . , vk), then G also has a plane embedding in which the unbounded
face is bounded by the cycle (v1, . . . , vk).

Proof. (Sketch) Take a plane embedding Γ of G and map it to the sphere using stereo-
graphic projection : Imagine R2 being the x/y-plane in R3 and place a unit sphere S
such that its south pole touches the origin. We obtain a bijective continuous mapping
between R2 and S \ {n}, where n is the north pole of S, as follows: A point p ∈ R2 is
mapped to the point p ′ that is the intersection of the line through p and n with S, see
Figure 2.3.
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n

p

p ′

(a) Three-dimensional view.

n

p

p ′

q

q ′

0
(b) Cross-section view.

Figure 2.3: Stereographic projection.

Consider the resulting embedding Γ ′ of G on S: The in�nite face of Γ corresponds
to the face of Γ ′ that contains the north pole n of S. Now rotate the embedding Γ ′ on
S such that the desired face contains n. Mapping back to the plane using stereographic
projection results in an embedding in which the desired face is the outer face. �

Exercise 2.3 Consider a graph G with the plane embedding depicted in Figure 2.4.
Give a plane embedding of G in which the cycle 1, 2, 3 bounds the outer face.

2

3

5
4

1

Figure 2.4: Plane embedding of G.

Duality. Every plane graph G has a dual G∗, whose vertices are the faces of G and
two are connected by an edge in G∗, if and only if they have a common edge in G. In
general, G∗ is a multigraph (may contain loops and multiple edges) and it depends on
the embedding. That is, an abstract planar graph G may have several non-isomorphic
duals. If G is a connected plane graph, then (G∗)∗ = G. We will show later in Section 2.3
that the dual of a 3-connected planar is unique (up to isomorphism).

The Euler Formula and its rami�cations. One of the most important tools for planar graphs
(and more generally, graphs embedded on a surface) is the Euler�Poincaré Formula.

Theorem 2.4 (Euler's Formula) For every connected plane graph with n vertices, e edges,
and f faces, we have n− e+ f = 2.
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G

G∗

G

G∗

Figure 2.5: Two plane drawings and their duals for the same planar graph.

In particular, this shows that for any planar graph the number of faces is the same in
every plane embedding. Therefore, the number of faces is actually a parameter of an
abstract planar graph. It also follows (stated below as a corollary) that planar graphs are
sparse, that is, they have a linear number of edges (and faces) only. So the asymptotic
complexity of a planar graph is already determined by its number of vertices.

Corollary 2.5 A simple planar graph on n > 3 vertices has at most 3n − 6 edges and
at most 2n− 4 faces.

Proof. Consider a simple planar graph G on n > 3 vertices. Without loss of generality
we may assume that G is connected. (If not, add edges between components of G until
the graph is connected. The number of faces remains unchanged and the number of
edges only increases.) Consider a plane drawing of G and denote by E the set of edges
and by F the set of faces of G. Let

X = {(e, f) ∈ E× F | e bounds f}

denote the set of incident edge-face pairs. We count X in two di�erent ways.
First note that each edge bounds at most two faces and so |X| 6 2 · |E|.
Second note that in a simple connected planar graph on three or more vertices every

face is bounded by at least three vertices. Therefore |X| > 3 · |F|.
Using Euler's Formular we conclude that

4 = 2n− 2|E| + 2|F| 6 2n− 3|F| + 2|F| = 2n− |F| and

6 = 3n− 3|E| + 3|F| 6 3n− 3|E| + 2|E| = 3n− |E| ,

which yields the claimed bounds. �

It also follows that the degree of a �typical� vertex in a planar graph is a small
constant. There exist several variations of this statement, a few more of which we will
encounter during this course.

Corollary 2.6 The average vertex degree in a simple planar graph is less than six.

Exercise 2.7 Prove Corollary 2.6.

Exercise 2.8 Show that neither K5 (the complete graph on �ve vertices) nor K3,3 (the
complete bipartite graph where both classes have three vertices) is planar.
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Characterizing planarity. The classical theorems of Kuratowski and Wagner provide a char-
acterization of planar graphs in terms of forbidden sub-structures. A subdivision of a
graph G = (V,E) is a graph that is obtained from G by replacing each edge with a path.

Theorem 2.9 (Kuratowski [13, 19]) A graph is planar if and only if it does not contain
a subdivision of K3,3 or K5.

A minor of a graph G = (V,E) is a graph that is obtained from G using zero or more
edge contractions, edge deletions, and/or vertex deletions.

Theorem 2.10 (Wagner [22]) A graph is planar if and only if it does not contain K3,3

or K5 as a minor.

In some sense, Wagner's Theorem is a special instance1 of a much more general theorem.

Theorem 2.11 (Graph Minor Theorem, Robertson/Seymour [17]) Every minor-closed family
of graphs can be described in terms of a �nite set of forbidden minors.

Being minor-closed means that for every graph from the family also all of its minors be-
long to the family. For instance, the family of planar graphs is minor-closed because pla-
narity is preserved under removal of edges and vertices and under edge contractions. The
Graph Minor Theorem is a celebrated result that was established by Robertson and Sey-
mour in a series of twenty papers, see also the survey by Lovász [14]. They also described
an O(n3) algorithm (with horrendous constants, though) to decide whether a graph on n
vertices contains a �xed (constant-size) minor. Later, Kawarabayashi et al. [11] showed
that this problem can be solved in O(n2) time. As a consequence, every minor-closed
property can be decided in polynomial time.

Unfortunately, the result is non-constructive in the sense that in general we do not
know how to obtain the set of forbidden minors for a given family/property. For instance,
for the family of toroidal graphs (graphs that can be embedded without crossings on the
torus) more than 16 ′000 forbidden minors are known, and we do not know how many
there are in total. So while we know that there exists a cubic time algorithm to test
membership for minor-closed families, we have no idea what such an algorithm looks like
in general.

Graph families other than planar graphs for which the forbidden minors are known
include forests (K3) and outerplanar graphs (K2,3 and K4). A graph is outerplanar if it
admits a plane drawing such that all vertices appear on the outer face (Figure 2.6).

Exercise 2.12 (a) Give an example of a 6-connected planar graph or argue that no
such graph exists.

1Strictly speaking, it is more than just a special instance because it also speci�es the forbidden minors
explicitly.
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Figure 2.6: An outerplanar graph (left) and a plane drawing of it in which all vertices
are incident to the outer face (right).

(b) Give an example of a 5-connected planar graph or argue that no such graph
exists.

(c) Give an example of a 3-connected outerplanar graph or argue that no such
graph exists.

Planarity testing. For planar graphs we do not have to contend ourselves with a cubic-
time algorithm, as there are several approaches to solve the problem in linear time. In
fact, there is quite a number of papers that describe di�erent linear time algorithms, all
of which�from a very high-level point of view�can be regarded as an annotated depth-
�rst-search. The �rst such algorithm was described by Hopcroft and Tarjan [10], while
the current state-of-the-art [25] is probably among the �path searching� method by Boyer
and Myrwold [3] and the �LR-partition� method by de Fraysseix et al [7]. Although the
overall idea in all these approaches is easy to convey, there are many technical details,
which make a in-depth discussion rather painful to go through.

2.2 Graph representations

There are two standard representations for an abstract graph G = (V,E) on n = |V |

vertices. For the adjacency matrix representation we consider the vertices to be ordered
as V = {v1, . . . , vn}. The adjacency matrix of an undirected graph is a symmetric n×n-
matrix A = (aij)16i,j6n where aij = aji = 1, if {i, j} ∈ E, and aij = aji = 0, otherwise.
Storing such a matrix explicitly requires Ω(n2) space, and allows to test in constant time
whether or not two given vertices are adjacent.

In an adjacency list representation, we store for each vertex a list of its neighbors in
G. This requires only O(n+ |E|) storage, which is better than for the adjacency matrix in
case that |E| = o(n2). On the other hand, the adjacency test for two given vertices is not
a constant-time operation, because it requires a search in one of the lists. Depending on
the representation of these lists, such a search takes O(d) time (unsorted list) or O(logd)
time (sorted random-access representation, such as a balanced search tree), where d is
the minimum degree of the two vertices.

Both representations have their merits. The choice of which one to use (if any)
typically depends on what one wants to do with the graph. When dealing with embedded
graphs, however, additional information concerning the embedding is needed beyond
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the pure incidence structure of the graph. The next section discusses a standard data
structure to represent embedded graphs.

2.2.1 The Doubly-Connected Edge List

The doubly-connected edge list (DCEL) is a data structure to represent a plane graph
in such a way that it is easy to traverse and to manipulate. In order to avoid unnecessary
complications, let us discuss only connected graphs here that contain at least two vertices.
It is not hard to extend the data structure to cover all plane graphs. For simplicity we
also assume that we deal with a straight-line embedding and so the geometry of edges
is de�ned by the mapping of their endpoints already. For more general embeddings, the
geometric description of edges has to be stored in addition.

The main building block of a DCEL is a list of halfedges. Every actual edge is
represented by two halfedges going in opposite direction, and these are called twins, see
Figure 2.7. Along the boundary of each face, halfedges are oriented counterclockwise.

h

next(h)

prev(h)

twin(h)

target(h)

face(h)

Figure 2.7: A halfedge in a DCEL.

A DCEL stores a list of halfedges, a list of vertices, and a list of faces. These lists are
unordered but interconnected by various pointers. A vertex v stores a pointer halfedge(v)

to an arbitrary halfedge originating from v. Every vertex also knows its coordinates, that
is, the point point(v) it is mapped to in the represented embedding. A face f stores a
pointer halfedge(f) to an arbitrary halfedge within the face. A halfedge h stores �ve
pointers:

� a pointer target(h) to its target vertex,

� a pointer face(h) to the incident face,

� a pointer twin(h) to its twin halfedge,

� a pointer next(h) to the halfedge following h along the boundary of face(h), and
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� a pointer prev(h) to the halfedge preceding h along the boundary of face(h).

A constant amount of information is stored for every vertex, (half-)edge, and face of the
graph. Therefore the whole DCEL needs storage proportional to |V | + |E| + |F|, which is
O(n) for a plane graph with n vertices by Corollary 2.5.

This information is su�cient for most tasks. For example, traversing all edges around
a face f can be done as follows:

s← halfedge(f)

h← s

do
something with h
h← next(h)

while h 6= s

Exercise 2.13 Give pseudocode to traverse all edges incident to a given vertex v of a
DCEL.

Exercise 2.14 Why is the previous halfedge prev(·) stored explicitly and the source
vertex of a halfedge is not?

2.2.2 Manipulating a DCEL

In many applications, plane graphs appear not just as static objects but rather they
evolve over the course of an algorithm. Therefore the data structure used to represent
the graph must allow for e�cient update operations to change it.

First of all, we need to be able to generate new vertices, edges, and faces, to be added
to the corresponding list within the DCEL and�symmetrically�the ability to delete an
existing entity. Then it should be easy to add a new vertex v to the graph within some
face f. As we maintain a connected graph, we better link the new vertex to somewhere,
say, to an existing vertex u. For such a connection to be possible, we require that the
open line segment uv lies completely in f.

Of course, two halfedges are to be added connecting u and v. But where exactly?
Given that from a vertex and from a face only some arbitrary halfedge is directly accessi-
ble, it turns out convenient to use a halfedge in the interface. Let h denote the halfedge
incident to f for which target(h) = u. Our operation then becomes (see also Figure 2.8)

add-vertex-at(v,h)

Precondition: the open line segment point(v)point(u), where u := target(h),
lies completely in f := face(h).

Postcondition: a new vertex v has been inserted into f, connected by an edge
to u.

and it can be realized by manipulating a constant number of pointers as follows.
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v
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h1
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. . .

(b) after

Figure 2.8: Add a new vertex connected to an existing vertex u.

add-vertex-at(v,h) {
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(v)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

face(h1)← f

face(h2)← f

next(h1)← h2

next(h2)← next(h)

prev(h1)← h

prev(h2)← h1

next(h)← h1

prev(next(h2))← h2

}

Similarly, it should be possible to add an edge between two existing vertices u and v,
provided the open line segment uv lies completely within a face f of the graph, see
Figure 2.9. Since such an edge insertion splits f into two faces, the operation is called
split-face. Again we use the halfedge h that is incident to f and for which target(h) = u.
Our operation becomes then

split-face(h, v)
Precondition: v is incident to f := face(h) but not adjacent to u := target(h).

The open line segment point(v)point(u) lies completely in f.
Postcondition: f has been split by a new edge uv.

The implementation is slightly more complicated compared to add-vertex-at above, be-
cause the face f is destroyed and so we have to update the face information of all incident
halfedges. In particular, this is not a constant time operation, but its time complexity
is proportional to the size of f.
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Figure 2.9: Split a face by an edge uv.

split-face(h, v) {
f1 ← a new face
f2 ← a new face
h1 ← a new halfedge
h2 ← a new halfedge
halfedge(f1)← h1

halfedge(f2)← h2

twin(h1)← h2

twin(h2)← h1

target(h1)← v

target(h2)← u

next(h2)← next(h)

prev(next(h2))← h2

prev(h1)← h

next(h)← h1

i← h2

loop
face(i)← f2
if target(i) = v break the loop
i← next(i)

endloop
next(h1)← next(i)

prev(next(h1))← h1

next(i)← h2

prev(h2)← i

i← h1

do
face(i)← f1
i← next(i)

until target(i) = u
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delete the face f
}

In a similar fashion one can realize the inverse operation join-face(h) that removes the
edge (represented by the halfedge) h, thereby joining the faces face(h) and face(twin(h)).

It is easy to see that every connected plane graph on at least two vertices can be
constructed using the operations add-vertex-at and split-face, starting from an embedding
of K2 (two vertices connected by an edge).

Exercise 2.15 Give pseudocode for the operation join-face(h). Also specify precondi-
tions, if needed.

Exercise 2.16 Give pseudocode for the operation split-edge(h), that splits the edge (rep-
resented by the halfedge) h into two by a new vertex w, see Figure 2.10.

u

v

h

f2

f1

(a) before

u

v

w

h2

h1

k1

k2
f2

f1

(b) after

Figure 2.10: Split an edge by a new vertex.

2.2.3 Graphs with unbounded edges

In some cases it is convenient to consider plane graphs, in which some edges are not
mapped to a line segment but to an unbounded curve, such as a ray. This setting is not
really much di�erent from the one we studied before, except that one vertex is placed �at
in�nity�. One way to think of it is in terms of stereographic projection (see the proof of
Theorem 2.2). The further away a point in R2 is from the origin, the closer its image on
the sphere S gets to the north pole n of S. But there is no way to reach n except in the
limit. Therefore, we can imagine drawing the graph on S instead of in R2 and putting
the �in�nite vertex� at n.

All this is just for the sake of a proper geometric interpretation. As far as a DCEL
representation of such a graph is concerned, there is no need to consider spheres or, in
fact, anything beyond what we have discussed before. The only di�erence to the case
with all �nite edges is that there is this special in�nite vertex, which does not have any
point/coordinates associated to it. But other than that, the in�nite vertex is treated
in exactly the same way as the �nite vertices: it has in� and outgoing halfedges along
which the unbounded faces can be traversed (Figure 2.11).
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∞

Figure 2.11: A DCEL with unbounded edges. Usually, we will not show the in�-
nite vertex and draw all edges as straight-line segments. This yields a
geometric drawing, like the one within the gray box.

Remarks. It is actually not so easy to point exactly to where the DCEL data struc-
ture originates from. Often Muller and Preparata [16] are credited, but while they use
the term DCEL, the data structure they describe is di�erent from what we discussed
above and from what people usually consider a DCEL nowadays. Overall, there are a
large number of variants of this data structure, which appear under the names winged
edge data structure [1], halfedge data structure [23], or quad-edge data structure [9].
Kettner [12] provides a comparison of all these and some additional references.

2.2.4 Combinatorial embeddings

The DCEL data structure discussed in the previous section provides a fully �eshed-out
representation of what is called a combinatorial embedding. From a mathematical point
of view this can be regarded an equivalence relation on embeddings: Two embeddings are
equivalent if their face boundaries�regarded as circular sequences of edges (or vertices)
in counterclockwise order�are the same (as sets) up to a global change of orientation
(reversing the order of all sequences simultaneously). For instance, the faces of the plane
graphs shown in Figure 2.12a are (described as a list of vertices)

(a) : {(1, 2, 3), (1, 3, 6, 4, 5, 4), (1, 4, 6, 3, 2)} ,

(b) : {(1, 2, 3, 6, 4, 5, 4), (1, 3, 2), (1, 4, 6, 3)} , and

(c) : {(1, 4, 5, 4, 6, 3), (1, 3, 2), (1, 2, 3, 6, 4)} .
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Note that a vertex can appear several times along the boundary of a face (if it is a
cut-vertex). Clearly (b) is not equivalent to (a) nor (c), because it is the only graph
that contains a face bounded by seven vertices. However, (a) and (c) turn out to be
equivalent: after reverting orientations f1 takes the role of h2, f2 takes the role of h1,
and f3 takes the role of h3.
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Figure 2.12: Equivalent embeddings?

In a dual interpretation one can just as well de�ne equivalence in terms of the cyclic
order of neighbors around all vertices. In this form, a compact way to describe a com-
binatorial embedding is as a so-called rotation system that consists of a permutation π
and an involution ρ, both of which are de�ned on the set of halfedges (in this context
often called darts or �ags) of the embedding. The orbits of π correspond to the vertices,
as they iterate over the incident halfedges. The involution ρ maps each halfedge to its
twin.

Many people prefer this dual view, because one does not have to discuss the issue
of vertices or edges that appear several times on the boundary of a face. The following
lemma shows that such an issue does not arise when dealing with biconnected graphs.

Lemma 2.17 In a biconnected plane graph every face is bounded by a cycle.

We leave the proof as an exercise. Intuitively the statement is probably clear. But
we believe it is instructive to think about how to make a formal argument. An easy
consequence is the following corollary, whose proof we also leave as an exercise.

Corollary 2.18 In a 3-connected plane graph the neighbors of a vertex lie on a cycle.

Note that the statement does not read �form a cycle� but rather �lie on a cycle�.

Exercise 2.19 Prove Lemma 2.17 and Corollary 2.18.

2.3 Unique embeddings

We have seen in Lemma 2.17 that all faces in biconnected plane graphs are bounded by
cycles. Conversely one might wonder which cycles of a planar graph G bound a face in
some plane embedding of G. Such a cycle is called a facial cycle (Figure 2.13).
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1
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3
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Figure 2.13: The cycle (1, 2, 3) is facial and we can show that (2, 3, 4) is not.

In fact, we will look at a slightly di�erent class of cycles, namely those that bound a
face in every plane embedding of G. The lemma below provides a complete character-
ization of those cycles. In order to state it, let us introduce a bit more terminology. A
chord of a cycle C in a graph G is an edge that connects two vertices of C but is not an
edge of C. A cycle C in a graph G is an induced cycle, if C = G[V(C)], that is, C does
not have any chord in G.

Lemma 2.20 Let C be a cycle in a planar graph G such that G 6= C and G is not C
plus a single chord of C. Then C bounds a face in every plane embedding of G if
and only if C is an induced cycle and it is not separating (i.e., G \C is connected).

Proof. �⇐�: Consider any plane embedding Γ of G. As G \ C is connected, by the
Jordan Curve Theorem it is contained either in the interior of C or in the exterior of C
in Γ . In either case, the other component of the plane is bounded by C, because there
are no edges among the vertices of C.

�⇒": Using contraposition, suppose that C is not induced or G \ C is disconnected.
We have to show that there exists a plane embedding of G in which C does not bound
a face.

If C is not induced, then there is a chord c of C in G. As G 6= C ∪ c, either G has a
vertex v that is not in C or G contains another chord d 6= c of C. In either case, consider
any plane embedding Γ of G in which C bounds a face. (If such an embedding does not
exist, there is nothing to show.) We can modify Γ by drawing the chord c in the face
bounded by C to obtain an embedding Γ ′ of G in which C does not bound a face: one of
the two regions bounded by C according to the Jordan Curve Theorem contains c and
the other contains either the vertex v or the other chord d.

If G \C contains two components A and B, then consider a plane embedding Γ of G.
If C is not a face in Γ , there is nothing to show. Hence suppose that C is a face of Γ
(Figure 2.14a). From Γ we obtain induced plane embeddings ΓA of G \ B = A ∪ C and
ΓB of G \A = B ∪ C. Using Theorem 2.2 we may suppose that C bounds the outer face
in ΓA and it does not bound the outer face in ΓB. Then we can glue both embeddings at
C, that is, extend ΓB to an embedding of G by adding ΓA within the face bounded by C
(Figure 2.14b). The resulting embedding is a plane drawing of G in which C does not
bound a face.
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Figure 2.14: Construct a plane embedding of G in which C does not bound a face.

Finally, consider the case that G \ C = ∅ (which is not a connected graph according
to our de�nition). As we considered above the case that C is not an induced cycle, the
only remaining case is G = C, which is excluded explicitly. �

For both special cases for G that are excluded in Lemma 2.20 it is easy to see that all
cycles in G bound a face in every plane embedding. This completes the characterization.
Also observe that in these special cases G is not 3-connected.

Corollary 2.21 A cycle C of a 3-connected planar graph G bounds a face in every plane
embedding of G if and only if C is an induced cycle and it is not separating. �

The following theorem tells us that for a wide range of graphs we have little choice
as far as a plane embedding is concerned, at least from a combinatorial point of view.
Geometrically, there is still a lot of freedom, though.

Theorem 2.22 (Whitney [24]) A 3-connected planar graph has a unique combinatorial
plane embedding (up to equivalence).

Proof. Let G be a 3-connected planar graph and suppose there exist two embeddings Φ1

and Φ2 of G that are not equivalent. That is, there is a cycle C = (v1, . . . , vk), k > 3, in
G that bounds a face in, say, Φ1 but C does not bound a face in Φ2. By Corollary 2.21
such a cycle has a chord or it is separating. We consider both options.

Case 1: C has a chord {vi, vj}, with j > i + 2. Denote A = {vx | i < x < j} and
B = {vx | x < i∨ j < x} and observe that both A and B are non-empty (because {vi, vj} is
a chord and so vi and vj are not adjacent in C). Given that G is 3-connected, there is at
least one path P from A to B that does not use either of vi or vj. Let a denote the last
vertex of P that is in A, and let b denote the �rst vertex of B that is in b. As C bounds
a face f in Φ1, we can add a new vertex v inside the face bounded by C and connect v by
four pairwise internally disjoint curves to each of vi, vj, a, and b. The result is a plane
graph G ′ ⊃ G that contains a subdivision of K5 with branch vertices v, vi, vj, a, and b.
By Kuratowski's Theorem (Theorem 2.9) this contradicts the planarity of G ′.

Case 2: C is separating and, therefore, G \ C contains two distinct components A
and B. (We have G 6= C because G is 3-connected.) Consider now the embedding Φ1
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vj

vi

f
A

B

P

a

b

v

(a) Case 1.

a
b

c1

c2

c3

v

(b) Case 2.

Figure 2.15: Illustration of the two cases in Theorem 2.22.

in which C bounds a face, without loss of generality (Theorem 2.2) a bounded face f.
Hence both A and B are embedded in the exterior of f.

Choose vertices a ∈ A and b ∈ B arbitrarily. As G is 3-connected, by Menger's
Theorem (Theorem 1.2), there are at least three pairwise internally vertex-disjoint paths
from a to b. Fix three such paths α1,α2,α3 and denote by ci the �rst point of αi that
is on C, for 1 6 i 6 3. Note that c1, c2, c3 are well de�ned, because C separates A and
B, and they are pairwise distinct. Therefore, {a,b} and {c1, c2, c3} are branch vertices
of a K2,3 subdivision in G. We can add a new vertex v inside the face bounded by
C and connect v by three pairwise internally disjoint curves to each of c1, c2, and c3.
The result is a plane graph G ′ ⊃ G that contains a K3,3 subdivision. By Kuratowski's
Theorem (Theorem 2.9) this contradicts the planarity of G ′.

In both cases we arrived at a contradiction and so there does not exist such a cycle
C. Thus Φ1 and Φ2 are equivalent. �

Whitney's Theorem does not provide a characterization of unique embeddability,
because there are both biconnected graphs that have a unique plane embedding (such
as cycles) and biconnected graphs that admit several non-equivalent plane embeddings
(for instance, a triangulated pentagon).

2.4 Triangulating a plane graph

A large and important class of 3-connected graphs is formed by the maximal planar
graphs. A graph is maximal planar if no edge can be added so that the resulting graph
is still planar.

Lemma 2.23 A maximal planar graph on n > 3 vertices is biconnected.

Proof. Consider a maximal planar graph G = (V,E). If G is not biconnected, then
it has a cut-vertex v. Take a plane drawing Γ of G. As G \ v is disconnected, removal
of v also splits NG(v) into at least two components. Therefore, there are two vertices
a,b ∈ NG(v) that are adjacent in the circular order of vertices around v in Γ and are in

30



Geometry: C&A 2014 2.4. Triangulating a plane graph

di�erent components of G \ v. In particular, {a,b} /∈ E and we can add this edge to G
(routing it very close to the path (a, v,b) in Γ) without violating planarity. This is in
contradiction to G being maximal planar and so G is biconnected. �

Lemma 2.24 In a maximal planar graph on n > 3 vertices, all faces are topological
triangles, that is, each is bounded by exactly three edges.

Proof. Consider a maximal planar graph G = (V,E) and a plane drawing Γ of G. By
Lemma 2.23 we know that G is biconnected and so by Lemma 2.17 every face of Γ is
bounded by a cycle. Suppose that there is a face f in Γ that is bounded by a cycle
v0, . . . , vk−1 of k > 4 vertices. We claim that at least one of the edges {v0, v2} or {v1, v3}
is not present in G.

Suppose to the contrary that {{v0, v2}, {v1, v3}} ⊆ E. Then we can add a new vertex
v ′ in the interior of f and connect v ′ inside f to all of v0, v1, v2, v3 by an edge (curve)
without introducing a crossing. In other words, given that G is planar, also the graph
G ′ = (V ∪ {v ′},E ∪ {{vi, v ′} | i ∈ {0, 1, 2, 3}}) is planar. However, v0, v1, v2, v3, v ′ are branch
vertices of a K5 subdivision in G ′: v ′ is connected to all other vertices within f, along
the boundary ∂f of f each vertex vi is connected to both v(i−1)mod4 and v(i+1)mod4 and
the missing two connections are provided by the edges {v0, v2} and {v1, v3} (Figure 2.16a).
By Kuratowski's Theorem this is in contradiction to G ′ being planar. Therefore, one of
the edges {v0, v2} or {v1, v3} is not present in G, as claimed.

v0

v1

v2

v3

∂f

v ′

(a)

v0

v1

v2

v3

∂f

(b)

Figure 2.16: Every face of a maximal planar graph is a topological triangle.

So suppose without loss of generality that {v1, v3} /∈ E. But then we can add this edge
(curve) within f to Γ without introducing a crossing (Figure 2.16b). It follows that the
edge {v1, v3} can be added to G without sacri�cing planarity, which is in contradiction
to G being maximal planar. Therefore, there is no such face f bounded by four or more
vertices. �

The proof of Lemma 2.24 also contains the idea for an algorithm to topologically
triangulate a plane graph.

Theorem 2.25 For a given connected plane graph G = (V,E) on n vertices one can
compute in O(n) time and space a maximal plane graph G ′ = (V,E ′) with E ⊆ E ′.
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Proof. Suppose, for instance, that G is represented as a DCEL2, from which one can
easily extract the face boundaries. If some vertex v appears several times along the
boundary of a single face, it is a cut-vertex. We �x this by adding an edge between the
two neighbors of all but the �rst occurrence of v. This can easily be done in linear time
by maintaining a counter for each vertex on the face boundary. The total number of
edges and vertices along the boundary of all faces is proportional to the number of edges
in G, which by Corollary 2.5 is linear. Hence we may suppose that all faces of G are
bounded by a cycle.

For each face f that is bounded by more than three vertices, select a vertex vf on its
boundary and store with each vertex all faces that select it. Then process each vertex v
as follows: First mark all neighbors of v in G. Then process all faces that selected v. For
each such face f with vf = v iterate over the boundary ∂f = (v, v1, . . . , vk), where k > 3,
of f to test whether there is any marked vertex other than the two neighbors v1 and vk
of v along ∂f.

If there is no such vertex, we can safely triangulate f using a star from v, that is, by
adding the edges {v, vi}, for i ∈ {2, . . . ,k− 1} (Figure 2.17a).

Otherwise, let vx be the �rst marked vertex in the sequence v2, . . . , vk−1. The
edge {v, vx} that is embedded as a curve in the exterior of f prevents any vertex from
v1, . . . , vx−1 from being connected by an edge in G to any vertex from vx+1, . . . , vk. (This
is exactly the argument that we made in the proof of Lemma 2.24 above for the edges
{v0, v2} and {v1, v3}, see Figure 2.16a.) In particular, we can safely triangulate f using a
bi-star from v1 and vx+1, that is, by adding the edges {v1, vi}, for i ∈ {x + 1, . . . ,k}, and
{vj, vx+1}, for j ∈ {2, . . . , x− 1} (Figure 2.17b).

v1

v3

vk

v

∂f

v2

vk−1

(a) Case 1: v does not have any neighbor
on ∂f other than v1 and vk.

v1

vx

vk

v

f

v2
vk−1

vx+1

(b) Case 2: v has a neighbor vx on ∂f other
than v1 and vk.

Figure 2.17: Topologically triangulating a plane graph.

Finally, conclude the processing of v by removing all marks on its neighbors.
Regarding the runtime bound, note that every face is traversed a constant number

of times. In this way, each edge is touched a constant number of times, which by
Corollary 2.5 uses linear time overall. Similarly, the vertex marking is done at most twice

2If you wonder how the�possibly complicated�curves that correspond to edges are represented: they
do not need to be, because here we need a representation of the combinatorial embedding only.
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(mark und unmark) per vertex. Therefore, the overall time needed can be bounded by∑
v∈V degG(v) = 2|E| = O(n) by the Handshaking Lemma and Corollary 2.5. �

Theorem 2.26 A maximal planar graph on n > 4 vertices is 3-connected.

Exercise 2.27 Prove Theorem 2.26.

Using any of the standard planarity testing algorithms we can obtain a combinatorial
embedding of a planar graph in linear time. Together with Theorem 2.25 this yields the
following

Corollary 2.28 For a given planar graph G = (V,E) on n vertices one can compute in
O(n) time and space a maximal planar graph G ′ = (V,E ′) with E ⊆ E ′. �

The results discussed in this section can serve as a tool to �x the combinatorial embedding
for a given graph G: augment G using Theorem 2.25 to a maximal planar graph G ′, whose
combinatorial embedding is unique by Theorem 2.22.

Being maximal planar is a property of an abstract graph. In contrast, a
geometric graph to which no straight-line edge can be added without introduc-
ing a crossing is called a triangulation. Not every triangulation is maximal
planar, as the example depicted to the right shows.

It is also possible to triangulate a geometric graph in linear time. But this problem
is much more involved. Triangulating a single face of a geometric graph amounts to
what is called �triangulating a simple polygon�. This can be done in near-linear3 time
using standard techniques, and in linear time using Chazelle's famous algorithm, whose
description spans a fourty pages paper [4].

Exercise 2.29 We discussed the DCEL structure to represent plane graphs in Sec-
tion 2.2.1. An alternative way to represent an embedding of a maximal planar
graph is the following: For each triangle, store references to its three vertices and
to its three neighboring triangles. Compare both approaches. Discuss di�erent sce-
narios where you would prefer one over the other. In particular, analyze the space
requirements of both.

Connectivity serves as an important indicator for properties of planar graphs. An-
other example is the following famous theorem of Tutte that provides a su�cient condi-
tion for Hamiltonicity. Its proof is beyond the scope of our lecture.

Theorem 2.30 (Tutte [20]) Every 4-connected planar graph is Hamiltonian.

3O(n logn) or�using more elaborate tools�O(n log∗ n) time
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2.5 Compact straight-line drawings

As a next step we consider plane embeddings in the geometric setting, where every edge
is drawn as a straight-line segment. A classical theorem of Wagner and Fáry states that
this is not a restriction in terms of plane embeddability.

Theorem 2.31 (Fáry [6], Wagner [21]) Every planar graph has a plane straight-line em-
bedding (that is, it is isomorphic to a plane straight-line graph).

Although this theorem has a nice inductive proof, we will not prove it here. Instead we
will prove a stronger statement that implies Theorem 2.31.

A very nice property of straight-line embeddings is that they are easy to represent:
We need to store points/coordinates for the vertices only. From an algorithmic and com-
plexity point of view the space needed by such a representation is important, because
it appears in the input and output size of algorithms that work on embedded graphs.
While the Fáry-Wagner Theorem guarantees the existence of a plane straight-line em-
bedding for every planar graph, it does not provide bounds on the size of the coordinates
used in the representation. But the following strengthening provides such bounds, by
describing an algorithm that embeds (without crossings) a given planar graph on a linear
size integer grid.

Theorem 2.32 (de Fraysseix, Pach, Pollack [8]) Every planar graph on n > 3 vertices has
a plane straight-line drawing on the (2n− 3)× (n− 1) integer grid.

Canonical orderings. The key concept behind the algorithm is the notion of a canonical
ordering, which is a vertex order that allows to construct a plane drawing in a natural
(hence canonical) way. Reading it backwards one may think of a shelling or peeling order
that destructs the graph vertex by vertex from the outside. A canonical ordering also
provides a succinct representation for the combinatorial embedding.

De�nition 2.33 A plane graph is internally triangulated if it is biconnected and every
bounded face is a (topological) triangle. Let G be an internally triangulated plane
graph and C◦(G) its outer cycle. A permutation π = (v1, v2, . . . , vn) of V(G) is a
canonical ordering for G, if

(1) Gk is internally triangulated, for all k ∈ {3, . . . ,n};

(2) v1v2 is on the outer cycle C◦(Gk) of Gk, for all k ∈ {3, . . . ,n};

(3) vk+1 is located in the outer face of Gk and its neighbors appear consecutively
along C◦(Gk), for all k ∈ {3, . . . ,n− 1};

where Gk is the subgraph of G induced by v1, . . . , vk.
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(b) G8.

Figure 2.18: An internally triangulated plane graph and a canonical order for it.

Figure 2.18 shows an example. Note that there are permutations that do not corre-
spond to a canonical order: for instance, when choosing the vertex 4 as the eighth vertex
instead of 8 in Figure 2.18b the graph G8 is not biconnected (1 is a cut-vertex).

Exercise 2.34 (a) Compute a canonical ordering for the following internally trian-
gulated plane graphs:

(b) Give a family of internally triangulated plane graphs Gn on n = 2k vertices
with at least (n/2)! canonical orderings.

Exercise 2.35 (a) Describe a plane graph G with n vertices that can be embedded
(while preserving the outer face) on a grid of size (2n/3 − 1) × (2n/3 − 1) but
not on a smaller grid.

(b) Can you draw G on a smaller grid if you are allowed to change the embed-
ding?
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Theorem 2.36 For every internally triangulated plane graph G and every edge {v1, v2}
on its outer face, there exists a canonical ordering for G that starts with v1, v2.
Moreover, such an ordering can be computed in linear time.

Proof. Induction on n, the number of vertices. For a triangle, any order su�ces and so
the statement holds. Hence consider an internally triangulated plane graph G = (V,E)

on n > 4 vertices. We claim that it is enough to select a vertex vn /∈ {v1, v2} on C◦(G)

that is not incident to a chord of C◦(G).
First observe that G is plane and vn ∈ C◦(G) and so all neighbors of vn in G must

appear on the outer face of Gn−1 = G\ {vn}. Consider the circular sequence of neighbors
around vn in G and break it into a linear sequence u1, . . . ,um, for some m > 2, that
starts and ends with the neighbors of vn in C◦(G). As G is internally triangulated, each
of the bounded faces spanned by vn,ui,ui+1, for i ∈ {i, . . . ,m − 1}, is a triangle and
hence {ui,ui+1} ∈ E. This implies (3) for k = n. Properties (1) and (2) hold trivially
(by assumption) in that case. In order to complete the ordering inductively we need to
show that Gn−1 is also internally triangulated.

As Gn−1 is a subgraph of G, which is internally triangulated, it su�ces to show that
Gn−1 is biconnected. The outer cycle C◦(Gn−1) of Gn−1 is obtained from C◦(G) by
removing vn and replacing it with the (possibly empty) sequence u2, . . . ,um−1. As vn is
not incident to a chord of C◦(G) (and so neither of u2, . . . ,um−1 appeared along C◦(G)

already), the resulting sequence forms a cycle, indeed. Add a new vertex v in the outer
face of Gn−1 and connect v to every vertex of C◦(Gn−1) to obtain a maximal planar
graph H ⊃ Gn−1. By Theorem 2.26 H is 3-connected and so Gn−1 is biconnected, as
desired. This also completes the proof of the initial claim.

It remains to show that we can always �nd such a vertex vn /∈ {v1, v2} on C◦(G) that
is not incident to a chord of C◦(G). If C◦(G) does not have any chord, this is obvious,
because every cycle has at least three vertices, one of which is neither v1 nor v2. So
suppose that C◦(G) has a chord c. The endpoints of c split C◦(G) into two paths, one
of which does not have v1 nor v2 as an internal vertex. Among all possible chords of
C◦(G) select c such that this path has minimal length. (It has always at least two edges,
because there is always at least one vertex �behind� a chord.) Then by de�nition of c this
path is an induced path in G and none of its (at least one) interior vertices is incident
to a chord of C◦(G), because such a chord would cross c. So we can select vn from these
vertices. By the way the path is selected with respect to c, this procedure does not select
v1 nor v2.

Regarding the runtime bound, we maintain the following information for each vertex
v: whether it has been chosen already, whether it is on the outer face of the current
graph, and the number of incident chords with respect to the current outer cycle. Given
a combinatorial embedding of G, it is straighforward to initialize this information in
linear time. (Every edge is considered at most twice, once for each endpoint on the outer
face.)

When removing a vertex, there are two cases: Either vn has two neighbors u1 and u2

only (Figure 2.19a), in which case the edge u1u2 ceases to be a chord. Thus, the chord
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count for u1 and u2 has to be decremented by one. Otherwise, there arem > 3 neighbors
u1, . . . ,nm (Figure 2.19b) and (1) all vertices u2, . . . ,um−1 are new on the outer cycle,
and (2) every edge incident to ui, for i ∈ {2, . . . ,k − 1}, and some other vertex on the
outer cycle other than ui−1 or ui+1 is a new chord (and the corresponding counters at
the endpoints have to by incremented by one).

vn

u1
u2

C◦(G)

(a)

vn

u1
u6

C◦(G)

(b)

Figure 2.19: Processing a vertex when computing a canonical ordering.

During the course of the algorithm every vertex appears once as a new vertex on the
outer face. At this point all incident edges are examined. Overall, every edge is inspected
at most twice�once for each endpoint�which takes linear time by Corollary 2.5. �

Using one of the linear time planarity testing algorithms, we can obtain a combina-
torial embedding for a given maximal planar graph G. As every maximal plane graph
is internally triangulated, we can then use Theorem 2.36 to provide us with a canonical
ordering for G, in overall linear time.

Corollary 2.37 Every maximal planar graph admits a canonical ordering. Moreover,
such an ordering can be computed in linear time. �

As simple as they may appear, canonical orderings are a powerful and versatile tool
to work with plane graphs. As an example, consider the following partitioning theorem.

Theorem 2.38 (Schnyder [18]) For every maximal planar graph G on at least three ver-
tices and every face f of G, the multigraph obtained from G by doubling the (three)
edges of f can be partitioned into three spanning trees.

Exercise 2.39 Prove Theorem 2.38. Hint: Take a canonical ordering and build one
tree by taking for every vertex vk the edge to its �rst neighbor on the outer cycle
C◦(Gk−1).

Of a similar �avor is the following open problem, for which only partial answers for
speci�c types of point sets are known [2].
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Problem 2.40 (In memoriam Ferran Hurtado (1951�2014))
Can every complete geometric graph on n = 2k vertices (the complete straight line graph
on a set of n points in general position) be partitioned into k plane spanning trees?

P(v3) = (1, 1)

P(v2) = (2, 0)P(v1) = (0, 0)

The shift-algorithm. Let (v1, . . . , vn) be a canonical or-
dering. The general plan is to construct an embedding
by inserting vertices in this order, starting from the
triangle P(v1) = (0, 0), P(v3) = (1, 1), P(v2) = (2, 0).
At each step, some vertices will be shifted to the right,
making room for the edges to the freshly inserted vertex. For each vertex vi already em-
bedded, maintain a set L(vi) of vertices that move rigidly together with vi. Initially,
L(vi) = {vi}, for 1 6 i 6 3.

Ensure that the following invariants hold after Step k (that is, after vk has been
inserted):

(i) P(v1) = (0, 0), P(v2) = (2k− 4, 0);

(ii) The x-coordinates of the points on C◦(Gk) = (w1, . . . ,wt) are strictly increasing
(in this order)4;

(iii) each edge of C◦(Gk) is drawn as a straight-line segment with slope ±1.
Clearly these invariants hold for G3, embedded as described above. Invariant (i) implies
that after Step n we have P(v2) = (2n − 4, 0), while (iii) implies that the Manhattan
distance5 between any two points on C◦(Gk) is even.

Idea: put vk+1 at µ(wp,wq), where wp, . . . ,wq are its neighbors on C◦(Gk) (recall
that they appear consecutively along C◦(Gk) by de�nition of a canonical ordering), where

µ((xp,yp), (xq,yq)) =
1
2
(xp − yp + xq + yq,−xp + yp + xq + yq)

is the point of intersection between the line `1 : y = x − xp + yp of slope 1 through
wp = (xp,yp) and the line `2 : y = xq − x+ yq of slope −1 through wq = (xq,yq).

Proposition 2.41 If the Manhattan distance between wp and wq is even, then µ(wp,wq)
is on the integer grid.

Proof. By Invariant (ii) we know that xp < xq. Suppose without loss of generality
that yp 6 yq. The Manhattan distance d of wp and wq is xq − xp + yq − yp, which by
assumption is an even number. Adding the even number 2xp to d yields the even number
xq + xp + yq − yp, half of which is the x-coordinate of µ((xp,yp), (xq,yq)). Adding the

4The notation is a bit sloppy here because both t and the wi in general depend on k. So in principle
we should write wki instead of wi. But as the k would just make a constant appearance throughout, we
omit it to avoid index clutter.

5The Manhattan distance of two points (x1,y1) and (x2,y2) is |x2 − x1| + |y2 − y1|.
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even number 2yp to d yields the even number xq − xp + yq + yp, half of which is the
y-coordinate of µ((xp,yp), (xq,yq)). �

After Step n we have P(vn) = (n− 2,n− 2), because vn is a neighbor of both v1 and v2.
However, P(vk+1) may not �see� all of wp, . . . ,wq, in case that the slope of wpwp+1 is 1
and/or the slope of wq−1wq is −1 (Figure 2.20).

wp

wq

vk+1

(a)

wp

wq

vk+1

(b)

Figure 2.20: (a) The new vertex vk+1 is adjacent to all of wp, . . . ,wq. If we place
vk+1 at µ(wp,wq), then some edges may overlap, in case that wp+1 lies
on the line of slope 1 through wp or wq−1 lies on the line of slope −1
through wq; (b) shifting wp+1, . . . ,wq−1 by one and wq, . . . ,wt by two
units to the right solves the problem.

In order to resolve these problems we shift some points around so that after the shift
wp+1 does not lie on the line of slope 1 through wp and wq−1 does not lie on the line of
slope −1 through wq. The process of inserting vk+1 then looks as follows.

1. Shift
⋃q−1

i=p+1 L(wi) to the right by one unit.

2. Shift
⋃t
i=q L(wi) to the right by two units.

3. P(vk+1) := µ(wp,wq).

4. L(vk+1) := {vk} ∪
⋃q−1

i=p+1 L(wi).

Observe that the Manhattan distance betweenwp andwq remains even, because the shift
increases their x-di�erence by two and leaves the y-coordinates unchanged. Therefore
by Proposition 2.41 the vertex vk+1 is embedded on the integer grid.

The slopes of the edges wpwp+1 and wq−1wq (might be just a single edge, in case
that p+1 = q) become < 1 in absolute value, whereas the slopes of all other edges along
the outer cycle remain ±1. As all edges from vk+1 to wp+1, . . . ,wq−1 have slope > 1 in
absolute value, and the edges vk+1wp and vk+1wq have slope ±1, each edge vk+1wi, for
i ∈ {p, . . . ,q} intersects the outer cycle in exactly one point, which is wi. In other words,
adding all edges from vk+1 to its neighbors in Gk as straight-line segments results in a
plane drawing.

Next we argue that the invariants (i)�(iii) are maintained. For (i) note that we start
shifting with wp+1 only so that even in case that v1 is a neighbor of vk+1, it is never
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shifted. On the other hand, v2 is always shifted by two, because we shift every vertex
starting from (and including) wq. Clearly both the shifts and the insertion of vk+1

maintain the strict order along the outer cycle, and so (ii) continues to hold. Finally,
regarding (iii) note that the edges wpwp+1 and wq−1wq (possibly this is just a single
edge) are the only edges on the outer cycle whose slope is changed by the shift. But these
edges do not appear on C◦(Gk+1) anymore. The two edges vk+1wp and vk+1wq incident
to the new vertex vk+1 that appear on C◦(Gk+1) have slope 1 and −1, respectively. So
all of (i)�(iii) are invariants of the algorithm, indeed.

So far we have argued about the shift with respect to vertices on the outer cycle of
Gk only. To complete the proof of Theorem 2.32 it remains to show that the drawing
remains plane under shifts also in its interior part.

Lemma 2.42 Let Gk, 3 6 k 6 n, be straight-line grid embedded as described, C◦(Gk) =

(w1, . . . ,wt), and let δ1 6 . . . 6 δt be non-negative integers. If for each i, we shift
L(wi) by δi to the right, then the resulting straight-line drawing is plane.

Proof. Induction on k. For G3 this is obvious. Let vk = w`, for some 1 < ` < t.
Construct a delta sequence ∆ for Gk−1 as follows. If vk has only two neighbors in Gk,
then C◦(Gk−1) = (w1, . . . ,w`−1,w`+1, . . . ,wt) and we set ∆ = δ1, . . . , δ`−1, δ`+1, . . . , δt.
Otherwise, C◦(Gk−1) = (w1, . . . ,w`−1 = u1, . . . ,um = w`+1, . . . ,wt), where u1, . . . ,um
are the m > 3 neighbors of vk in Gk. In this case we set

∆ = δ1, . . . , δ`−1, δ`, . . . , δ`︸ ︷︷ ︸
m times

, δ`+1, . . . , δt .

Clearly, ∆ is monotonely increasing and by the inductive assumption a correspondingly
shifted drawing of Gk−1 is plane. When adding vk and its incident edges back, the
drawing remains plane: All vertices u2, . . . ,um−1 (possibly none) move rigidly with (by
exactly the same amount as) vk by construction. Stretching the edges of the chain
w`−1,w`,w`+1 by moving w`−1 to the left and/or w`+1 to the right cannot create any
crossings. �

Linear time. (This part was not covered in the lecture.) The challenge in imple-
menting the shift algorithm e�ciently lies in the eponymous shift operations, which
modify the x-coordinates of potentially many vertices. In fact, it is not hard to see
that a naive implementation�which keeps track of all coordinates explicitly�may use
quadratic time. De Fraysseix et al. described an implmentation of the shift algorithm
that uses O(n logn) time. Then Chrobak and Payne [5] observed how to improve the
runtime to linear, using the following ideas.

Recall that P(vk+1) = (xk+1,yk+1), where

xk+1 =
1
2
(xp − yp + xq + yq) and

yk+1 =
1
2
(−xp + yp + xq + yq) =

1
2
((xq − xp) + yp + yq) . (2.43)
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Thus,

xk+1 − xp =
1
2
((xq − xp) + yq − yp) . (2.44)

⇒We need the y-coordinates of wp and wq together with the relative x-position (o�set)
of wp and wq only in to determine the y-coordinate of vk+1 and its o�set to wp.

Maintain the outer cycle as a rooted binary tree T , with root v1. For each node v of
T , the left child is the �rst vertex covered by insertion of v (if any), that is, wp+1 in
the terminology from above (if p+ 1 6= q), whereas the right child of v is the next node
along the outer cycle (if any; either along the current outer cycle or along the one at the
point where both points were covered together). See Figure 2.21 for an example.

(a)

vk+1

(b)

Figure 2.21: Maintaining the binary tree representation when inserting a new vertex
vk+1. Red (dashed) arrows point to left children, blue (solid) arrows
point to right children.

At each node v of T we also store its x-o�set dx(v) with respect to the parent node.
For the root v1 of the tree set dx(v1) = 0. In this way, a whole subtree (and, thus, a
whole set L(·)) can be shifted by changing a single o�set entry at its root.

Initially, dx(v1) = 0, dx(v2) = dx(v3) = 1, y(v1) = y(v2) = 0, y(v3) = 1, left(v1) =

left(v2) = left(v3) = 0, right(v1) = v3, right(v2) = 0, and right(v3) = v2.
Inserting a vertex vk+1 works as follows. As before, let w1, . . . ,wt denote the vertices

on the outer cycle C◦(Gk) and wp, . . . ,wq be the neighbors of vk+1.

1. Increment dx(wp+1) and dx(wq) by one. (This implements the shift.)

2. Compute ∆pq =
∑q
i=p+1 dx(wi). (This is the total o�set between wp and wq.)

3. Set dx(vk) ← 1
2
(∆pq + y(wq) − y(wp)) and y(vk) ← 1

2
(∆pq + y(wq) + y(wp)).

(This is exactly what we derived in (2.43) and (2.44).)

4. Set right(wp)← vk and right(vk)← wq. (Update the current outer cycle.)

5. If p+1 = q, then set left(vk)← 0; else set left(vk)← wp+1 and right(wq−1)← 0.
(Update the part that is covered by insertion of vk+1.)
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6. Set dx(wq)← ∆pq−dx(vk) and�unless p+1 = q�set dx(wp+1)← dx(wp+1)−

dx(vk). (Update the o�sets according to the changes in the previous two steps.)

Observe that the only step that possibly cannot be executed in constant time is Step 2.
But all vertices but the last vertex wq for which we sum the o�sets are covered by the
insertion of vk+1. As every vertex can be covered at most once, the overall complexity
of this step during the algorithm is linear. Therefore, this �rst phase of the algorithm
can be completed in linear time.

In a second phase, the �nal x-coordinates can be computed from the o�sets by a
single recursive pre-order traversal of the tree. The (pseudo�)code given below is to be
called with the root vertex v1 and an o�set of zero. Clearly this yields a linear time
algorithm overall.

compute_coordinate(Vertex v, Offset d) {

if (v == 0) return;

x(v) = dx(v) + d;

compute_coordinate(left(v), x(v));

compute_coordinate(right(v), x(v));

}

Remarks. From a geometric complexity point of view, Theorem 2.32 provides very good
news for planar graphs in a similar way that the Euler Formula does from a combinatorial
complexity point of view. Euler's Formular tells us that we can obtain a combinatorial
representation (for instance, as a DCEL) of any plane graph using O(n) space, where n
is the number of vertices.

Now the shift algorithm tells us that for any planar graph we can even �nd a geometric
plane (straight-line) representation using O(n) space. In addition to the combinatorial
information, we only have to store 2n numbers from the range {0, 1, . . . , 2n− 4}.

When we make such claims regarding space complexity we implicitly assume the so-
called word RAM model. In this model each address in memory contains a word of b
bits, which means that it can be used to represent any integer from {0, . . . , 2b − 1}. One
also assumes that b is su�ciently large, for instance, in our case b > logn.

There are also di�erent models such as the bit complexity model, where one is charged
for every bit used to store information. In our case that would already incur an additional
factor of logn for the combinatorial representation: for instance, for each halfedge we
store its endpoint, which is an index from {1, . . . ,n}.

Questions

1. What is an embedding? What is a planar/plane graph? Give the de�nitions
and explain the di�erence between planar and plane.

2. How many edges can a planar graph have? What is the average vertex degree
in a planar graph? Explain Euler's formula and derive your answers from it.
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3. How can plane graphs be represented on a computer? Explain the DCEL data
structure and how to work with it.

4. How can a given plane graph be (topologically) triangulated e�ciently? Ex-
plain what it is, including the di�erence between topological and geometric trian-
gulation. Give a linear time algorithm, for instance, as in Theorem 2.25.

5. What is a combinatorial embedding? When are two combinatorial embeddings
equivalent? Which graphs have a unique combinatorial embedding? Give the
de�nitions, explain and prove Whitney's Theorem.

6. What is a canonical ordering and which graphs admit such an ordering? For
a given graph, how can one �nd a canonical ordering e�ciently? Give the
de�nition. State and prove Theorem 2.36.

7. Which graphs admit a plane embedding using straight line edges? Can one
bound the size of the coordinates in such a representation? State and prove
Theorem 2.32.
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Chapter 3

Polygons

Although we can think of a line ` ⊂ R2 as an in�nite point set that consists of all points
in R2 that are on `, there still exists a �nite description for `. Such a description is,
for instance, provided by the three coe�cients a,b, c ∈ R of an equation of the form
ax + by = c, with (a,b) 6= (0, 0). Actually this holds true for all of the fundamental
geometric objects that were mentioned in the previous section: Each of them has constant
description complexity (or, informally, just size), that is, it can be described by a
constant1 number of parameters.

In this course we will typically deal with objects that are not of constant size. Often
these are formed by merely aggregating constant-size objects, for instance, points to
form a �nite set of points. But sometimes we also demand additional structure that
goes beyond aggregation only. Probably the most fundamental geometric objects of this
type are what we call polygons. You probably learned this term in school, but what
is a polygon precisely? Consider the examples shown in Figure 3.1. Are all of these
polygons? If not, where would you draw the line?

(a) (b) (c) (d) (e) (f)

Figure 3.1: What is a polygon?

3.1 Classes of Polygons

Obviously, there is not the right answer to such a question and certainly there are
di�erent types of polygons. Often the term polygon is used somewhat sloppily in place

1Unless speci�ed di�erently, we will always assume that the dimension is (a small) constant. In a
high-dimensional space Rd, one has to account for a description complexity of Θ(d).
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of what we call a simple polygon, de�ned below.

De�nition 3.1 A simple polygon is a compact region P ⊂ R2 that is bounded by a simple
closed curve γ : [0, 1] → R2 that consists of a �nite number of line segments. A
curve is a continuous map γ : [0, 1] → R2. A curve γ is closed, if γ(0) = γ(1) and it
is simple if it is injective on [0, 1), that is, the curve does not intersect itself.

Out of the examples shown above only Polygon 3.1a is simple. For each of the remaining
polygons it is impossible to combine the bounding segments into a simple closed curve.

The term compact for subsets of Rd means bounded and closed. A subset of P ⊂ Rd
is bounded, if it is contained in the ball of radius r around the origin, for some �nite
r > 0. Being closed means that the boundary is considered to be part of the polygon.
In order to formally de�ne these terms, let us brie�y review a few basic notions from
topology.

The standard topology of Rd is de�ned in terms of the Euclidean metric. A point
p ∈ Rd is interior to a set P ⊆ Rd, if there exists an ε-ball Bε(p) = {x ∈ Rd : ||x−p|| < ε}

around p, for some ε > 0, that is completely contained in P. A set is open, if all of its
points are interior; and it is closed, if its complement is open.

Exercise 3.2 Determine for each of the following sets whether they are open or closed
in R2. a) B1(0) b) {(1, 0)} c) R2 d) R2\Z2 e) R2\Q2 f) {(x,y) : x ∈ R,y > 0}

Exercise 3.3 Show that the union of countably many open sets in Rd is open. Show
that the union of a �nite number of closed sets in Rd is closed. (These are two of
the axioms that de�ne a topology. So the statements are needed to assert that the
metric topology is a topology, indeed.) What follows for intersections of open and
closed sets? Finally, show that the union of countably many closed sets in Rd is
not necessarily closed.

The boundary ∂P of a set P ⊂ Rd consists of all points that are neither interior to P
nor to its complement Rd \ P. By de�nition, for every p ∈ ∂P every ball Bε(p) contains
both points from P and from Rd\P. Sometimes one wants to consider a set P ⊂ Rd open
although it is not. In that case one can resort to the interior P◦ of P that is formed by
the subset of points interior to P. Similarly, the closure P of P is de�ned by P = P∪ ∂P.

Lower-dimensional objects, such as line segments in R2 or triangles in R3, do not
possess any interior point (because the ε-balls needed around any such point are full-
dimensional). Whenever we want to talk about the interior of a lower-dimensional object,
we use the quali�er relative and consider it relative to the smallest a�ne subspace that
contains the object.

For instance, the smallest a�ne subspace that contains a line segment is a line and
so the relative interior of a line segment in R2 consists of all points except the endpoints,
just like for an interval in R1. Similarly, for a triangle in R3 the smallest a�ne subspace
that contains it is a plane. Hence its relative interior is just the interior of the triangle,
considered as a two-dimensional object.
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Exercise 3.4 Show that for any P ⊂ Rd the interior P◦ is open. (Why is there some-
thing to show to begin with?) Show that for any P ⊂ Rd the closure P is closed.

When describing a simple polygon P it is su�cient to describe only its boundary
∂P. As ∂P by de�nition is a simple closed curve γ that consists of �nitely many line
segments, we can e�ciently describe it as a sequence p1, . . . ,pn of points, such that γ
is formed by the line segments p1p2,p2p3, . . . ,pn−1pn,pnp1. These points are referred
to as the vertices of the polygon, and the segments connecting them are referred as the
edges of the polygon. The set of vertices of a polygon P is denoted by V(P), and the
set of edges of P is denoted by E(P).

Knowing the boundary, it is easy to tell apart the (bounded) interior from the (un-
bounded) exterior. This is asserted even for much more general curves by the well-known
Jordan-Curve Theorem.

Theorem 3.5 (Jordan 1887) Any simple closed curve γ : [0, 1] → R2 divides the plane
into exactly two connected components whose common boundary is formed by γ.

In full generality, the proof of the deceptively obvious claim is surprisingly di�cult. We
will not prove it here, the interested reader can �nd a proof, for instance, in the book
of Mohar and Thomassen [11]. There exist di�erent generalizations of the theorem and
there also has been some debate about to which degree the original proof of Jordan is
actually correct. For simple polygons the situation is easier, though. The essential idea
can be worked out algorithmically, which we leave as an exercise.

Exercise 3.6 Describe an algorithm to decide whether a point lies inside or outside
of a simple polygon. More precisely, given a simple polygon P ⊂ R2 as a list of its
vertices (v1, v2, . . . , vn) in counterclockwise order and a query point q ∈ R2, decide
whether q is inside P, on the boundary of P, or outside. The runtime of your
algorithm should be O(n).

There are good reasons to ask for the boundary of a polygon to form a simple curve:
For instance, in the example depicted in Figure 3.1b there are several regions for which it
is completely unclear whether they should belong to the interior or to the exterior of the
polygon. A similar problem arises for the interior regions in Figure 3.1f. But there are
more general classes of polygons that some of the remaining examples fall into. We will
discuss only one such class here. It comprises polygons like the one from Figure 3.1d.

De�nition 3.7 A region P ⊂ R2 is a simple polygon with holes if it can be described as
P = F \

⋃
H∈HH

◦, where H is a �nite collection of pairwise disjoint simple polygons
(called holes) and F is a simple polygon for which F◦ ⊃ ⋃H∈HH.

The way this de�nition heavily depends on the notion of simple polygons makes it
straightforward to derive a similar trichotomy as the Jordan Curve Theorem provides
for simple polygons, that is, every point in the plane is either inside, or on the boundary,
or outside of P (exactly one of these three).
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3.2 Polygon Triangulation

From a topological point of view, a simple polygon is nothing but a disk and so it is a very
elementary object. But geometrically a simple polygon can be�as if mocking the label
we attached to it�a pretty complicated shape, see Figure 3.2 for an example. While
there is an easy and compact one-dimensional representation in terms of the boundary,
as a sequence of vertices/points, it is often desirable to work with a more structured
representation of the whole two-dimensional shape.

Figure 3.2: A simple (?) polygon.

For instance, it is not straightforward to compute the area of a general simple polygon.
In order to do so, one usually describes the polygon in terms of simpler geometric objects,
for which computing the area is easy. Good candidates for such shapes are triangles,
rectangles, and trapezoids. Indeed, it is not hard to show that every simple polygon
admits a �nice� partition into triangles, which we call a triangulation.

De�nition 3.8 A triangulation of a simple polygon P is a collection T of triangles, such
that

(1) P =
⋃
T∈T T ;

(2) V(P) =
⋃
T∈T V(T); and

(3) for every distinct pair T ,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Exercise 3.9 Show that each condition in De�nition 3.8 is necessary in the following
sense: Give an example of a non-triangulation that would form a triangulation if
the condition was omitted. Is the de�nition equivalent if (3) is replaced by T◦∩U◦ =

∅, for every distinct pair T ,U ∈ T?

If we are given a triangulation of a simple polygon P it is easy to compute the area of P
by simply summing up the area of all triangles from T. Triangulations are an incredibly
useful tool in planar geometry, and one reason for their importance is that every simple
polygon admits one.

Theorem 3.10 Every simple polygon has a triangulation.
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Proof. Let P be a simple polygon on n vertices. We prove the statement by induction on
n. For n = 3 we face a triangle P that is a triangulation by itself. For n > 3 consider the
lexicographically smallest vertex v of P, that is, among all vertices of P with a smallest x-
coordinate the one with smallest y-coordinate. Denote the neighbors of v (next vertices)
along ∂P by u and w. Consider the line segment uw. We distinguish two cases.

Case 1: except for its endpoints u and w, the segment uw lies completely in P◦.
Then uw splits P into two smaller polygons, the triangle uvw and a simple polygon P ′

on n− 1 vertices (Figure 3.3a). By the inductive hypothesis, P ′ has a triangulation that
together with T yields a triangulation of P.

v

u

w

(a) Case 1.

v

u

w

p

(b) Case 2.

Figure 3.3: Cases in the proof of Theorem 3.10.

Case 2: the relative interior of uw does not lie completely in P◦ (Figure 3.3b). By
choice of v, the polygon P is contained in the closed halfplane to the right of the vertical
line through v. Therefore, as the segments uv and vw are part of a simple closed curve
de�ning ∂P, every point su�ciently close to v and between the rays vu and vw must be
in P◦.

On the other hand, since uw 6⊂ P◦, there is some point from ∂P in the interior of
the triangle T = uvw (by the choice of v the points u, v,w are not collinear and so T is
a triangle, indeed) or on the line segment uw. In particular, as ∂P is composed of line
segments, there is a vertex of P in T◦ or on uw (otherwise, a line segment would have
to intersect the line segment uw twice, which is impossible). Let p denote a leftmost
such vertex. Then the open line segment vp is contained in T◦ and, thus, it splits P into
two polygons P1 and P2 on less than n vertices each (in one of them, u does not appear
as a vertex, whereas w does not appear as a vertex in the other). By the inductive
hypothesis, both P1 and P2 have triangulations and their union yields a triangulation of
P. �

The con�guration from Case 1 above is called an ear : Three consecutive vertices u, v,w
of a simple polygon P such that the relative interior of uw lies in P◦. In fact, we could
have skipped the analysis for Case 2 by referring to the following theorem.

Theorem 3.11 (Meisters [9, 10]) Every simple polygon that is not a triangle has two
non-overlapping ears, that is, two ears A and B such that A◦ ∩ B◦ = ∅.
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But knowing Theorem 3.10 we can obtain Theorem 3.11 as a direct consequence of the
following

Theorem 3.12 Every triangulation of a simple polygon on n > 4 vertices contains at
least two (triangles that are) ears.

Exercise 3.13 Prove Theorem 3.12.

Exercise 3.14 Let P be a simple polygon with vertices v1, v2, . . . , vn (in counterclock-
wise order), where vi has coordinates (xi,yi). Show that the area of P is

1
2

n∑
i=1

xi+1yi − xiyi+1,

where (xn+1,yn+1) = (x1,y1).

The number of edges and triangles in a triangulation of a simple polygon are completely
determined by the number of vertices, as the following simple lemma shows.

Lemma 3.15 Every triangulation of a simple polygon on n > 3 vertices consists of
n− 2 triangles and 2n− 3 edges.

Proof. Proof by induction on n. The statement is true for n = 3. For n > 3 consider
a simple polygon P on n vertices and an arbitrary triangulation T of P. Any edge uv in
T that is not an edge of P (and there must be such an edge because P is not a triangle)
partitions P into two polygons P1 and P2 with n1 and n2 vertices, respectively. Since
n1,n2 < n we conclude by the inductive hypothesis that T partitions P1 into n1 − 2
triangles and P2 into n2 − 2 triangles, using 2n1 − 3 and 2n2 − 3 edges, respectively.

All vertices of P appear in exactly one of P1 or P2, except for u and v, which appear in
both. Therefore n1+n2 = n+2 and so the number of triangles in T is (n1−2)+(n2−2) =

(n1 + n2) − 4 = n + 2 − 4 = n − 2. Similarly, all edges of T appear in exactly one of P1
or P2, except for the edge uv, which appears in both. Therefore the number of edges in
T is (2n1 − 3) + (2n2 − 3) − 1 = 2(n1 + n2) − 7 = 2(n+ 2) − 7 = 2n− 3. �

The universal presence of triangulations is something particular about the plane: The
natural generalization of Theorem 3.10 to dimension three and higher does not hold.
What is this generalization, anyway?

Tetrahedralizations in R3. A simple polygon is a planar object that is a topological disk
that is locally bounded by patches of lines. The corresponding term inR3 is a polyhedron,
and although we will not formally de�ne it here yet, a literal translation of the previous
sentence yields an object that topologically is a ball and is locally bounded by patches
of planes. A triangle in R2 corresponds to a tetrahedron in R3 and a tetrahedralization
is a nice partition into tetrahedra, where �nice� means that the union of the tetrahedra
covers the object, the vertices of the tetrahedra are vertices of the polyhedron, and any
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two distinct tetrahedra intersect in either a common triangular face, or a common edge,
or a common vertex, or not at all.2

Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization. The
following construction is due to Schönhardt [12]. It is based on a triangular prism, that
is, two congruent triangles placed in parallel planes where the corresponding sides of both
triangles are connected by a rectangle (Figure 3.4a). Then one triangle is twisted/rotated
slightly within its plane. As a consequence, the rectangular faces are not plane anymore,
but they obtain an inward dent along their diagonal in direction of the rotation (Fig-
ure 3.4b). The other (former) diagonals of the rectangular faces�labeled ab ′, bc ′, and

(a)

a

b

c

a ′ c ′

b ′

(b)

Figure 3.4: The Schönhardt polyhedron cannot be subdivided into tetrahedra without
adding new vertices.

ca ′ in Figure 3.4b�are now epigonals, that is, they lie in the exterior of the polyhe-
dron. Since these epigonals are the only edges between vertices that are not part of
the polyhedron, there is no way to add edges to form a tetrahedron for a subdivision.
Clearly the polyhedron is not a tetrahedron by itself, and so we conclude that it does
not admit a subdivision into tetrahedra without adding new vertices. If adding new
vertices�so-called Steiner vertices�is allowed, then there is no problem to construct a
tetrahedralization, and this holds true in general.

Algorithms. Knowing that a triangulation exists is nice, but it is much better to know
that it can also be constructed e�ciently.

Exercise 3.16 Convert Theorem 3.10 into an O(n2) time algorithm to construct a
triangulation for a given simple polygon on n vertices.

The runtime achieved by the straightforward application of Theorem 3.10 is not optimal.
We will revisit this question at several times during this course and discuss improved
algorithms for the problem of triangulating a simple polygon.

2These �nice� subdivisions can be de�ned in an abstract combinatorial setting, where they are called
simplicial complices.
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The best (in terms of worst-case runtime) algorithm known due to Chazelle [4] com-
putes a triangulation in linear time. But this algorithm is very complicated and we will
not discuss it here. There is also a somewhat simpler randomized algorithm to compute
a triangulation in expected linear time [2], which we will not discuss in detail, either.
Instead you will later see a much simpler algorithm with a pretty-close-to linear runtime
bound. The question of whether there exists a simple (which is not really a well-de�ned
term, of course, except that Chazelle's Algorithm does not qualify) deterministic linear
time algorithm to triangulate a simple polygon remains open [7].

Polygons with holes. It is interesting to note that the complexity of the problem changes
to Θ(n logn), if the polygon may contain holes [3]. This means that there is an algorithm
to construct a triangulation for a given simple polygon with holes on a total of n vertices
(counting both the vertices on the outer boundary and those of holes) in O(n logn)

time. But there is also a lower bound of Ω(n logn) operations that holds in all models
of computation in which there exists the corresponding lower bound for comparison-
based sorting. This di�erence in complexity is a very common pattern: There are many
problems that are (sometimes much) harder for simple polygons with holes than for
simple polygons. So maybe the term �simple� has some justi�cation, after all. . .

Genaral triangle covers. What if we drop the �niceness� conditions required for triangu-
lations and just want to describe a given simple polygon as a union of triangles? It
turns out this is a rather drastic change and, for instance, it is unlikely that we can
e�ciently �nd an optimal/minimal description of this type: Christ has shown [5] that it
is NP-hard to decide whether for a simple polygon P on n vertices and a positive integer
k, there exists a set of at most k triangles whose union is P. In fact, the problem is not
even known to be in NP, because it is not clear whether the coordinates of solutions can
always be encoded compactly.

3.3 The Art Gallery Problem

In 1973 Victor Klee posed the following question: �How many guards are necessary, and
how many are su�cient to patrol the paintings and works of art in an art gallery with n
walls?� From a geometric point of view, we may think of an �art gallery with n walls� as
a simple polygon bounded by n edges, that is, a simple polygon P with n vertices. And
a guard can be modeled as a point where we imagine the guard to stand and observe
everything that is in sight. In sight, �nally, refers to the walls of the gallery (edges of
the polygon) that are opaque and, thus, prevent a guard to see what is behind. In other
words, a guard (point) g can watch over every point p ∈ P, for which the line segment
gp lies completely in P◦, see Figure 3.5.

It is not hard to see that bn/3c guards are necessary in general.
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g

Figure 3.5: The region that a guard g can observe.

Exercise 3.17 Describe a family (Pn)n>3 of simple polygons such that Pn has n vertices
and at least bn/3c guards are needed to guard it.

What is more surprising: bn/3c guards are always su�cient as well. Chvátal [6] was
the �rst to prove that, but then Fisk [8] gave a much simpler proof using�you may
have guessed it�triangulations. Fisk's proof was considered so beautiful that it was
included into �Proofs from THE BOOK� [1], a collection inspired by Paul Erd®s' belief
in �a place where God keeps aesthetically perfect proofs�. The proof is based on the
following lemma.

Lemma 3.18 Every triangulation of a simple polygon is 3-colorable. That is, each
vertex can be assigned one of three colors in such a way that adjacent vertices
receive di�erent colors.

Proof. Induction on n. For n = 3 the statement is obvious. For n > 3, by Theorem 3.12
the triangulation contains an ear uvw. Cutting o� the ear creates a triangulation of a
polygon on n − 1 vertices, which by the inductive hypothesis admits a 3-coloring. Now
whichever two colors the vertices u and w receive in this coloring, there remains a third
color to be used for v. �

Theorem 3.19 (Fisk [8]) Every simple polygon on n vertices can be guarded using at
most bn/3c guards.
Proof. Consider a triangulation of the polygon and a 3-coloring of the vertices as ensured
by Lemma 3.18. Take the smallest color class, which clearly consists of at most bn/3c
vertices, and put a guard at each vertex. As every point of the polygon is contained in
at least one triangle and every triangle has exactly one vertex in the guarding set, the
whole polygon is guarded. �

Questions

8. What is a simple polygon/a simple polygon with holes Explain the de�nitions
and provide some examples of members and non-members of the respective classes.

55



Chapter 3. Polygons Geometry: C&A 2014

Figure 3.6: A triangulation of a simple polygon on 17 vertices and a 3-coloring of it.
The vertices shown solid orange form the smallest color class and guard
the polygon using b17/3c = 5 guards.

For a given polygon you should be able to tell which of these classes it belongs to
or does not belong to and argue why this is the case.

9. What is a closed/open/bounded set in Rd? What is the interior/closure of a
point set? Explain the de�nitions and provide some illustrative examples. For a
given set you should be able to argue which of the properties mentioned it possesses.

10. What is a triangulation of a simple polygon? Does it always exist? Explain
the de�nition and provide some illustrative examples. Present the proof of Theo-
rem 3.10 in detail.

11. How about higher dimensional generalizations? Can every polyhedron in R3

be nicely subdivided into tetrahedra? Explain Schönhardt's construction.

12. How many points are needed to guard a simple polygon? Present the proofs of
Theorem 3.12, Lemma 3.18, and Theorem 3.19 in detail.
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Chapter 4

Convex Hull

There exists an incredible variety of point sets and polygons. Among them, some have
certain properties that make them �nicer� than others in some respect. For instance,
look at the two polygons shown below.

(a) A convex polygon. (b) A non-convex polygon.

Figure 4.1: Examples of polygons: Which do you like better?

As it is hard to argue about aesthetics, let us take a more algorithmic stance. When
designing algorithms, the polygon shown on the left appears much easier to deal with
than the visually and geometrically more complex polygon shown on the right. One
particular property that makes the left polygon nice is that one can walk between any
two vertices along a straight line without ever leaving the polygon. In fact, this statement
holds true not only for vertices but for any two points within the polygon. A polygon
or, more generally, a set with this property is called convex.

De�nition 4.1 A set P ⊆ Rd is convex if pq ⊆ P, for any p,q ∈ P.
An alternative, equivalent way to phrase convexity would be to demand that for every
line ` ⊂ Rd the intersection `∩P be connected. The polygon shown in Figure 4.1b is not
convex because there are some pairs of points for which the connecting line segment is not
completely contained within the polygon. An immediate consequence of the de�nition
is the following
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Observation 4.2 For any family (Pi)i∈I of convex sets, the intersection
⋂
i∈I Pi is con-

vex.

Indeed there are many problems that are comparatively easy to solve for convex sets
but very hard in general. We will encounter some particular instances of this phenomenon
later in the course. However, not all polygons are convex and a discrete set of points is
never convex, unless it consists of at most one point only. In such a case it is useful to
make a given set P convex, that is, approximate P with or, rather, encompass P within
a convex set H ⊇ P. Ideally, H di�ers from P as little as possible, that is, we want H to
be a smallest convex set enclosing P.

At this point let us step back for a second and ask ourselves whether this wish makes
sense at all: Does such a set H (always) exist? Fortunately, we are on the safe side
because the whole space Rd is certainly convex. It is less obvious, but we will see below
that H is actually unique. Therefore it is legitimate to refer to H as the smallest convex
set enclosing P or�shortly�the convex hull of P.

4.1 Convexity

In this section we will derive an algebraic characterization of convexity. Such a charac-
terization allows to investigate convexity using the machinery from linear algebra.

Consider P ⊂ Rd. From linear algebra courses you should know that the linear hull

lin(P) :=
{
q
∣∣∣ q =

∑
λipi ∧ ∀ i : pi ∈ P, λi ∈ R

}
is the set of all linear combinations of P (smallest linear subspace containing P). For
instance, if P = {p} ⊂ R2 \ {0} then lin(P) is the line through p and the origin.

Similarly, the a�ne hull

a�(P) :=
{
q
∣∣∣ q =

∑
λipi ∧

∑
λi = 1 ∧ ∀ i : pi ∈ P, λi ∈ R

}
is the set of all a�ne combinations of P (smallest a�ne subspace containing P). For
instance, if P = {p,q} ⊂ R2 and p 6= q then a�(P) is the line through p and q.

It turns out that convexity can be described in a very similar way algebraically, which
leads to the notion of convex combinations.

Proposition 4.3 A set P ⊆ Rd is convex if and only if
∑n
i=1 λipi ∈ P, for all n ∈ N,

p1, . . . ,pn ∈ P, and λ1, . . . , λn > 0 with
∑n
i=1 λi = 1.

Proof. �⇐�: obvious with n = 2.
�⇒�: Induction on n. For n = 1 the statement is trivial. For n > 2, let pi ∈ P

and λi > 0, for 1 6 i 6 n, and assume
∑n
i=1 λi = 1. We may suppose that λi > 0,

for all i. (Simply omit those points whose coe�cient is zero.) We need to show that∑n
i=1 λipi ∈ P.
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De�ne λ =
∑n−1

i=1 λi and for 1 6 i 6 n − 1 set µi = λi/λ. Observe that µi > 0
and

∑n−1

i=1 µi = 1. By the inductive hypothesis, q :=
∑n−1

i=1 µipi ∈ P, and thus by
convexity of P also λq + (1 − λ)pn ∈ P. We conclude by noting that λq + (1 − λ)pn =

λ
∑n−1

i=1 µipi + λnpn =
∑n
i=1 λipi. �

De�nition 4.4 The convex hull conv(P) of a set P ⊆ Rd is the intersection of all convex
supersets of P.

At �rst glance this de�nition is a bit scary: There may be a whole lot of supersets for
any given P and it not clear that taking the intersection of all of them yields something
sensible to work with. However, by Observation 4.2 we know that the resulting set
is convex, at least. The missing bit is provided by the following proposition, which
characterizes the convex hull in terms of exactly those convex combinations that appeared
in Proposition 4.3 already.

Proposition 4.5 For any P ⊆ Rd we have

conv(P) =

{
n∑
i=1

λipi

∣∣∣∣∣ n ∈ N ∧

n∑
i=1

λi = 1 ∧ ∀i ∈ {1, . . . ,n} : λi > 0 ∧ pi ∈ P
}

.

The elements of the set on the right hand side are referred to as convex combinations
of P.
Proof. �⊇�: Consider a convex set C ⊇ P. By Proposition 4.3 (only-if direction) the
right hand side is contained in C. As C was arbitrary, the claim follows.

�⊆�: Denote the set on the right hand side by R. Clearly R ⊇ P. We show that R
forms a convex set. Let p =

∑n
i=1 λipi and q =

∑n
i=1 µipi be two convex combinations.

(We may suppose that both p and q are expressed over the same pi by possibly adding
some terms with a coe�cient of zero.)

Then for λ ∈ [0, 1] we have λp + (1 − λ)q =
∑n
i=1(λλi + (1 − λ)µi)pi ∈ R, as

λλi︸︷︷︸
>0

+(1 − λ)︸ ︷︷ ︸
>0

µi︸︷︷︸
>0

> 0, for all 1 6 i 6 n, and
∑n
i=1(λλi+(1−λ)µi) = λ+(1−λ) = 1. �

In linear algebra the notion of a basis in a vector space plays a fundamental role. In
a similar way we want to describe convex sets using as few entities as possible, which
leads to the notion of extremal points, as de�ned below.

De�nition 4.6 The convex hull of a �nite point set P ⊂ Rd forms a convex polytope.
Each p ∈ P for which p /∈ conv(P \ {p}) is called a vertex of conv(P). A vertex of
conv(P) is also called an extremal point of P. A convex polytope in R2 is called a
convex polygon.

Essentially, the following proposition shows that the term vertex above is well de�ned.

Proposition 4.7 A convex polytope in Rd is the convex hull of its vertices.
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Proof. Let P = {p1, . . . ,pn}, n ∈ N, such that without loss of generality p1, . . . ,pk
are the vertices of P := conv(P). We prove by induction on n that conv(p1, . . . ,pn) ⊆
conv(p1, . . . ,pk). For n = k the statement is trivial.

For n > k, pn is not a vertex of P and hence pn can be expressed as a convex
combination pn =

∑n−1

i=1 λipi. Thus for any x ∈ P we can write x =
∑n
i=1 µipi =∑n−1

i=1 µipi+µn
∑n−1

i=1 λipi =
∑n−1

i=1 (µi+µnλi)pi. As
∑n−1

i=1 (µi+µnλi) = 1, we conclude
inductively that x ∈ conv(p1, . . . ,pn−1) ⊆ conv(p1, . . . ,pk). �

4.2 Classical Theorems for Convex Sets

Next we will discuss a few fundamental theorems about convex sets in Rd. The proofs
typically use the algebraic characterization of convexity and then employ some techniques
from linear algebra.

Theorem 4.8 (Radon [8]) Any set P ⊂ Rd of d + 2 points can be partitioned into two
disjoint subsets P1 and P2 such that conv(P1) ∩ conv(P2) 6= ∅.
Proof. Let P = {p1, . . . ,pd+2}. No more than d + 1 points can be a�nely independent
in Rd. Hence suppose without loss of generality that pd+2 can be expressed as an a�ne
combination of p1, . . . ,pd+1, that is, there exist λ1, . . . , λd+1 ∈ R with

∑d+1

i=1 λi = 1
and

∑d+1

i=1 λipi = pd+2. Let P1 be the set of all points pi for which λi is positive and
let P2 = P \ P1. Then setting λd+2 = −1 we can write

∑
pi∈P1 λipi =

∑
pi∈P2 −λipi,

where all coe�cients on both sides are non-negative. Renormalizing by µi = λi/µ and
νi = λi/ν, where µ =

∑
pi∈P1 λi and ν = −

∑
pi∈P2 λi, yields convex combinations∑

pi∈P1 µipi =
∑
pi∈P2 νipi that describe a common point of conv(P1) and conv(P2). �

Theorem 4.9 (Helly) Consider a collection C = {C1, . . . ,Cn} of n > d+1 convex subsets
of Rd, such that any d+1 pairwise distinct sets from C have non-empty intersection.
Then also the intersection

⋂n
i=1Ci of all sets from C is non-empty.

Proof. Induction on n. The base case n = d + 1 holds by assumption. Hence suppose
that n > d + 2. Consider the sets Di =

⋂
j6=iCj, for i ∈ {1, . . . ,n}. As Di is an

intersection of n − 1 sets from C, by the inductive hypothesis we know that Di 6= ∅.
Therefore we can �nd some point pi ∈ Di, for each i ∈ {1, . . . ,n}. Now by Theorem 4.8
the set P = {p1, . . . ,pn} can be partitioned into two disjoint subsets P1 and P2 such that
conv(P1) ∩ conv(P2) 6= ∅. We claim that any point p ∈ conv(P1) ∩ conv(P2) also lies in⋂n
i=1Ci, which completes the proof.
Consider some Ci, for i ∈ {1, . . . ,n}. By construction Dj ⊆ Ci, for j 6= i. Thus pi

is the only point from P that may not be in Ci. As pi is part of only one of P1 or P2,
say, of P1, we have P2 ⊆ Ci. The convexity of Ci implies conv(P2) ⊆ Ci and, therefore,
p ∈ Ci. �
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Theorem 4.10 (Carathéodory [3]) For any P ⊂ Rd and q ∈ conv(P) there exist k 6 d+ 1
points p1, . . . ,pk ∈ P such that q ∈ conv(p1, . . . ,pk).

Exercise 4.11 Prove Theorem 4.10.

Theorem 4.12 (Separation Theorem) Any two compact convex sets C,D ⊂ Rd with C ∩
D = ∅ can be separated strictly by a hyperplane, that is, there exists a hyperplane
h such that C and D lie in the opposite open halfspaces bounded by h.

Proof. Consider the distance function δ : C×D→ R with (c,d) 7→ ||c−d||. Since C×D
is compact and δ is continuous and strictly bounded from below by 0, the function δ
attains its minimum at some point (c0,d0) ∈ C × D with δ(c0,d0) > 0. Let h be the
hyperplane perpendicular to the line segment c0d0 and passing through the midpoint of
c0 and d0.

c0
d0

C
Dh

c ′

If there was a point, say, c ′ in C ∩ h, then by
convexity of C the whole line segment coc ′ lies in
C and some point along this segment is closer to
d0 than is c0, in contradiction to the choice of c0.
The �gure shown to the right depicts the situation
in R2. If, say, C has points on both sides of h, then
by convexity of C it has also a point on h, but we
just saw that there is no such point. Therefore, C
andDmust lie in di�erent open halfspaces bounded
by h. �

The statement above is wrong for arbitrary (not necessarily compact) convex sets. How-
ever, if the separation is not required to be strict (the hyperplane may intersect the sets),
then such a separation always exists, with the proof being a bit more involved (cf. [7],
but also check the errata on Matou²ek's webpage).

Exercise 4.13 Show that the Separation Theorem does not hold in general, if not both
of the sets are convex.

Exercise 4.14 Prove or disprove:

(a) The convex hull of a compact subset of Rd is compact.

(b) The convex hull of a closed subset of Rd is closed.

Altogether we obtain various equivalent de�nitions for the convex hull, summarized
in the following theorem.

Theorem 4.15 For a compact set P ⊂ Rd we can characterize conv(P) equivalently as
one of

(a) the smallest (w. r. t. set inclusion) convex subset of Rd that contains P;
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(b) the set of all convex combinations of points from P;

(c) the set of all convex combinations formed by d+ 1 or fewer points from P;

(d) the intersection of all convex supersets of P;

(e) the intersection of all closed halfspaces containing P.

Exercise 4.16 Prove Theorem 4.15.

4.3 Planar Convex Hull

Although we know by now what is the convex hull of point set, it is not yet clear how
to construct it algorithmically. As a �rst step, we have to �nd a suitable representation
for convex hulls. In this section we focus on the problem in R2, where the convex hull
of a �nite point set forms a convex polygon. A convex polygon is easy to represent,
for instance, as a sequence of its vertices in counterclockwise orientation. In higher
dimensions �nding a suitable representation for convex polytopes is a much more delicate
task.

Problem 4.17 (Convex hull)

Input: P = {p1, . . . ,pn} ⊂ R2, n ∈ N.

Output: Sequence (q1, . . . ,qh), 1 6 h 6 n, of the vertices of conv(P) (ordered counter-
clockwise).

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure 4.2: Convex Hull of a set of points in R2.

Another possible algorithmic formulation of the problem is to ignore the structure of the
convex hull and just consider it as a point set.

64



Geometry: C&A 2014 4.3. Planar Convex Hull

Problem 4.18 (Extremal points)

Input: P = {p1, . . . ,pn} ⊂ R2, n ∈ N.
Output: Set Q ⊆ P of the vertices of conv(P).

Degeneracies. A couple of further clari�cations regarding the above problem de�nitions
are in order.

First of all, for e�ciency reasons an input is usually speci�ed as a sequence of points.
Do we insist that this sequence forms a set or are duplications of points allowed?

What if three points are collinear? Are all of them considered extremal? According
to our de�nition from above, they are not and that is what we will stick to. But note
that there may be cases where one wants to include all such points, nevertheless.

By the Separation Theorem, every extremal point p can be separated from the convex
hull of the remaining points by a halfplane. If we take such a halfplane and translate its
de�ning line such that it passes through p, then all points from P other than p should lie
in the resulting open halfplane. In R2 it turns out convenient to work with the following
�directed� reformulation.

Proposition 4.19 A point p ∈ P = {p1, . . . ,pn} ⊂ R2 is extremal for P ⇐⇒ there is a
directed line g through p such that P \ {p} is to the left of g.

c
r

The interior angle at a vertex v of a polygon P is the angle
between the two edges of P incident to v whose corresponding
angular domain lies in P◦. If this angle is smaller than π, the
vertex is called convex ; if the angle is larger than π, the vertex is
called re�ex. For instance, the vertex c in the polygon depicted
to the right is a convex vertex, whereas the vertex labeled r is
a re�ex vertex.

Exercise 4.20

A set S ⊂ R2 is star-shaped if there exists a point c ∈ S,
such that for every point p ∈ S the line segment cp is
contained in S. A simple polygon with exactly three convex
vertices is called a pseudotriangle (see the example shown
on the right).

In the following we consider subsets of R2. Prove or disprove:

a) Every convex vertex of a simple polygon lies on its convex hull.

b) Every star-shaped set is convex.

c) Every convex set is star-shaped.

d) The intersection of two convex sets is convex.
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e) The union of two convex sets is convex.

f) The intersection of two star-shaped sets is star-shaped.

g) The intersection of a convex set with a star-shaped set is star-shaped.

h) Every triangle is a pseudotriangle.

i) Every pseudotriangle is star-shaped.

4.4 Trivial algorithms

One can compute the extremal points using Carathéodory's Theorem as follows: Test
for every point p ∈ P whether there are q, r, s ∈ P \ {p} such that p is inside the triangle
with vertices q, r, and s. Runtime O(n4).

Another option, inspired by the Separation Theorem: test for every pair (p,q) ∈ P2
whether all points from P \ {p,q} are to the left of the directed line through p and q (or
on the line segment pq). Runtime O(n3).

Exercise 4.21 Let P = (p0, . . . ,pn−1) be a sequence of n points in R2. Someone claims
that you can check by means of the following algorithm whether or not P describes
the boundary of a convex polygon in counterclockwise order:

bool is_convex(p0, . . . ,pn−1) {
for i = 0, . . . ,n− 1:

if (pi, p(i+1)modn, p(i+2)modn) form a rightturn:
return false;

return true;
}

Disprove the claim and describe a correct algorithm to solve the problem.

Exercise 4.22 Let P ⊂ R2 be a convex polygon, given as an array p[0]. . .p[n-1] of its
n vertices in counterclockwise order.

a) Describe an O(log(n)) time algorithm to determine whether a point q lies
inside, outside or on the boundary of P.

b) Describe an O(log(n)) time algorithm to �nd a (right) tangent to P from a
query point q located outside P. That is, �nd a vertex p[i], such that P is
contained in the closed halfplane to the left of the oriented line qp[i].
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4.5 Jarvis' Wrap

We are now ready to describe a �rst simple algorithm to construct the convex hull. It
works as follows:

Find a point p1 that is a vertex of conv(P) (e.g., the one with smallest x-
coordinate). �Wrap� P starting from p1, i.e., always �nd the next vertex
of conv(P) as the one that is rightmost with respect to the direction given
by the previous two vertices.

Besides comparing x-coordinates, the only geometric primitive needed is an orienta-
tion test: Denote by rightturn(p,q, r), for three points p,q, r ∈ R2, the predicate that
is true if and only if r is (strictly) to the right of the oriented line pq.

q[0]=p start

q next

q[1]

q[2]

Code for Jarvis' Wrap.

p[0..N) contains a sequence of N points.
p_start point with smallest x-coordinate.
q_next some other point in p[0..N).

int h = 0;

Point_2 q_now = p_start;

do {

q[h] = q_now;

h = h + 1;

for (int i = 0; i < N; i = i + 1)

if (rightturn_2(q_now, q_next, p[i]))

q_next = p[i];

q_now = q_next;

q_next = p_start;

} while (q_now != p_start);

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).
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Analysis. For every output point the above algorithm spends n rightturn tests, which is
⇒ O(nh) in total.

Theorem 4.23 [6] Jarvis' Wrap computes the convex hull of n points in R2 using
O(nh) rightturn tests, where h is the number of hull vertices.

In the worst case we have h = n, that is, O(n2) rightturn tests. Jarvis' Wrap has a
remarkable property that is called output sensitivity : the runtime depends not only on
the size of the input but also on the size of the output. For a huge point set it constructs
the convex hull in optimal linear time, if the convex hull consists of a constant number of
vertices only. Unfortunately the worst case performance of Jarvis' Wrap is suboptimal,
as we will see soon.

Degeneracies. The algorithm may have to cope with various degeneracies.

� Several points have smallest x-coordinate ⇒ lexicographic order:

(px,py) < (qx,qy) ⇐⇒ px < qx ∨ px = qx ∧ py < qy .

� Three or more points collinear ⇒ choose the point that is farthest among those
that are rightmost.

Predicates. Besides the lexicographic comparison mentioned above, the Jarvis' Wrap
(and most other 2D convex hull algorithms for that matter) need one more geomet-
ric predicate: the rightturn or�more generally�orientation test. The computation
amounts to evaluating a polynomial of degree two, see the exercise below. We therefore
say that the orientation test has algebraic degree two. In contrast, the lexicographic
comparison has degree one only. The algebraic degree not only has a direct impact on
the e�ciency of a geometric algorithm (lower degree↔ less multiplications), but also an
indirect one because high degree predicates may create large intermediate results, which
may lead to over�ows and are much more costly to compute with exactly.

Exercise 4.24 Prove that for three points (px,py), (qx,qy), (rx, ry) ∈ R2, the sign of
the determinant∣∣∣∣∣∣

1 px py
1 qx qy
1 rx ry

∣∣∣∣∣∣
determines if r lies to the right, to the left or on the directed line through p and q.

Exercise 4.25 The InCircle predicate is: Given three points p,q, r ∈ R2 that de�ne
a circle C and a fourth point s, is s located inside C or not? The goal of this
exercise is to derive an algebraic formulation of the incircle predicate in form of
a determinant, similar to the formulation of the orientation test given above in
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Exercise 4.24. To this end we employ the so-called parabolic lifting map, which will
also play a prominent role in the next chapter of the course.

The parabolic lifting map ` : R2 → R3 is de�ned for a point p = (x,y) ∈ R2 by
`(p) = (x,y, x2 + y2). For a circle C ⊆ R2 of positive radius, show that the �lifted
circle� `(C) = {`(p) | p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover,
show that a point p ∈ R2 is strictly inside (outside, respectively) of C if and only if
the lifted point `(p) is strictly below (above, respectively) hC.

Use these insights to formulate the InCircle predicate for given points (px,py),
(qx,qy), (rx, ry), (sx, sy) ∈ R2 as a determinant.

4.6 Graham Scan (Successive Local Repair)

There exist many algorithms that exhibit a better worst-case runtime than Jarvis' Wrap.
Here we discuss only one of them: a particularly elegant and easy-to-implement variant
of the so-called Graham Scan [5]. This algorithm is referred to as Successive Local
Repair because it starts with some polygon enclosing all points and then step-by-step
repairs the de�ciencies of this polygon, by removing non-convex vertices. It goes as
follows:

Sort points lexicographically and remove duplicates: (p1, . . . ,pn).

p9

p4

p1

p3

p2

p5

p8

p7

p6

p9 p4 p1 p3 p2 p5 p8 p7 p6 p7 p8 p5 p2 p3 p1 p4 p9

As long as there is a (consecutive) triple (p,q, r) such that r is to the right of or on the
directed line −→pq, remove q from the sequence.

Code for Graham Scan.

p[0..N) lexicographically sorted sequence of pairwise distinct points, N > 2.

q[0] = p[0];

int h = 0;

// Lower convex hull (left to right):

for (int i = 1; i < N; i = i + 1) {

while (h>0 && !leftturn_2(q[h-1], q[h], p[i]))

h = h - 1;

h = h + 1;
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q[h] = p[i];

}

// Upper convex hull (right to left):

for (int i = N-2; i >= 0; i = i - 1) {

while (!leftturn_2(q[h-1], q[h], p[i]))

h = h - 1;

h = h + 1;

q[h] = p[i];

}

q[0,h) describes a convex polygon bounding the convex hull of p[0..N).

Analysis.

Theorem 4.26 The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logn) geometric operations.

Proof.

1. Sorting and removal of duplicate points: O(n logn).

2. At the beginning we have a sequence of 2n − 1 points; at the end the sequence
consists of h points. Observe that for every positive orientation test, one point is
discarded from the sequence for good. Therefore, we have exactly 2n− h− 1 such
shortcuts/positive orientation tests. In addition there are at most 2n− 2 negative
tests (#iterations of the outer for loops). Altogether we have at most 4n− h− 3
orientation tests.

In total the algorithm uses O(n logn) geometric operations. Note that the number of
orientation tests is linear only, but O(n logn) lexicographic comparisons are needed. �

4.7 Lower Bound

It is not hard to see that the runtime of Graham Scan is asymptotically optimal in the
worst-case.

Theorem 4.27 Ω(n logn) geometric operations are needed to construct the convex hull
of n points in R2 (in the algebraic computation tree model).

Proof. Reduction from sorting (for which it is known that Ω(n logn) comparisons
are needed in the algebraic computation tree model). Given n real numbers x1, . . . , xn,
construct a set P = {pi | 1 6 i 6 n} of n points in R2 by setting pi = (xi, x2i). This
construction can be regarded as embedding the numbers into R2 along the x-axis and
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then projecting the resulting points vertically onto the unit parabola. The order in which
the points appear along the lower convex hull of P corresponds to the sorted order of
the xi. Therefore, if we could construct the convex hull in o(n logn) time, we could also
sort in o(n logn) time. �

Clearly this reduction does not work for the Extremal Points problem. But us-
ing a reduction from Element Uniqueness (see Section 1.1) instead, one can show that
Ω(n logn) is also a lower bound for the number of operations needed to compute the set
of extremal points only. This was �rst shown by Avis [1] for linear computation trees,
then by Yao [9] for quadratic computation trees, and �nally by Ben-Or [2] for general
algebraic computation trees.

4.8 Chan's Algorithm

Given matching upper and lower bounds we may be tempted to consider the algorithmic
complexity of the planar convex hull problem settled. However, this is not really the
case: Recall that the lower bound is a worst case bound. For instance, the Jarvis' Wrap
runs in O(nh) time an thus beats the Ω(n logn) bound in case that h = o(logn). The
question remains whether one can achieve both output dependence and optimal worst
case performance at the same time. Indeed, Chan [4] presented an algorithm to achieve
this runtime by cleverly combining the �best of� Jarvis' Wrap and Graham Scan. Let us
look at this algorithm in detail. The algorithm consists of two steps that are executed
one after another.

Divide. Input: a set P ⊂ R2 of n points and a number H ∈ {1, . . . ,n}.

1. Divide P into k = dn/He sets P1, . . . ,Pk with |Pi| 6 H.

2. Construct conv(Pi) for all i, 1 6 i 6 k.

Analysis. Step 1 takes O(n) time. Step 2 can be handled using Graham Scan in
O(H logH) time for any single Pi, that is, O(n logH) time in total.

Conquer. Output: the vertices of conv(P) in counterclockwise order, if conv(P) has less
than H vertices; otherwise, the message that conv(P) has at least H vertices.

1. Find the lexicographically smallest point in conv(Pi) for all i, 1 6 i 6 k.

2. Starting from the lexicographically smallest point of P �nd the �rst H points of
conv(P) oriented counterclockwise (simultaneous Jarvis' Wrap on the sequences
conv(Pi)).
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Determine in every wrap step the point qi of tan-
gency from the current point of conv(P) to conv(Pi),
for all 1 6 i 6 k. We have seen in Exercise 4.22 how
to compute qi in O(log |conv(Pi)|) = O(logH) time.
Among the k candidates q1, . . . ,qk we �nd the next
vertex of conv(P) in O(k) time.

Analysis. Step 1 takes O(n) time. Step 2 con-
sists of at most H wrap steps. Each wrap step needs
O(k logH + k) = O(k logH) time, which amounts to
O(Hk logH) = O(n logH) time for Step 2 in total.

Remark. Using a more clever search strategy instead of many tangency searches one
can handle the conquer phase in O(n) time, see Exercise 4.28 below. However, this is
irrelevant as far as the asymptotic runtime is concerned, given that already the divide
step takes O(n logH) time.

Exercise 4.28 Consider k convex polygons P1, . . .Pk, for some constant k ∈ N, where
each polygon is given as a list of its vertices in counterclockwise orientation. Show
how to construct the convex hull of P1 ∪ . . . ∪ Pk in O(n) time, where n =

∑k
i=1 ni

and ni is the number of vertices of Pi, for 1 6 i 6 k.

Searching for h. While the runtime bound for H = h is exactly what we were heading for,
it looks like in order to actually run the algorithm we would have to know h, which�
in general�we do not. Fortunately we can circumvent this problem rather easily, by
applying what is called a doubly exponential search. It works as follows.

Call the algorithm from above iteratively with parameter H = min{22
t
,n}, for t =

0, . . ., until the conquer step �nds all extremal points of P (i.e., the wrap returns to its
starting point).

Analysis: Let 22
s
be the last parameter for which the algorithm is called. Since the

previous call with H = 22
s−1

did not �nd all extremal points, we know that 22
s−1

< h,
that is, 2s−1 < logh, where h is the number of extremal points of P. The total runtime
is therefore at most

s∑
i=0

cn log 22
i

= cn

s∑
i=0

2i = cn(2s+1 − 1) < 4cn logh = O(n logh),

for some constant c ∈ R. In summary, we obtain the following theorem.

Theorem 4.29 The convex hull of a set P ⊂ R2 of n points can be computed using
O(n logh) geometric operations, where h is the number of convex hull vertices.

Questions

13. How is convexity de�ned? What is the convex hull of a set in Rd? Give at
least three possible de�nitions.
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14. What does it mean to compute the convex hull of a set of points in R2? Discuss
input and expected output and possible degeneracies.

15. How can the convex hull of a set of n points in R2 be computed e�ciently?
Describe and analyze (incl. proofs) Jarvis' Wrap, Successive Local Repair, and
Chan's Algorithm.

16. Is there a linear time algorithm to compute the convex hull of n points in R2?
Prove the lower bound and de�ne/explain the model in which it holds.

17. Which geometric primitive operations are used to compute the convex hull of
n points in R2? Explain the two predicates and how to compute them.

Remarks. The sections on Jarvis' Wrap and Graham Scan are based on material that
Emo Welzl prepared for a course on �Geometric Computing� in 2000.
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Chapter 5

Delaunay Triangulations

In Chapter 3 we have discussed triangulations of simple polygons. A triangulation nicely
partitions a polygon into triangles, which allows, for instance, to easily compute the
area or a guarding of the polygon. Another typical application scenario is to use a
triangulation T for interpolation: Suppose a function f is de�ned on the vertices of the
polygon P, and we want to extend it �reasonably� and continuously to P◦. Then for a
point p ∈ P◦ �nd a triangle t of T that contains p. As p can be written as a convex
combination

∑3

i=1 λivi of the vertices v1, v2, v3 of t, we just use the same coe�cients to
obtain an interpolation f(p) :=

∑3

i=1 λif(vi) of the function values.
If triangulations are a useful tool when working with polygons, they might also turn

out useful to deal with other geometric objects, for instance, point sets. But what could
be a triangulation of a point set? Polygons have a clearly de�ned interior, which naturally
lends itself to be covered by smaller polygons such as triangles. A point set does not have
an interior, except . . . Here the notion of convex hull comes handy, because it allows us
to treat a point set as a convex polygon. Actually, not really a convex polygon, because
points in the interior of the convex hull should not be ignored completely. But one way to
think of a point set is as a convex polygon�its convex hull�possibly with some holes�
which are points�in its interior. A triangulation should then partition the convex hull
while respecting the points in the interior, as shown in the example in Figure 5.1b.

(a) Simple polygon triangulation. (b) Point set triangulation. (c) Not a triangulation.

Figure 5.1: Examples of (non-)triangulations.

In contrast, the example depicted in Figure 5.1c nicely subdivides the convex hull
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but should not be regarded a triangulation: Two points in the interior are not respected
but simply swallowed by a large triangle.
This interpretation directly leads to the following adaption of De�nition 3.8.

De�nition 5.1 A triangulation of a �nite point set P ⊂ R2 is a collection T of triangles,
such that

(1) conv(P) =
⋃
T∈T T ;

(2) P =
⋃
T∈T V(T); and

(3) for every distinct pair T ,U ∈ T, the intersection T ∩ U is either a common
vertex, or a common edge, or empty.

Just as for polygons, triangulations are universally available for point sets, meaning
that (almost) every point set admits at least one.

Proposition 5.2 Every set P ⊆ R2 of n > 3 points has a triangulation, unless all points
in P are collinear.

Proof. In order to construct a triangulation for P, consider the lexicographically sorted
sequence p1, . . . ,pn of points in P. Let m be minimal such that p1, . . . ,pm are not
collinear. We triangulate p1, . . . ,pm by connecting pm to all of p1, . . . ,pm−1 (which are
on a common line), see Figure 5.2a.

(a) Getting started. (b) Adding a point.

Figure 5.2: Constructing the scan triangulation of P.

Then we add pm+1, . . . ,pn. When adding pi, for i > m, we connect pi with all
vertices of Ci−1 := conv({p1, . . . ,pi−1}) that it �sees�, that is, every vertex v of Ci−1 for
which piv∩Ci−1 = {v}. In particular, among these vertices are the two points of tangency
from pi to Ci−1, which shows that we always add triangles (Figure 5.2b) whose union
after each step covers Ci. �

The triangulation that is constructed in Proposition 5.2 is called a scan triangulation.
Such a triangulation (Figure 5.3a (left) shows a larger example) is usually �ugly�, though,
since it tends to have many long and skinny triangles. This is not just an aesthetic de�cit.
Having long and skinny triangles means that the vertices of a triangle tend to be spread
out far from each other. You can probably imagine that such a behavior is undesirable,
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for instance, in the context of interpolation. In contrast, the Delaunay triangulation
of the same point set (Figure 5.3b) looks much nicer, and we will discuss in the next
section how to get this triangulation.

(a) Scan triangulation. (b) Delaunay triangulation.

Figure 5.3: Two triangulations of the same set of 50 points.

Exercise 5.3 Describe an O(n logn) time algorithm to construct a scan triangulation
for a set of n points in R2.

On another note, if you look closely into the SLR-algorithm to compute planar convex
hull that was discussed in Chapter 4, then you will realize that we also could have used
this algorithm in the proof of Proposition 5.2. Whenever a point is discarded during
SLR, a triangle is added to the polygon that eventually becomes the convex hull.

In view of the preceding chapter, we may regard a triangulation as a plane graph:
the vertices are the points in P and there is an edge between two points p 6= q, if and
only if there is a triangle with vertices p and q. Therefore we can use Euler's formula to
determine the number of edges in a triangulation.

Lemma 5.4 Any triangulation of a set P ⊂ R2 of n points has exactly 3n−h−3 edges,
where h is the number of points from P on ∂conv(P).

Proof. Consider a triangulation T of P and denote by E the set of edges and by F the
set of faces of T . We count the number of edge-face incidences in two ways. Denote
I = {(e, f) ∈ E× F : e ⊂ ∂f}.

On the one hand, every edge is incident to exactly two faces and therefore |I| = 2|E|.
On the other hand, every bounded face of T is a triangle and the unbounded face has h
edges on its boundary. Therefore, |I| = 3(|F| − 1) + h.
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Together we obtain 3|F| = 2|E| − h + 3. Using Euler's formula (3n − 3|E| + 3|F| = 6)
we conclude that 3n− |E| − h+ 3 = 6 and so |E| = 3n− h− 3. �

In graph theory, the term �triangulation� is sometimes used as a synonym for �maxi-
mal planar�. But geometric triangulations are di�erent, they are maximal planar in the
sense that no straight-line edge can be added without sacri�cing planarity.

Corollary 5.5 A triangulation of a set P ⊂ R2 of n points is maximal planar, if and
only if conv(P) is a triangle.

Proof. Combine Corollary 2.5 and Lemma 5.4. �

Exercise 5.6 Find for every n > 3 a simple polygon P with n vertices such that P has
exactly one triangulation. P should be in general position, meaning that no three
vertices are collinear.

Exercise 5.7 Show that every set of n > 5 points in general position (no three points
are collinear) has at least two di�erent triangulations.
Hint: Show �rst that every set of �ve points in general position contains a convex
4-hole, that is, a subset of four points that span a convex quadrilateral that does
not contain the �fth point.

5.1 The Empty Circle Property

We will now move on to study the ominous and supposedly nice Delaunay triangulations
mentioned above. They are de�ned in terms of an empty circumcircle property for
triangles. The circumcircle of a triangle is the unique circle passing through the three
vertices of the triangle, see Figure 5.4.

Figure 5.4: Circumcircle of a triangle.

De�nition 5.8 A triangulation of a �nite point set P ⊂ R2 is called a Delaunay triangu-
lation, if the circumcircle of every triangle is empty, that is, there is no point from
P in its interior.
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Consider the example depicted in Figure 5.5. It shows a Delaunay triangulation of a
set of six points: The circumcircles of all �ve triangles are empty (we also say that the
triangles satisfy the empty circle property). The dashed circle is not empty, but that is
�ne, since it is not a circumcircle of any triangle.

Figure 5.5: All triangles satisfy the empty circle property.

It is instructive to look at the case of four points in convex position. Obviously, there
are two possible triangulations, but in general, only one of them will be Delaunay, see
Figure 5.6a and 5.6b. If the four points are on a common circle, though, this circle is
empty; at the same time it is the circumcircle of all possible triangles; therefore, both
triangulations of the point set are Delaunay, see Figure 5.6c.

(a) Delaunay triangulation. (b) Non-Delaunay triangulation. (c) Two Delaunay triangulations.

Figure 5.6: Triangulations of four points in convex position.

Proposition 5.9 Given a set P ⊂ R2 of four points that are in convex position but not
cocircular. Then P has exactly one Delaunay triangulation.

Proof. Consider a convex polygon P = pqrs. There are two triangulation of P: a
triangulation T1 using the edge pr and a triangulation T2 using the edge qs.
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Consider the family C1 of circles through pr, which contains the circumcircles C1 =

pqr and C ′1 = rsp of the triangles in T1. By assumption s is not on C1. If s is outside of
C1, then q is outside of C ′1: Consider the process of continuously moving from C1 to C ′1
in C1 (Figure 5.7a); the point q is �left behind� immediately when going beyond C1 and
only the �nal circle C ′1 �grabs� the point s.

p

q
r

s

C1

C ′
1

(a) Going from C1 to C
′
1
in C1.

p

q r

s

C1

C2

(b) Going from C1 to C2 in C2.

Figure 5.7: Circumcircles and containment for triangulations of four points.

Similarly, consider the family C2 of circles through pq, which contains the circumcir-
cles C1 = pqr and C2 = spq, the latter belonging to a triangle in T2. As s is outside of
C1, it follows that r is inside C2: Consider the process of continuously moving from C1

to C2 in C2 (Figure 5.7b); the point r is on C1 and remains within the circle all the way
up to C2. This shows that T1 is Delaunay, whereas T2 is not.

The case that s is located inside C1 is symmetric: just cyclically shift the roles of
pqrs to qrsp. �

5.2 The Lawson Flip algorithm

It is not clear yet that every point set actually has a Delaunay triangulation (given that
not all points are on a common line). In this and the next two sections, we will prove
that this is the case. The proof is algorithmic. Here is the Lawson �ip algorithm for a
set P of n points.

1. Compute some triangulation of P (for example, the scan triangulation).

2. While there exists a subtriangulation of four points in convex position that is not
Delaunay (like in Figure 5.6b), replace this subtriangulation by the other triangu-
lation of the four points (Figure 5.6a).

We call the replacement operation in the second step a (Lawson) �ip.
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Theorem 5.10 Let P ⊆ R2 be a set of n points, equipped with some triangulation T.
The Lawson �ip algorithm terminates after at most

(
n
2

)
= O(n2) �ips, and the

resulting triangulation D is a Delaunay triangulation of P.

We will prove Theorem 5.10 in two steps: First we show that the program described
above always terminates and, therefore, is an algorithm, indeed (Section 5.3). Then we
show that the algorithm does what it claims to do, namely the result is a Delaunay
triangulation (Section 5.4).

5.3 Termination of the Lawson Flip Algorithm: The Lifting Map

In order to prove Theorem 5.10, we invoke the (parabolic) lifting map. This is the
following: given a point p = (x,y) ∈ R2, its lifting `(p) is the point

`(p) = (x,y, x2 + y2) ∈ R3.

Geometrically, ` �lifts� the point vertically up until it lies on the unit paraboloid

{(x,y, z) | z = x2 + y2} ⊆ R3,

see Figure 5.8a.

(a) The lifting map. (b) Points on/inside/outside a circle are lifted to
points on/below/above a plane.

Figure 5.8: The lifting map: circles map to planes.

Recall the following important property of the lifting map that we proved in Exercise 4.25.
It is illustrated in Figure 5.8b.

Lemma 5.11 Let C ⊆ R2 be a circle of positive radius. The �lifted circle� `(C) = {`(p) |

p ∈ C} is contained in a unique plane hC ⊆ R3. Moreover, a point p ∈ R2 is strictly
inside (outside, respectively) of C if and only if the lifted point `(p) is strictly below
(above, respectively) hC.
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Using the lifting map, we can now prove Theorem 5.10. Let us �x the point set P for
this and the next section. First, we need to argue that the algorithm indeed terminates
(if you think about it a little, this is not obvious). So let us interpret a �ip operation in
the lifted picture. The �ip involves four points in convex position in R2, and their lifted
images form a tetrahedron in R3 (think about why this tetrahedron cannot be ��at�).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R2 that is involved in the �ip.

Here is the crucial fact that follows from Lemma 5.11: The two top triangles come
from the non-Delaunay triangulation before the �ip, see Figure 5.9a. The reason is that
both top triangles have the respective fourth point below them, meaning that in R2,
the circumcircles of these triangles contain the respective fourth point�the empty circle
property is violated. In contrast, the bottom two triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R2, the circumcircles of the triangles do not contain the respective fourth
point, see Figure 5.9b.

(a) Before the �ip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the �ip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 5.9: Lawson �ip: the height of the surface of lifted triangles decreases.

In the lifted picture, a Lawson �ip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the bottom two ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R3 whose
pointwise height can only decrease through Lawson �ips. In particular, once an edge
has been �ipped, this edge will be strictly above the resulting surface and can therefore
never be �ipped a second time. Since n points can span at most

(
n
2

)
edges, the bound

on the number of �ips follows.
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5.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson �ip algorithm is indeed a Delaunay triangulation. Here is a �rst observation
telling us that the triangulation is �locally Delaunay�.

Observation 5.12 Let ∆,∆ ′ be two adjacent triangles in the triangulation D that results
from the Lawson �ip algorithm. Then the circumcircle of ∆ does not have any
vertex of ∆ ′ in its interior, and vice versa.

If the two triangles together form a convex quadrilateral, this follows from the fact
that the Lawson �ip algorithm did not �ip the common edge of ∆ and ∆ ′. If the four
vertices are not in convex position, this is basic geometry: given a triangle ∆, its cir-
cumcircle C can only contains points of C \∆ that form a convex quadrilateral with the
vertices of ∆.

Now we show that the triangulation is also �globally Delaunay�.

Proposition 5.13 The triangulation D that results from the Lawson �ip algorithm is
a Delaunay triangulation.

Proof. Suppose for contradiction that there is some triangle ∆ ∈ D and some point
p ∈ P strictly inside the circumcircle C of ∆. Among all such pairs (∆,p), we choose one
for which we the distance of p to ∆ is minimal. Note that this distance is positive since
D is a triangulation of P. The situation is as depicted in Figure 5.10a.

q

∆

p

(a) A point p inside the cir-
cumcircle C of a triangle ∆.

q

∆

p

q

∆ ′

e

(b) The edge e of ∆ closest to p
and the second triangle ∆ ′

incident to e.

∆

p

q

∆ ′

e

C ′
C

(c) The circumcircle C ′ of ∆ ′ also
contains p, and p is closer to
∆ ′ than to ∆.

Figure 5.10: Correctness of the Lawson �ip algorithm.

Now consider the edge e of ∆ that is facing p. There must be another triangle ∆ ′ in
D that is incident to the edge e. By the local Delaunay property of D, the third vertex q
of ∆ ′ is on or outside of C, see Figure 5.10b. But then the circumcircle C ′ of ∆ ′ contains
the whole portion of C on p's side of e, hence it also contains p; moreover, p is closer to
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∆ ′ than to ∆ (Figure 5.10c). But this is a contradiction to our choice of ∆ and p. Hence
there was no (∆,p), and D is a Delaunay triangulation. �

Exercise 5.14 The Euclidean minimum spanning tree (EMST) of a �nite point set
P ⊂ R2 is a spanning tree for which the sum of the edge lengths is minimum
(among all spanning trees of P). Show:

a) Every EMST of P is a plane graph.

b) Every EMST of P contains a closest pair, i.e., an edge between two points
p,q ∈ P that have minimum distance to each other among all point pairs in

(
P
2

)
.

c) Every Delaunay Triangulation of P contains an EMST of P.

5.5 The Delaunay Graph

Despite the fact that a point set may have more than one Delaunay triangulation, there
are certain edges that are present in every Delaunay triangulation, for instance, the edges
of the convex hull.

De�nition 5.15 The Delaunay graph of P ⊆ R2 consists of all line segments pq, for
p,q ∈ P, that are contained in every Delaunay triangulation of P.

The following characterizes the edges of the Delaunay graph.

Lemma 5.16 The segment pq, for p,q ∈ P, is in the Delaunay graph of P if and only
if there exists a circle through p and q that has p and q on its boundary and all
other points of P are strictly outside.

Proof. �⇒�: Let pq be an edge in the Delaunay graph of P, and let D be a Delaunay
triangulation of P. Then there exists a triangle ∆ = pqr in D, whose circumcircle C does
not contain any point from P in its interior.

If there is a point s on ∂C such that rs intersects pq, then let ∆ ′ = pqt denote the
other (6= ∆) triangle in D that is incident to pq (Figure 5.11a). Flipping the edge pq
to rt yields another Delaunay triangulation of P that does not contain the edge pq, in
contradiction to pq being an edge in the Delaunay graph of P. Therefore, there is no
such point s.

Otherwise we can slightly change the circle C by moving away from r while keeping
p and q on the circle. As P is a �nite point set, we can do such a modi�cation without
catching another point from P with the circle. In this way we obtain a circle C ′ through
p and q such that all other points from P are strictly outside C ′ (Figure 5.12b).

�⇐�: Let D be a Delaunay triangulation of P. If pq is not an edge of D, there must
be another edge of D that crosses pq (otherwise, we could add pq to D and still have
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(a) Another point s ∈ ∂C.
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(b) Moving C away from s.

Figure 5.11: Characterization of edges in the Delaunay graph (I).

a plane graph, a contradiction to D being a triangulation of P). Let rs denote the �rst
edge of D that intersects the directed line segment pq.

Consider the triangle ∆ of D that is incident to rs on the side that faces p (given
that rs intersects pq this is a well de�ned direction). By the choice of rs neither of the
other two edges of ∆ intersects pq, and p /∈ ∆◦ because ∆ is part of a triangulation of P.
The only remaining option is that p is a vertex of ∆ = prs. As ∆ is part of a Delaunay
triangulation, its circumcircle C∆ is empty (i.e., C∆

◦ ∩ P = ∅).
Consider now a circle C through p and q, which exists by assumption. Fixing p and q,

expand C towards r to eventually obtain the circle C ′ through p, q, and r (Figure 5.12a).
Recall that r and s are on di�erent sides of the line through p and q. Therefore, s lies
strictly outside of C ′. Next �x p and r and expand C ′ towards s to eventually obtain the
circle C∆ through p, r, and s (Figure 5.12b). Recall that s and q are on the same side
of the line through p and r. Therefore, q ∈ C∆, which is in contradiction to C∆ being
empty. It follows that there is no Delaunay triangulation of P that does not contain the
edge pq. �

The Delaunay graph is useful to prove uniqueness of the Delaunay triangulation in
case of general position.

Corollary 5.17 Let P ⊂ R2 be a �nite set of points in general position, that is, no four
points of P are cocircular. Then P has a unique Delaunay triangulation. �

5.6 Every Delaunay Triangulation Maximizes the Smallest Angle

Why are we actually interested in Delaunay triangulations? After all, having empty
circumcircles is not a goal in itself. But it turns out that Delaunay triangulations satisfy
a number of interesting properties. Here we show just one of them.

Recall that when we compared a scan triangulation with a Delaunay triangulation of
the same point set in Figure 5.3, we claimed that the scan triangulation is �ugly� because
it contains many long and skinny triangles. The triangles of the Delaunay triangulation,
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(a) Expanding C towards r.
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(b) Expanding C ′ towards s.

Figure 5.12: Characterization of edges in the Delaunay graph (II).

at least in this example, look much nicer, that is, much closer to an equilateral triangle.
One way to quantify this �niceness� is to look at the angles that appear in a triangulation:
If all angles are large, then all triangles are reasonably close to an equilateral triangle.
Indeed, we will show that Delaunay triangulations maximize the smallest angle among
all triangulations of a given point set. Note that this does not imply that there are no
long and skinny triangles in a Delaunay triangulation. But if there is a long and skinny
triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle
in every triangulation of the point set.

Given a triangulation T of P, consider the sorted sequence A(T) = (α1,α2, . . . ,α3m)

of interior angles, where m is the number of triangles (we have already remarked earlier
that m is a function of P only and does not depend on T). Being sorted means that
α1 6 α2 6 · · · 6 α3m. Let T,T ′ be two triangulations of P. We say that A(T) < A(T ′)
if there exists some i for which αi < α ′i and αj = α ′j, for all j < i. (This is nothing but
the lexicographic order on these sequences.)

Theorem 5.18 Let P ⊆ R2 be a �nite set of points in general position (not all collinear
and no four cocircular). Let D∗ be the unique Delaunay triangulation of P, and let
T be any triangulation of P. Then A(T) 6 A(D∗).

In particular, D∗ maximizes the smallest angle among all triangulations of P.
Proof. We know that T can be transformed into D∗ through the Lawson �ip algorithm,
and we are done if we can show that each such �ip lexicographically increases the sorted
angle sequence. A �ip replaces six interior angles by six other interior angles, and we
will actually show that the smallest of the six angles strictly increases under the �ip.
This implies that the whole angle sequence increases lexicographically.

Let us �rst look at the situation of four cocircular points, see Figure 5.13a. In this
situation, the inscribed angle theorem (a generalization of Thales' Theorem, stated
below as Theorem 5.19) tells us that the eight depicted angles come in four equal pairs.
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(b) The situation before a �ip.

Figure 5.13: Angle-optimality of Delaunay triangulations.

For instance, the angles labeled α1 at s and r are angles on the same side of the chord
pq of the circle.

In Figure 5.13b, we have the situation in which we perform a Lawson �ip (replacing
the solid with the dashed diagonal). By the symbol α (α, respectively) we denote an
angle strictly smaller (larger, respectively) than α. Here are the six angles before the
�ip:

α1 + α2, α3, α4, α1, α2, α3 + α4.

After the �ip, we have

α1, α2, α3, α4, α1 + α4, α2 + α3.

Now, for every angle after the �ip there is at least one smaller angle before the �ip:

α1 > α1,

α2 > α2,

α3 > α3,

α4 > α4,

α1 + α4 > α4,

α2 + α3 > α3.

It follows that the smallest angle strictly increases. �

Theorem 5.19 (Inscribed Angle Theorem) Let C be a circle with center c and positive
radius and p,q ∈ C. Then the angle \prqmodπ = 1

2
\pcq is the same, for all r ∈ C.
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Figure 5.14: The Inscribed Angle Theorem with θ := \prq.

Proof. Without loss of generality we may assume that c is located to the left of or on
the oriented line pq.

Consider �rst the case that the triangle ∆ = pqr

contains c. Then ∆ can be partitioned into three trian-
gles: pcr, qcr, and cpq. All three triangles are isosce-
les, because two sides of each form the radius of C. De-
note α = \prc, β = \crq, γ = \cpq, and δ = \pcq

(see the �gure shown to the right). The angles we are
interested in are θ = \prq = α + β and δ, for which
we have to show that δ = 2θ.

Indeed, the angle sum in ∆ is π = 2(α + β + γ)

and the angle sum in the triangle cpq is π = δ + 2γ.
Combining both yields δ = 2(α+ β) = 2θ.
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Next suppose that pqcr are in convex position and
r is to the left of or on the oriented line pq. Without
loss of generality let r be to the left of or on the oriented
line qc. (The case that r lies to the right of or on the
oriented line pc is symmetric.) De�ne α, β, γ, δ as
above and observe that θ = α−β. Again have to show
that δ = 2θ.

The angle sum in the triangle cpq is π = δ + 2γ
and the angle sum in the triangle rpq is π = (α−β) +

α+γ+(γ−β) = 2(α+γ−β). Combining both yields
δ = π− 2γ = 2(α− β) = 2θ. p
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It remains to consider the case that r is to the right of the
oriented line pq.

Consider the point r ′ that is antipodal to r on C, and the
quadrilateral Q = prqr ′. We are interested in the angle φ of
Q at r. By Thales' Theorem the inner angles of Q at p and q
are both π/2. Hence the angle sum of Q is 2π = θ+φ+2π/2
and so φ = π− θ.
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What happens in the case where the Delaunay triangulation is not unique? The
following still holds.

Theorem 5.20 Let P ⊆ R2 be a �nite set of points, not all on a line. Every Delaunay
triangulation D of P maximizes the smallest angle among all triangulations T of P.

Proof. Let D be some Delaunay triangulation of P. We in�nitesimally perturb the points
in P such that no four are on a common circle anymore. Then the Delaunay triangulation
becomes unique (Corollary 5.17). Starting from D, we keep applying Lawson �ips until
we reach the unique Delaunay triangulation D∗ of the perturbed point set. Now we
examine this sequence of �ips on the original unperturbed point set. All these �ips must
involve four cocircular points (only in the cocircular case, an in�nitesimal perturbation
can change �good� edges into �bad� edges that still need to be �ipped). But as Figure 5.13
(a) easily implies, such a �degenerate� �ip does not change the smallest of the six involved
angles. It follows that D and D∗ have the same smallest angle, and since D∗ maximizes
the smallest angle among all triangulations T (Theorem 5.18), so does D. �

5.7 Constrained Triangulations

Sometimes one would like to have a Delaunay triangulation, but certain edges are already
prescribed, for example, a Delaunay triangulation of a simple polygon. Of course, one
cannot expect to be able to get a proper Delaunay triangulation where all triangles satisfy
the empty circle property. But it is possible to obtain some triangulation that comes as
close as possible to a proper Delaunay triangulation, given that we are forced to include
the edges in E. Such a triangulation is called a constrained Delaunay triangulation, a
formal de�nition of which follows.

Let P ⊆ R2 be a �nite point set and G = (P,E) a geometric graph with vertex set
P (we consider the edges e ∈ E as line segments). A triangulation T of P respects G if
it contains all segments e ∈ E. A triangulation T of P that respects G is said to be a
constrained Delaunay triangulation of P with respect to G if the following holds for
every triangle ∆ of T:
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The circumcircle of ∆ contains only points q ∈ P in its interior that are not
visible from the interior of ∆. A point q ∈ P is visible from the interior of
∆ if there exists a point p in the interior of ∆ such that the line segment pq
does not intersect any segment e ∈ E. We can thus imagine the line segments
of E as �blocking the view�.

For illustration, consider the simple polygon and its constrained Delaunay triangula-
tion shown in Figure 5.15. The circumcircle of the shaded triangle ∆ contains a whole
other triangle in its interior. But these points cannot be seen from ∆◦, because all
possible connecting line segments intersect the blocking polygon edge e of ∆.

∆

e

Figure 5.15: Constrained Delaunay triangulation of a simple polygon.

Theorem 5.21 For every �nite point set P and every plane graph G = (P,E), there
exists a constrained Delaunay triangulation of P with respect to G.

Exercise 5.22 Prove Theorem 5.21. Also describe a polynomial algorithm to construct
such a triangulation.

Questions

18. What is a triangulation? Provide the de�nition and prove a basic property: every
triangulation with the same set of vertices and the same outer face has the same
number of triangles.

19. What is a triangulation of a point set? Give a precise de�nition.
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20. Does every point set (not all points on a common line) have a triangulation?
You may, for example, argue with the scan triangulation.

21. What is a Delaunay triangulation of a set of points? Give a precise de�nition.

22. What is the Delaunay graph of a point set? Give a precise de�nition and a
characterization.

23. How can you prove that every set of points (not all on a common line) has a
Delaunay triangulation? You can for example sketch the Lawson �ip algorithm
and the Lifting Map, and use these to show the existence.

24. When is the Delaunay triangulation of a point set unique? Show that general
position is a su�cient condition. Is it also necessary?

25. What can you say about the �quality� of a Delaunay triangulation? Prove
that every Delaunay triangulation maximizes the smallest interior angle in the
triangulation, among the set of all triangulations of the same point set.
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Chapter 6

Delaunay Triangulation: Incremental

Construction

In the last lecture, we have learned about the Lawson �ip algorithm that computes a
Delaunay triangulation of a given n-point set P ⊆ R2 with O(n2) Lawson �ips. One can
actually implement this algorithm to run in O(n2) time, and there are point sets where
it may take Ω(n2) �ips.

In this lecture, we will discuss a di�erent algorithm. The �nal goal is to show that
this algorithm can be implemented to run in O(n logn) time; this lecture, however, is
concerned only with the correctness of the algorithm. Throughout the lecture we assume
that P is in general position (no 3 points on a line, no 4 points on a common circle), so
that the Delaunay triangulation is unique (Corollary 5.17). There are techniques to deal
with non-general position, but we don't discuss them here.

6.1 Incremental construction

The idea is to build the Delaunay triangulation of P by inserting one point after another.
We always maintain the Delaunay triangulation of the point set R inserted so far, and
when the next point s comes along, we simply update the triangulation to the Delaunay
triangulation of R ∪ {s}. Let DT(R) denote the Delaunay triangulation of R ⊆ P.

To avoid special cases, we enhance the point set P with three arti�cial points �far
out�. The convex hull of the resulting point set is a triangle; later, we can simply remove
the extra points and their incident edges to obtain DT(P). The incremental algorithm
starts o� with the Delaunay triangulation of the three arti�cial points which consists
of one big triangle enclosing all other points. (In our �gures, we suppress the far-away
points, since they are merely a technicality.)

Now assume that we have already built DT(R), and we next insert s ∈ P \ R. Here is
the outline of the update step.

1. Find the triangle ∆ = ∆(p,q, r) of DT(R) that contains s, and replace it with the
three triangles resulting from connecting s with all three vertices p,q, r; see Figure
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s

∆

Figure 6.1: Inserting s into DT(R): Step 1

6.1. We now have a triangulation T of R ∪ {s}.

2. Perform Lawson �ips on T until DT(R ∪ {s}) is obtained; see Figure 6.2
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∆

s

∆

s

∆
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Figure 6.2: Inserting s into DT(R): Step 2

How to organize the Lawson �ips. The Lawson �ips can be organized quite systematically,
since we always know the candidates for �bad� edges that may still have to be �ipped.
Initially (after step 1), only the three edges of ∆ can be bad, since these are the only
edges for which an incident triangle has changed (by inserting s in Step 1). Each of
the three new edges is good, since the 4 vertices of its two incident triangles are not in
convex position.

Now we have the following invariant (part (a) certainly holds in the �rst �ip):
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(a) In every �ip, the convex quadrilateral Q in which the �ip happens has exactly two
edges incident to s, and the �ip generates a new edge incident to s.

(b) Only the two edges of Q that are not incident to s can become bad through the
�ip.

We will prove part (b) in the next lemma. The invariant then follows since (b) entails
(a) in the next �ip. This means that we can maintain a queue of potentially bad edges
that we process in turn. A good edge will simply be removed from the queue, and a bad
edge will be �ipped and replaced according to (b) with two new edges in the queue. In
this way, we never �ip edges incident to s; the next lemma proves that this is correct
and at the same time establishes part (b) of the invariant.

Lemma 6.1 Every edge incident to s that is created during the update is an edge of
the Delaunay graph of R∪ {s} and thus an edge that will be in DT(R∪ {s}). It easily
follows that edges incident to s will never become bad during the update step.1

Proof. Let us consider one of the �rst three new edges, sp, say. Since the triangle
∆ has a circumcircle C strictly containing only s (∆ is in DT(R)), we can shrink that
circumcircle to a circle C ′ through s and p with no interior points, see Figure 6.3 (a).
This proves that sp is in the Delaunay graph. If st is an edge created by a �ip, a similar
argument works. The �ip destroys exactly one triangle ∆ of DT(R). Its circumcircle C
contains s only, and shrinking it yields an empty circle C ′ through s and t. Thus, st is
in the Delaunay graph also in this case. �

C

C’

r

p

q
s

∆

(a) New edge sp incident
to s created in Step 1

C

s

C’ ∆

t

(b) New edge st incident
to s created in Step 2

Figure 6.3: Newly created edges incident to s are in the Delaunay graph

1If such an edge was bad, it could be �ipped, but then it would be �gone forever� according to the
lifting map interpretation from the previous lecture.
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s

∆

s

∆

s s s

Figure 6.4: The history graph: one triangle gets replaced by three triangles

6.2 The History Graph

What can we say about the performance of the incremental construction? Not much yet.
First of all, we did not specify how we �nd the triangle ∆ of DT(R) that contains the
point s to be inserted. Doing this in the obvious way (checking all triangles) is not good,
since already the �nd steps would then amount to O(n2) work throughout the whole
algorithm. Here is a smarter method, based on the history graph.

De�nition 6.2 Given R ⊆ P (regarded as a sequence that re�ects the insertion order),
the history graph of R is a directed acyclic graph whose vertices are all triangles
that have ever been created during the incremental construction of DT(R). There
is a directed edge from ∆ to ∆ ′ whenever ∆ has been destroyed during an insertion
step, ∆ ′ has been created during the same insertion step, and ∆ overlaps with ∆ ′

in its interior.

It follows that the history graph contains triangles of outdegrees 3, 2 and 0. The ones of
outdegree 0 are clearly the triangles of DT(R).

The triangles of outdegree 3 are the ones that have been destroyed during Step 1 of
an insertion. For each such triangle ∆, its three outneighbors are the three new triangles
that have replaced it, see Figure 6.4.

The triangles of outdegree 2 are the ones that have been destroyed during Step 2 of
an insertion. For each such triangle ∆, its two outneighbors are the two new triangles
created during the �ip that has destroyed ∆, see Figure 6.5.

The history graph can be built during the incremental construction at asymptotically
no extra cost; but it may need extra space since it keeps all triangles ever created. Given
the history graph, we can search for the triangle ∆ of DT(R) that contains s, as follows.
We start from the big triangle spanned by the three far-away points; this one certainly
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s

s

s s

Figure 6.5: The history graph: two triangles get replaced by two triangles

contains s. Then we follow a directed path in the history graph. If the current triangle
still has outneighbors, we �nd the unique outneighbor containing s and continue the
search with this neighbor. If the current triangle has no outneighbors anymore, it is in
DT(R) and contains s�we are done.

Types of triangles in the history graph. After each insertion of a point s, several triangles are
created and added to the history graph. It is important to note that these triangles come
in two types: Some of them are valid Delaunay triangles of R∪{s}, and they survive to the
next stage of the incremental construction. Other triangles are immediately destroyed
by subsequent Lawson �ips, because they are not Delaunay triangles of R ∪ {s}. These
�ephemeral" triangles will give us some headache (though not much) in the algorithm's
analysis in the next chapter.

Note that, whenever a Lawson �ip is performed, of the two triangles destroyed one
of them is always a �valid" triangle from a previous iteration, and the other one is an
�ephemeral" triangle that was created at this iteration. The ephemeral triangle is always
the one that has s, the newly inserted point, as a vertex.

6.3 The structural change

Concerning the actual update (Steps 1 and 2), we can make the following

Observation 6.3 Given DT(R) and the triangle ∆ of DT(R) that contains s, we can
build DT(R∪ {s}) in time proportional to the degree of s in DT(R∪ {s}), which is the
number of triangles of DT(R ∪ {s}) containing s.

Indeed, since every �ip generates exactly one new triangle incident to s, the number
of �ips is the degree of s minus three. Step 1 of the update takes constant time, and
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since also every �ip can be implemented in constant time, the observation follows.
In the next lecture, we will show that a clever insertion order guarantees that the

search paths traversed in the history graph are short, and that the structural change (the
number of new triangles) is small. This will then give us the O(n logn) algorithm.

Exercise 6.4 For a sequence of n pairwise distinct numbers y1, . . . ,yn consider the se-
quence of pairs (min{y1, . . . ,yi},max{y1, . . . ,yi})i=0,1,...,n (min ∅ := +∞,max ∅ := −∞).
How often do these pairs change in expectation if the sequence is permuted ran-
domly, each permutation appearing with the same probability? Determine the ex-
pected value.

Questions

26. Describe the algorithm for the incremental construction of DT(P): how do we
�nd the triangle containing the point s to be inserted into DT(R)? How do we
transform DT(R) into DT(R∪ {s})? How many steps does the latter transformation
take, in terms of DT(R ∪ {s})?

27. What are the two types of triangles that the history graph contains?
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Chapter 7

The Con�guration Space Framework

In Section 6.1, we have discussed the incremental construction of the Delaunay trian-
gulation of a �nite point set. In this lecture, we want to analyze the runtime of this
algorithm if the insertion order is chosen uniformly at random among all insertion or-
ders. We will do the analysis not directly for the problem of constructing the Delaunay
triangulation but in a somewhat more abstract framework, with the goal of reusing the
analysis for other problems.

Throughout this lecture, we again assume general position: no three points on a line,
no four on a circle.

7.1 The Delaunay triangulation � an abstract view

The incremental construction constructs and destroys triangles. In this section, we want
to take a closer look at these triangles, and we want to understand exactly when a triangle
is �there�.

Lemma 7.1 Given three points p,q, r ∈ R, the triangle ∆(p,q, r) with vertices p,q, r
is a triangle of DT(R) if and only if the circumcircle of ∆(p,q, r) is empty of points
from R.

Proof. The �only if� direction follows from the de�nition of a Delaunay triangulation
(De�nition 5.8). The �if� direction is a consequence of general position and Lemma 5.16:
if the circumcircle C of ∆(p,q, r) is empty of points from R, then all the three edges
pq,qr,pr are easily seen to be in the Delaunay graph of R. C being empty also implies
that the triangle ∆(p,q, r) is empty, and hence it forms a triangle of DT(R). �

Next we develop a somewhat more abstract view of DT(R).

De�nition 7.2

(i) For all p,q, r ∈ P, the triangle ∆ = ∆(p,q, r) is called a con�guration. The
points p,q and r are called the de�ning elements of ∆.

99



Chapter 7. The Con�guration Space Framework Geometry: C&A 2014

(ii) A con�guration ∆ is in con�ict with a point s ∈ P if s is strictly inside the
circumcircle of ∆. In this case, the pair (∆, s) is called a con�ict.

(iii) A con�guration ∆ is called active w.r.t. R ⊆ P if (a) the de�ning elements of
∆ are in R, and (b) if ∆ is not in con�ict with any element of R.

According to this de�nition and Lemma 7.1, DT(R) consists of exactly the con�gu-
rations that are active w.r.t. R. Moreover, if we consider DT(R) and DT(R ∪ {s}) as sets
of con�gurations, we can exactly say how these two sets di�er.

There are the con�gurations in DT(R) that are not in con�ict with s. These con�g-
urations are still in DT(R ∪ {s}). The con�gurations of DT(R) that are in con�ict with
s will be removed when going from R to R ∪ {s}. Finally, DT(R ∪ {s}) contains some new
con�gurations, all of which must have s in their de�ning set. According to Lemma 7.1,
it cannot happen that we get a new con�guration without s in its de�ning set, as such
a con�guration would have been present in DT(R) already.

7.2 Con�guration Spaces

Here is the abstract framework that generalizes the previous con�guration view of the
Delaunay triangulation.

De�nition 7.3 Let X (the ground set) and Π (the set of con�gurations) be �nite sets.
Furthermore, let

D : Π→ 2X

be a function that assigns to every con�guration ∆ a set of de�ning elements D(∆).
We assume that only a constant number of con�gurations have the same de�ning
elements. Let

K : Π→ 2X

be a function that assigns to every con�guration ∆ a set of elements in con�ict with
∆ (the �killer� elements). We stipulate that D(∆) ∩ K(∆) = ∅ for all ∆ ∈ Π.

Then the quadruple S = (X,Π,D,K) is called a con�guration space. The number

d = d(S) := max
∆∈Π

|D(∆)|

is called the dimension of S.
Given R ⊆ X, a con�guration ∆ is called active w.r.t. R if

D(∆) ⊆ R and K(∆) ∩ R = ∅,
i.e. if all de�ning elements are in R but no element of R is in con�ict with ∆. The
set of active con�gurations w.r.t. R is denoted by TS(R), where we drop the subscript
if the con�guration space is clear from the context.
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In case of the Delaunay triangulation, we set X = P (the input point set). Π consists
of all triangles ∆ = ∆(p,q, r) spanned by three points p,q, r ∈ X∪ {a,b, c}, where a,b, c
are the three arti�cial far-away points. We set D(∆) := {p,q, r}∩X. The set K(∆) consists
of all points strictly inside the circumcircle of ∆. The resulting con�guration space has
dimension 3, and the technical condition that only a constant number of con�gurations
share the de�ning set is satis�ed as well. In fact, every set of three points de�nes a
unique con�guration (triangle) in this case. A set of two points or one point de�nes
three triangles (we have to add one or two arti�cial points which can be done in three
ways). The empty set de�nes one triangle, the initial triangle consisting of just the three
arti�cial points.

Furthermore, in the setting of the Delaunay triangulation, a con�guration is active
w.r.t. R if it is in DT(R ∪ {a,b, c}), i.e. we have T(R) = DT(R ∪ {a,b, c}).

7.3 Expected structural change

Let us �x a con�guration space S = (X,Π,D,K) for the remainder of this lecture. We
can also interpret the incremental construction in S. Given R ⊆ X and s ∈ X \ R, we
want to update T(R) to T(R ∪ {s}). What is the number of new con�gurations that arise
during this step? For the case of Delaunay triangulations, this is the relevant question
when we want to bound the number of Lawson �ips during one update step, since this
number is exactly the number of new con�gurations minus three.

Here is the general picture.

De�nition 7.4 For Q ⊆ X and s ∈ Q, deg(s,Q) is de�ned as the number of con�gura-
tions of T(Q) that have s in their de�ning set.

With this, we can say that the number of new con�gurations in going from T(R) to
T(R∪{s}) is precisely deg(s,R∪{s}), since the new con�gurations are by de�nition exactly
the ones that have s in their de�ning set.

Now the random insertion order comes in for the �rst time: what is

E(deg(s,R ∪ {s})),

averaged over all insertion orders? In such a random insertion order, R is a random r-
element subset of X (when we are about to insert the (r+1)-st element), and s is a random
element of X \ R. Let Tr be the �random variable� for the set of active con�gurations
after r insertion steps.

It seems hard to average over all R, but there is a trick: we make a movie of the
randomized incremental construction, and then we watch the movie backwards. What
we see is elements of X being deleted one after another, again in random order. This is
due to the fact that the reverse of a random order is also random. At the point where the
(r+ 1)-st element is being deleted, it is going to be a random element s of the currently
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present (r + 1)-element subset Q. For �xed Q, the expected degree of s is simply the
average degree of an element in Q which is

1
r+ 1

∑
s∈Q

deg(s,Q) 6
d

r+ 1
|T(Q)|,

since the sum counts every con�guration of T(Q) at most d times. Since Q is a random
(r+ 1)-element subset, we get

E(deg(s,R ∪ {s})) 6
d

r+ 1
tr+1,

where tr+1 is de�ned as the expected number of active con�gurations w.r.t. a random
(r+ 1)-element set.

Here is a more formal derivation that does not use the backwards movie view. It
exploits the bijection

(R, s) 7→ (R ∪ {s}︸ ︷︷ ︸
Q

, s)

between pairs (R, s) with |R| = r and s /∈ R and pairs (Q, s) with |Q| = r+ 1 and s ∈ Q.
Let n = |X|.

E(deg(s,R ∪ {s})) =
1(
n
r

) ∑
R⊆X,|R|=r

1
n− r

∑
s∈X\R

deg(s,R ∪ {s})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

1
n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) 1
n− r

∑
s∈Q

deg(s,Q)

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

1
r+ 1

∑
s∈Q

deg(s,Q)

6
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r+ 1
|T(Q)|

=
d

r+ 1
tr+1.

Thus, the expected number of new con�gurations in going from Tr to Tr+1 is bounded
by

d

r+ 1
tr+1,
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where tr+1 is the expected size of Tr+1.
What do we get for Delaunay triangulations? We have d = 3 and tr+1 6 2(r+ 4) − 4

(the maximum number of triangles in a triangulation of r+ 4 points). Hence,

E(deg(s,R ∪ {s})) 6
6r+ 12
r+ 1

≈ 6.

This means that on average, ≈ 3 Lawson �ips are done to update DTr (the Delaunay
triangulation after r insertion steps) to DTr+1. Over the whole algorithm, the expected
update cost is thus O(n).

7.4 Bounding location costs by con�ict counting

Before we can even update DTr to DTr+1 during the incremental construction of the
Delaunay triangulation, we need to locate the new point s in DTr, meaning that we need
to �nd the triangle that contains s. We have done this with the history graph: During
the insertion of s we �visit" a sequence of triangles from the history graph, each of which
contains s and was created at some previous iteration k < r.

However, some of these visited triangles are �ephemeral" triangles (recall the discus-
sion at the end of Section 6.2), and they present a problem to the generic analysis we
want to perform. Therefore, we will do a charging scheme, so that all triangles charged
are valid Delaunay triangles.

The charging scheme is as follows: If the visited triangle ∆ is a valid Delaunay triangle
(from some previous iteration), then we simply charge the visit of ∆ during the insertion
of s to the triangle-point pair (∆, s).

If, on the other hand, ∆ is an �ephemeral" triangle, then ∆ was destroyed, together
with some neighbor ∆ ′, by a Lawson �ip into another pair ∆ ′′, ∆ ′′′. Note that this
neighbor ∆ ′ was a valid triangle. Thus, in this case we charge the visit of ∆ during the
insertion of s to the pair (∆ ′, s). Observe that s is contained in the circumcircle of ∆ ′,
so s is in con�ict with ∆ ′.

This way, we have charged each visit to a triangle in the history graph to a triangle-
point pair of the form (∆, s), such that ∆ is in con�ict with s. Furthermore, it is easy to
see that no such pair gets charged more than once.

We de�ne the notion of a con�ict in general:

De�nition 7.5 A con�ict is a con�guration-element pair (∆, s) where ∆ ∈ Tr for some
r and s ∈ K(∆).

Thus, the running time of the Delaunay algorithm is proportional to the number of
con�icts. We now proceed to derive a bound on the expected number of con�icts in the
generic con�guration-space framework.
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7.5 Expected number of con�icts

Since every con�guration involved in a con�ict has been created in some step r (we
include step 0), the total number of con�icts is

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)|,

where T−1 := ∅. T0 consists of constantly many con�gurations only (namely those where
the set of de�ning elements is the empty set), each of which is in con�ict with at most
all elements; moreover, no con�ict is created in step n. Hence,

n∑
r=0

∑
∆∈Tr\Tr−1

|K(∆)| = O(n) +

n−1∑
r=1

∑
∆∈Tr\Tr−1

|K(∆)|,

and we will bound the latter quantity. Let

K(r) :=
∑

∆∈Tr\Tr−1

|K(∆)|, r = 1, . . . ,n− 1.

and k(r) := E(K(r)) the expected number of con�icts created in step r.

Bounding k(r). We know that Tr arises from a random r-element set R. Fixing R, the
backwards movie view tells us that Tr−1 arises from Tr by deleting a random element s
of R. Thus,

k(r) =
1(
n
r

) ∑
R⊆X,|R|=r

1
r

∑
s∈R

∑
∆∈T(R)\T(R\{s})

|K(∆)|

=
1(
n
r

) ∑
R⊆X,|R|=r

1
r

∑
s∈R

∑
∆∈T(R),s∈D(∆)

|K(∆)|

6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
∆∈T(R)

|K(∆)|,

since in the sum over s ∈ R, every con�guration is counted at most d times. Since we
can rewrite∑

∆∈T(R)

|K(∆)| =
∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|,

we thus have

k(r) 6
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|{∆ ∈ T(R) : y ∈ K(∆)}|.

To estimate this further, here is a simple but crucial
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Lemma 7.6 The con�gurations in T(R) that are not in con�ict with y are the con�g-
urations in T(R ∪ {y}) that do not have y in their de�ning set; in formulas:

|T(R)| − |{∆ ∈ T(R) : y ∈ K(∆)}| = |T(R ∪ {y})| − deg(y,R ∪ {y}).

The proof is a direct consequence of the de�nitions: every con�guration in T(R) not in
con�ict with y is by de�nition still present in T(R ∪ {y}) and still does not have y in
its de�ning set. And a con�guration in T(R ∪ {y}) with y not in its de�ning set is by
de�nition already present in T(R) and already there not in con�ict with y.

The lemma implies that

k(r) 6 k1(r) − k2(r) + k3(r),

where

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|,

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|,

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y,R ∪ {y}).

Estimating k1(r). This is really simple.

k1(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R)|

=
1(
n
r

) ∑
R⊆X,|R|=r

d

r
(n− r)|T(R)|

=
d

r
(n− r)tr.
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Estimating k2(r). For this, we need to employ our earlier (R,y) 7→ (R ∪ {y},y) bijection
again.

k2(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

|T(R ∪ {y})|

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d
r
(r+ 1)|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

d

r
(n− r)|T(Q)|

=
d

r
(n− r)tr+1

=
d

r+ 1
(n− (r+ 1))tr+1 +

dn

r(r+ 1)
tr+1

= k1(r+ 1) +
dn

r(r+ 1)
tr+1.

Estimating k3(r). This is similar to k2(r) and in addition uses a fact that we have em-
ployed before:

∑
y∈Q deg(y,Q) 6 d|T(Q)|.

k3(r) =
1(
n
r

) ∑
R⊆X,|R|=r

d

r

∑
y∈X\R

deg(y,R ∪ {y})

=
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d

r

∑
y∈Q

deg(y,Q)

6
1(
n
r

) ∑
Q⊆X,|Q|=r+1

d2

r
|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

(
n
r+1

)(
n
r

) d2
r

|T(Q)|

=
1(
n
r+1

) ∑
Q⊆X,|Q|=r+1

n− r

r+ 1
· d

2

r
|T(Q)|

=
d2

r(r+ 1)
(n− r)tr+1

=
d2n

r(r+ 1)
tr+1 −

d2

r+ 1
tr+1.
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Summing up. Let us recapitulate: the overall expected number of con�icts is O(n) plus

n−1∑
r=1

k(r) =

n−1∑
r=1

(k1(r) − k2(r) + k3(r)).

Using our previous estimates, k1(2), . . . ,k1(n − 1) are canceled by the �rst terms of
k2(1), . . . ,k2(n − 2). The second term of k2(r) can be combined with the �rst term of
k3(r), so that we get

n−1∑
r=1

(k1(r) − k2(r) + k3(r)) 6 k1(1) − k1(n)︸ ︷︷ ︸
=0

+n

n−1∑
r=1

d(d− 1)
r(r+ 1)

tr+1 −

n−1∑
r=1

d2

r+ 1
tr+1

6 d(n− 1)t1 + d(d− 1)n
n−1∑
r=1

tr+1

r(r+ 1)

= O

(
d2n

n∑
r=1

tr

r2

)
.

The Delaunay case. We have argued that the expected number of con�icts asymptotically
bounds the expected total location cost over all insertion steps. The previous equation
tells us that this cost is proportional to O(n) plus

O

(
9n

n∑
r=1

2(r+ 3) − 4
r2

)
= O

(
n

n∑
r=1

1
r

)
= O(n logn).

Here,

n∑
r=1

1
r

=: Hn

is the n-th Harmonic Number which is known to be approximately lnn.
By going through the abstract framework of con�guration spaces, we have thus ana-

lyzed the randomized incremental construction of the Delaunay triangulation of n points.
According to Section 7.3, the expected update cost itself is only O(n). The steps dom-
inating the runtime are the location steps via the history graph. According to Section
7.5, all history graph searches (whose number is proportional to the number of con�icts)
can be performed in expected time O(n logn), and this then also bounds the space
requirements of the algorithm.

Exercise 7.7 Design and analyze a sorting algorithm based on randomized incremen-
tal construction in con�guration spaces. The input is a set S of numbers, and the
output should be the sorted sequence (in increasing order).
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a) De�ne an appropriate con�guration space for the problem! In particular, the
set of active con�gurations w.r.t. S should represent the desired sorted se-
quence.

b) Provide an e�cient implementation of the incremental construction algo-
rithm. �E�cient� means that the runtime of the algorithm is asymptotically
dominated by the number of con�icts.

c) What is the expected number of con�icts (and thus the asymptotic runtime of
your sorting algorithm) for a set S of n numbers?

Questions

28. What is a con�guration space? Give a precise de�nition! What is an active
con�guration?

29. How do we get a con�guration space from the problem of computing the De-
launay triangulation of a �nite point set?

30. How many new active con�gurations do we get on average when inserting the
r-th element? Provide an answer for con�guration spaces in general, and for the
special case of the Delaunay triangulation.

31. What is a con�ict? Provide an answer for con�guration spaces in general, and
for the special case of the Delaunay triangulation.

32. Explain why counting the expected number of con�icts asymptotically bounds
the cost for the history searches during the randomized incremental construc-
tion of the Delaunay triangulation!
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Chapter 8

Voronoi Diagrams

8.1 Post O�ce Problem

Suppose there are n post o�ces p1, . . .pn in a city. Someone who is located at a position
q within the city would like to know which post o�ce is closest to him.1 Modeling the
city as a planar region, we think of p1, . . .pn and q as points in the plane. Denote the
set of post o�ces by P = {p1, . . .pn}.

Figure 8.1: Closest post o�ces for various query points.

While the locations of post o�ces are known and do not change so frequently, we do
not know in advance for which�possibly many�query locations the closest post o�ce
is to be found. Therefore, our long term goal is to come up with a data structure on
top of P that allows to answer any possible query e�ciently. The basic idea is to apply
a so-called locus approach : we partition the query space into regions on which is the
answer is the same. In our case, this amounts to partition the plane into regions such
that for all points within a region the same point from P is closest (among all points
from P).

1Another�possibly historically more accurate�way to think of the problem: You want to send a letter
to a person living at q. For this you need to know the corresponding zip code, which is the code of the
post o�ce closest to q.
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As a warmup, consider the problem for two post o�ces pi, pj ∈ P. For which query
locations is the answer pi rather than pj? This region is bounded by the bisector of pi
and pj, that is, the set of points which have the same distance to both points.

Proposition 8.1 For any two distinct points in Rd the bisector is a hyperplane, that
is, in R2 it is a line.

Proof. Let p = (p1, . . . ,pd) and q = (q1, . . . ,qd) be two points in Rd. The bisector of
p and q consists of those points x = (x1, . . . , xd) for which

||p− x|| = ||q− x|| ⇐⇒ ||p− x||
2

= ||q− x||
2 ⇐⇒ ||p||

2
− ||q||

2
= 2(p− q)>x .

As p and q are distinct, this is the equation of a hyperplane. �

pi

pj

H(pi, pj)

Figure 8.2: The bisector of two points.

Denote by H(pi, pj) the closed halfspace bounded by the bisector of pi and pj that
contains pi. In R2, the region H(pi, pj) is a halfplane; see Figure 8.2.

Exercise 8.2

a) What is the bisector of a line ` and a point p ∈ R2 \ `, that is, the set of all
points x ∈ R2 with ||x− p|| = ||x− `|| (= minq∈` ||x− q||)?

b) For two points p 6= q ∈ R2, what is the region that contains all points whose
distance to p is exactly twice their distance to q?

8.2 Voronoi Diagram

In the following we work with a set P = {p1, . . . , pn} of points in R2.

De�nition 8.3 (Voronoi cell) For pi ∈ P denote the Voronoi cell VP(i) of pi by

VP(i) :=
{
q ∈ R2 | ||q− pi|| 6 ||q− p|| for all p ∈ P} .
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Proposition 8.4

VP(i) =
⋂
j6=i
H(pi, pj) .

Proof. For j 6= i we have ||q− pi|| 6 ||q− pj|| ⇐⇒ q ∈ H(pi, pj). �

Corollary 8.5 VP(i) is non-empty and convex.

Proof. According to Proposition 8.4, the region VP(i) is the intersection of a �nite
number of halfplanes and hence convex. As pi ∈ VP(i), we have VP(i) 6= ∅. �

Observe that every point of the plane lies in some Voronoi cell but no point lies in the
interior of two Voronoi cells. Therefore these cells form a subdivision of the plane (a
partition2 into interior-disjoint simple polygons). See Figure 8.3 for an example.

De�nition 8.6 (Voronoi Diagram) The Voronoi Diagram VD(P) of a set P = {p1, . . . , pn} of
points in R2 is the subdivision of the plane induced by the Voronoi cells VP(i), for
i = 1, . . . , n. Denote by VV(P) the set of vertices, by VE(P) the set of edges, and
by VR(P) the set of regions (faces) of VD(P).

Figure 8.3: Example: The Voronoi diagram of a point set.

Lemma 8.7 For every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of at least three edges from VE(P);

b) v is incident to at least three regions from VR(P);

2Strictly speaking, to obtain a partition, we treat the shared boundaries of the polygons as separate
entities.
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c) v is the center of a circle C(v) through at least three points from P such that

d) C(v)
◦ ∩ P = ∅.

Proof. Consider a vertex v ∈ VV(P). As all Voronoi cells are convex, k > 3 of them
must be incident to v. This proves Part a) and b).

v

e2

ek−1

eke1

VP(k)

VP(1)

VP(2)

. . .

Without loss of generality let these cells be VP(i), for
1 6 i 6 k. Denote by ei, 1 6 i 6 k, the edge incident to v
that bounds VP(i) and VP((imodk) + 1).

For any i = 1, . . . ,k we have v ∈ ei ⇒ ||v − pi|| = ||v −

p(imodk)+1||. In other words, p1, p2, . . . , pk are cocircular,
which proves Part c).

Part d): Suppose there exists a point p` ∈ C(v)
◦. Then

the vertex v is closer to p` than it is to any of p1, . . . ,pk,
in contradiction to the fact that v is contained in all of
VP(1), . . . , VP(k). �

Corollary 8.8 If P is in general position (no four points from P are cocircular), then
for every vertex v ∈ VV(P) the following statements hold.

a) v is the common intersection of exactly three edges from VE(P);

b) v is incident to exactly three regions from VR(P);

c) v is the center of a circle C(v) through exactly three points from P such that

d) C(v)
◦ ∩ P = ∅. �

Lemma 8.9 There is an unbounded Voronoi edge bounding VP(i) and VP(j) ⇐⇒
pipj ∩P = {pi,pj} and pipj ⊆ ∂conv(P), where the latter denotes the boundary of the
convex hull of P.

Proof.

pi pj

ρ

H

r0

r

bi,j

C

D

Denote by bi,j the bisector of pi and pj, and let D

denote the family of disks centered at some point
on bi,j and passing through pi (and pj). There
is an unbounded Voronoi edge bounding VP(i)
and VP(j) ⇐⇒ there is a ray ρ ⊂ bi,j such that
||r−pk|| > ||r−pi|| (= ||r−pj||), for every r ∈ ρ and
every pk ∈ P with k /∈ {i, j}. Equivalently, there
is a ray ρ ⊂ bi,j such that for every point r ∈ ρ
the disk C ∈ D centered at r does not contain any
point from P in its interior.

The latter statement implies that the open
halfplane H, whose bounding line passes through
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pi and pj and such that H contains the in�nite
part of ρ, contains no point from P in its interior.
Therefore, pipj appears on ∂conv(P) and pipj does not contain any pk ∈ P, for k 6= i, j.

Conversely, suppose that pipj appears on ∂conv(P) and pipj ∩ P = {pi,pj}. Then
some halfplane H whose bounding line passes through pi and pj contains no point from
P in its interior. In particular, the existence of H together with pipj∩P = {pi,pj} implies
that there is some disk C ∈ D such that C ∩ P = {pi,pj}. Denote by r0 the center of
C and let ρ denote the ray starting from r0 along bi,j such that the in�nite part of ρ is
contained in H. Consider any disk D ∈ D centered at a point r ∈ ρ and observe that
D \H ⊆ C \H. As neither H nor C contain any point from P in their respective interior,
neither does D. This holds for every D, and we have seen above that this statement is
equivalent to the existence of an unbounded Voronoi edge bounding VP(i) and VP(j). �

8.3 Duality

A straight-line dual of a plane graph G is a graph G ′ de�ned as follows: Choose a point
for each face of G and connect any two such points by a straight edge, if the corresponding
faces share an edge of G. Observe that this notion depends on the embedding; that
is why the straight-line dual is de�ned for a plane graph rather than for an abstract
graph. In general, G ′ may have edge crossings, which may also depend on the choice of
representative points within the faces. However, for Voronoi diagrams is a particularly
natural choice of representative points such that G ′ is plane: the points from P.

Theorem 8.10 (Delaunay [2]) The straight-line dual of VD(P) for a set P ⊂ R2 of n > 3
points in general position (no three points from P are collinear and no four points
from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof. By Lemma 8.9, the convex hull edges appear in the straight-line dual T of VD(P)

and they correspond exactly to the unbounded edges of VD(P). All remaining edges
of VD(P) are bounded, that is, both endpoints are Voronoi vertices. Consider some
v ∈ VV(P). According to Corollary 8.8(b), v is incident to exactly three Voronoi regions,
which, therefore, form a triangle4(v) in T . By Corollary 8.8(d), the circumcircle of4(v)

does not contain any point from P in its interior. Hence 4(v) appears in the (unique by
Corollary 5.17) Delaunay triangulation of P.

Conversely, for any triangle pipjpk in the Delaunay triangulation of P, by the empty
circle property the circumcenter c of pipjpk has pi, pj, and pk as its closest points from
P. Therefore, c ∈ VV(P) and�as above�the triangle pipjpk appears in T . �

It is not hard to generalize Theorem 8.10 to general point sets. In this case, a
Voronoi vertex of degree k is mapped to a convex polygon with k cocircular vertices.
Any triangulation of such a polygon yields a Delaunay triangulation of the point set.

Corollary 8.11 |VE(P)| 6 3n− 6 and |VV(P)| 6 2n− 5.
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Figure 8.4: The Voronoi diagram of a point set and its dual Delaunay triangulation.

Proof. Every edge in VE(P) corresponds to an edge in the dual Delaunay triangulation.
The latter is a plane graph on n vertices and thus has at most 3n− 6 edges and at most
2n− 4 faces by Corollary 2.5. Only the bounded faces correspond to a vertex in VD(P).
�

Corollary 8.12 For a set P ⊂ R2 of n points, the Voronoi diagram of P can be con-
structed in expected O(n logn) time and O(n) space.

Proof. We have seen that a Delaunay triangulation T for P can be obtained using
randomized incremental construction in the given time and space bounds. As T is a
plane graph, its number of vertices, edges, and faces all are linear in n. Therefore, the
straight-line dual of T�which by Theorem 8.10 is the desired Voronoi diagram�can be
computed in O(n) additional time and space. �

Exercise 8.13 Consider the Delaunay triangulation T for a set P ⊂ R2 of n > 3 points
in general position. Prove or disprove:

a) Every edge of T intersects its dual Voronoi edge.

b) Every vertex of VD(P) is contained in its dual Delaunay triangle.

8.4 Lifting Map

Recall the lifting map that we used in Section 5.3 to prove that the Lawson Flip Algorithm
terminates. Denote by U : z = x2 + y2 the unit paraboloid in R3. The lifting map
` : R2 → U with ` : p = (px,py) 7→ (px,py,px2 + py

2) is the projection of the x/y-plane
onto U in direction of the z-axis.
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For p ∈ R2 let Hp denote the plane of tangency to U in `(p). Denote by hp : R2 → Hp
the projection of the x/y-plane onto Hp in direction of the z-axis (see Figure 8.5).

p

U

`(p)

q

`(q)

hp(q)

Hp

Figure 8.5: Lifting map interpretation of the Voronoi diagram in a two-dimensional
projection.

Lemma 8.14 ||`(q) − hp(q)|| = ||p− q||
2, for any points p,q ∈ R2.

Exercise 8.15 Prove Lemma 8.14. Hint: First determine the equation of the tangent
plane Hp to U in `(p).

Theorem 8.16 For p = (px,py) ∈ R2 denote by Hp the plane of tangency to the unit
paraboloid U = {(x,y, z) : z = x2 + y2} ⊂ R3 in `(p) = (px,py,px2 + py

2). Let H(P) :=⋂
p∈P H

+
p the intersection of all halfspaces above the planes Hp, for p ∈ P. Then the

vertical projection of ∂H(P) onto the x/y-plane forms the Voronoi Diagram of P
(the faces of ∂H(P) correspond to Voronoi regions, the edges to Voronoi edges, and
the vertices to Voronoi vertices).

Proof. For any point q ∈ R2, the vertical line through q intersects every plane Hp,
p ∈ P. By Lemma 8.14 the topmost plane intersected belongs to the point from P that
is closest to q. �

8.5 Point location in a Voronoi Diagram

One last bit is still missing in order to solve the post o�ce problem optimally.

Theorem 8.17 Given a triangulation T for a set P ⊂ R2 of n points, one can build in
O(n) time an O(n) size data structure that allows for any query point q ∈ conv(P)
to �nd in O(logn) time a triangle from T containing q.
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The data structure we will employ is known as Kirkpatrick's hierarchy. But before
discussing it in detail, let us put things together in terms of the post o�ce problem.

Corollary 8.18 (Nearest Neighbor Search) Given a set P ⊂ R2 of n points, one can build
in expected O(n logn) time an O(n) size data structure that allows for any query
point q ∈ conv(P) to �nd in O(logn) time a nearest neighbor of q among the points
from P.

Proof. First construct the Voronoi Diagram V of P in expected O(n logn) time. It has
exactly n convex faces. Every unbounded face can be cut by the convex hull boundary
into a bounded and an unbounded part. As we are concerned with query points within
conv(P) only, we can restrict our attention to the bounded parts.3 Any convex polygon
can easily be triangulated in time linear in its number of edges (= number of vertices).
As V has at most 3n − 6 edges and every edge appears in exactly two faces, V can
be triangulated in O(n) time overall. Label each of the resulting triangles with the
point from p, whose Voronoi region contains it, and apply the data structure from
Theorem 8.17. �

8.6 Kirkpatrick's Hierarchy

We will now the develop the data structure for point location in a triangulation, as
described in Theorem 8.17. For simplicity we assume that the triangulation T we work
with is a maximal planar graph, that is, the outer face is a triangle as well. This can
easily be achieved by an initial normalization step that puts a huge triangle Th around
T and triangulates the region in between Th and T (in linear time�how?).

The main idea for the data structure is to construct a hierarchy T0,. . . ,Th of triangu-
lations, such that

� T0 = T ,

� the vertices of Ti are a subset of the vertices of Ti−1, for i = 1, . . . ,h, and

� Th is a single triangle only.

Search. For a query point x we can �nd a triangle from T that contains x as follows.

Search(x ∈ R2)

1. For i = h,h− 1, . . . , 0: Find a triangle ti from Ti that contains x.

2. return t0.

This search is e�cient under the following conditions.

3We even know how to decide in O(logn) time whether or not a given point lies within conv(P), see
Exercise 4.22.
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(C1) Every triangle from Ti intersects only few (6 c) triangles from Ti−1. (These will
then be connected via the data structure.)

(C2) h is small (6 d logn).

Proposition 8.19 The search procedure described above needs 6 3cd logn = O(logn)

orientation tests.

Proof. For every Ti, 0 6 i < h, at most c triangles are tested as to whether or not they
contain x. Using three orientation tests one can determine whether or not a triangle
contains a given point. �

Thinning. Removing a vertex v and all its incident edges from a triangulation creates a
non-triangulated hole that forms a star-shaped polygon since all points are visible from
v (the star-point). Here we remove vertices of constant degree only and therefore these
polygons are of constant size. But even if they were not, it is not hard to triangulate a
star-shaped polygon in linear time.

Lemma 8.20 A star-shaped polygon, given as a sequence of n > 3 vertices and a
star-point, can be triangulated in O(n) time.

Proof. For n = 3 there is nothing to do. For n > 3, consider a star-shaped polygon
P = (p0, . . . ,pn−1) and a star-point s of P. Consider some convex vertex pi of P, that is,
\pi+1pipi−1 6 π, all indices taken modn. (Every simple polygon on n > 3 vertices has
at least three convex vertices, on the convex hull.)

As P is star-shaped, the quadrilateral Q = pi−1pipi+1s is completely contained in
P. Therefore, if \pi−1spi+1 6 π and hence Q is convex (Figure 8.6a), then we can add
pi−1pi+1 as a diagonal. In this way one triangle is cut o� from P, leaving a star-shaped
polygon P ′ (with respect to s) on n−1 vertices. The polygon P ′ can then be triangulated
recursively. If, on the other hand, \pi−1spi+1 > π (Figure 8.6b), we cannot safely add

s

pi

pi+1 pi−1

(a) \pi−1spi+1 6 π.

s

pi

pi+1 pi−1

(b) \pi−1spi+1 > π.

Figure 8.6: The quadrilateral pi−1pipi+1s is contained in P.

the edge pi−1pi+1 because it might intersect other edges of P or even lie outside of P.
But we claim that in this case there exists another convex vertex pj of P, for which
\pj−1spj+1 6 π and therefore we can add the edge pj−1pj+1 instead.
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In fact, it is enough to choose pj to be some convex vertex of P that is not a neighbor
of pi: As

∑n−1

k=0 \pk−1spk = 2π and \pi−1spi + \pispi+1 = \pi−1spi+1 > π, we have
\pj−1spj + \pjspj+1 = \pj−1spj+1 < π.

It remains to show that such a vertex pj exists. P has at least three convex vertices.
One of them is pi. If the only other two convex vertices are pi−1 and pi+1, then we make
the whole argument with pi−1 instead of pi and �nd j = i+ 1. Note that pi−1 and pi+1

are not neighbors because P is not a triangle.
As for the linear time bound, we simply scan the sequence of vertices as in Graham's

Scan. For every triple pi−1pipi+1 of successive vertices it is tested (in constant time)
whether pi−1pipi+1s forms a convex quadrilateral. If so, then the edge pi−1pi+1 is added,
e�ectively removing pi from further consideration. Therefore, pi can be charged for the
(potential, if there are enough vertices left) additional test of the new triple pxpi−1pi+1

formed with the predecessor px of pi−1 in the current sequence. As shown for Graham's
Scan in Theorem 4.26, this results in a linear time algorithm overall.4 �

As a side remark, the kernel of a simple polygon, that is, the (possibly empty) set
of all star-points, can be constructed in linear time as well using linear programming.

Our working plan is to obtain Ti from Ti−1 by removing several independent (pairwise
non-adjacent) vertices and re-triangulating. These vertices should

a) have small degree (otherwise the degree within the hierarchy gets too large, that
is, we need to test too many triangles on the next level) and

b) be many (otherwise the height h of the hierarchy gets too large).

The following lemma asserts the existence of a su�ciently large set of independent
small-degree vertices in every triangulation.

Lemma 8.21 In every triangulation of n points in R2 there exists an independent set
of at least dn/18e vertices of maximum degree 8. Moreover, such a set can be found
in O(n) time.

Proof. Let T = (V,E) denote the graph of the triangulation, which we consider as
an abstract graph in the following. We may suppose that T is maximal planar, that
is, the outer face is a triangle. (Otherwise combinatorially triangulate it arbitrarily. An
independent set in the resulting graph is also independent in T .) For n = 3 the statement
is true. Let n > 4.

By the Euler formula we have |E| = 3n− 6, that is,∑
v∈V

degT (v) = 2|E| = 6n− 12 < 6n.

Let W ⊆ V denote the set of vertices of degree at most 8. Claim: |W| > n/2. Suppose
|W| 6 n/2. By Theorem 2.26 we know that T is 3-connected and so every vertex has

4Recall that the O(n logn) time bound for Graham's Scan was caused by the initial sorting only.
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degree at least three. Therefore∑
v∈V

degT (v) =
∑
v∈W

degT (v) +
∑

v∈V\W

degT (v) > 3|W| + 9|V \W|

= 3|W| + 9(n− |W|) = 9n− 6|W| > 9n− 3n = 6n,

in contradiction to the above.
Construct an independent set U in T as follows (greedily): As long as W 6= ∅, add an

arbitrary vertex v ∈W to U and remove v and all its neighbors from W.
Obviously U is independent and all vertices in U have degree at most 8. At each

selection step at most 9 vertices are removed from W. Therefore |U| > d(n/2)/9e =

dn/18e. �

Proof. (of Theorem 8.17)
Construct the hierarchy T0, . . . Th with T0 = T as follows. Obtain Ti from Ti−1 by removing
an independent set U as in Lemma 8.21 and re-triangulating the resulting holes. By
Lemma 8.20 and Lemma 8.21 every step is linear in the number |Ti| of vertices in Ti.
The total cost for building the data structure is thus

h∑
i=0

α|Ti| 6
h∑
i=0

αn(17/18)i < αn
∞∑
i=0

(17/18)i = 18αn ∈ O(n),

for some constant α. Similarly the space consumption is linear.
The number of levels amounts to h = log18/17 n < 12.2 logn. Thus by Proposi-

tion 8.19 the search needs at most 3 · 8 · log18/17 n < 292 logn orientation tests. �

Improvements. As the name suggests, the hierarchical approach discussed above is due
to David Kirkpatrick [5]. The constant 292 that appears in the search time is somewhat
large. There has been a whole line of research trying to improve it using di�erent
techniques.

� Sarnak and Tarjan [6]: 4 logn.

� Edelsbrunner, Guibas, and Stol� [3]: 3 logn.

� Goodrich, Orletsky, and Ramaiyer [4]: 2 logn.

� Adamy and Seidel [1]: 1 logn+ 2
√
logn+O( 4

√
logn).

Exercise 8.22 Let {p1,p2, . . . ,pn} be a set of points in the plane, which we call obsta-
cles. Imagine there is a disk of radius r centered at the origin which can be moved
around the obstacles but is not allowed to intersect them (touching the boundary is
ok). Is it possible to move the disk out of these obstacles? See the example depicted
in Figure 8.7 below.
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More formally, the question is whether there is a (continuous) path γ : [0, 1] −→
R2 with γ(0) = (0, 0) and ‖γ(1)‖ > max{‖p1‖, . . . , ‖pn‖}, such that at any time t ∈
[0, 1] and ‖γ(t) − pi‖ > r, for any 1 6 i 6 n. Describe an algorithm to decide
this question and to construct such a path�if one exists�given arbitrary points
{p1,p2, . . . ,pn} and a radius r > 0. Argue why your algorithm is correct and analyze
its running time.

r

(0, 0)

pi

Figure 8.7: Motion planning: Illustration for Exercise 8.22.

Exercise 8.23 This exercise is about an application from Computational Biology:
You are given a set of disks P = {a1, ..,an} in R2, all with the same radius ra > 0.
Each of these disks represents an atom of a protein. A water molecule is represented
by a disc with radius rw > ra. A water molecule cannot intersect the interior of
any protein atom, but it can be tangent to one. We say that an atom ai ∈ P is
accessible if there exists a placement of a water molecule such that it is tangent to
ai and does not intersect the interior of any other atom in P. Given P, �nd an
O(n logn) time algorithm which determines all atoms of P that are inaccessible.

Exercise 8.24 Let P ⊂ R2 be a set of n points. Describe a data structure to �nd in
O(logn) time a point in P that is furthest from a given query point q among all
points in P.

Exercise 8.25 Show that the bounds given in Theorem 8.17 are optimal in the alge-
braic computation tree model.

Proof. There are 2n − 4 possible answers (triangles). Therefore, any computation tree
solving this problem has Ω(n) leaves and so its height is Ω(logn). �
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Questions

33. What is the Voronoi diagram of a set of points in R2? Give a precise de�nition
and explain/prove the basic properties: convexity of cells, why is it a subdivision
of the plane?, Lemma 8.7, Lemma 8.9.

34. What is the correspondence between the Voronoi diagram and the Delaunay
triangulation for a set of points in R2? Prove duality (Theorem 8.10) and explain
where general position is needed.

35. How to construct the Voronoi diagram of a set of points in R2? Describe an
O(n logn) time algorithm, for instance, via Delaunay triangulation.

36. How can the Voronoi diagram be interpreted in context of the lifting map?
Describe the transformation and prove its properties to obtain a formulation of the
Voronoi diagram as an intersection of halfspaces one dimension higher.

37. What is the Post-O�ce Problem and how can it be solved optimally? De-
scribe the problem and a solution using linear space, O(n logn) preprocessing, and
O(logn) query time.

38. How does Kirkpatrick's hierarchical data structure for planar point location
work exactly? Describe how to build it and how the search works, and prove the
runtime bounds. In particular, you should be able to state and prove Lemma 8.21
and Theorem 8.17.
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Chapter 9

Line Arrangements

During the course of this lecture we encountered several situations where it was conve-
nient to assume that a point set is �in general position�. In the plane, general position
usually amounts to no three points being collinear and/or no four of them being cocircu-
lar. This raises an algorithmic question: How can we test for n given points whether or
not three of them are collinear? Obviously, we can test all triples in O(n3) time. Can we
do better? Yes, we can! Using a detour through the so-called dual plane, we will see that
this problem can be solved in O(n2) time. However, the exact algorithmic complexity
of this innocent-looking problem is not known. In fact, to determine this complexity is
one of the major open problems in theoretical computer science.

We will get back to the complexity theoretic problems and rami�cations at the end
of this chapter. But �rst let us discuss how to obtain a quadratic time algorithm to test
whether n given points in the plane are in general position. This algorithm is a nice ap-
plication of the projective duality transform, as de�ned below. Such transformations are
very useful because they allow us to gain a new perspective on a problem by formulating
it in a di�erent but equivalent form. Sometimes such a dual form of the problem is easier
to work with and�given that it is equivalent to the original primal form�any solution
to the dual problem can be translated back into a solution to the primal problem.

So what is this duality transform about? Observe that points and hyperplanes in Rd

are very similar objects, given that both can be described using d coordinates/parameters.
It is thus tempting to match these parameters to each other and so create a mapping
between points and hyperplanes. In R2 hyperplanes are lines and the standard projec-
tive duality transform maps a point p = (px,py) to the line p∗ : y = pxx − py and a
non-vertical line g : y = mx+ b to the point g∗ = (m,−b).

Proposition 9.1 The standard projective duality transform is

� incidence preserving: p ∈ g ⇐⇒ g∗ ∈ p∗ and
� order preserving: p is above g ⇐⇒ g∗ is above p∗.

Exercise 9.2 Prove Proposition 9.1.
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Exercise 9.3 Describe the image of the following point sets under this mapping

a) a halfplane

b) k > 3 collinear points

c) a line segment

d) the boundary points of the upper convex hull of a �nite point set.

Another way to think of duality is in terms of the parabola P : y = 1
2
x2. For a point

p on P, the dual line p∗ is the tangent to P at p. For a point p not on P, consider the
vertical projection p ′ of p onto P: the slopes of p∗ and p ′∗ are the same, just p∗ is shifted
by the di�erence in y-coordinates.

p

p∗

q

q∗

`∗

`

P

Figure 9.1: Point ↔ line duality with respect to the parabola P : y = 1
2
x2.

The question of whether or not three points in the primal plane are collinear trans-
forms to whether or not three lines in the dual plane meet in a point. This question in
turn we will answer with the help of line arrangements, as de�ned below.

9.1 Arrangements

The subdivision of the plane induced by a �nite set L of lines is called the arrangement
A(L). We may imagine the creation of this subdivision as a recursive process, de�ned
by the given set L of lines. As a �rst step, remove all lines (considered as point sets)
from the plane R2. What remains of R2 are a number of open connected components
(possibly only one), which we call the (2-dimensional) cells of the subdivision. In the
next step, from every line in L remove all the remaining lines (considered as point sets).
In this way every line is split into a number of open connected components (possibly only
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one), which collectively form the (1-dimensional cells or) edges of the subdivision. What
remains of the lines are the (0-dimensional cells or) vertices of the subdivision, which are
intersection points of lines from L.

Observe that all cells of the subdivision are intersections of halfplanes and thus con-
vex. A line arrangement is simple if no two lines are parallel and no three lines meet in
a point. Although lines are unbounded, we can regard a line arrangement a bounded
object by (conceptually) putting a su�ciently large box around that contains all vertices.
Such a box can be constructed in O(n logn) time for n lines.

Exercise 9.4 How?

Moreover, we can view a line arrangement as a planar graph by adding an additional
vertex at �in�nity�, that is incident to all rays which leave this bounding box. For
algorithmic purposes, we will mostly think of an arrangement as being represented by a
doubly connected edge list (DCEL), cf. Section 2.2.1.

Theorem 9.5 A simple arrangement A(L) of n lines in R2 has
(
n
2

)
vertices, n2 edges,

and
(
n
2

)
+ n+ 1 faces/cells.

Proof. Since all lines intersect and all intersection points are pairwise distinct, there are(
n
2

)
vertices.
The number of edges we count using induction on n. For n = 1 we have 12 = 1 edge.

By adding one line to an arrangement of n − 1 lines we split n − 1 existing edges into
two and introduce n new edges along the newly inserted line. Thus, there are in total
(n− 1)2 + 2n− 1 = n2 − 2n+ 1 + 2n− 1 = n2 edges.

The number f of faces can now be obtained from Euler's formula v− e+ f = 2, where
v and e denote the number of vertices and edges, respectively. However, in order to
apply Euler's formula we need to consider A(L) as a planar graph and take the symbolic
�in�nite� vertex into account. Therefore,

f = 2−

((
n

2

)
+ 1

)
+n2 = 1+

1
2
(2n2 −n(n− 1)) = 1+

1
2
(n2 +n) = 1+

(
n

2

)
+n .

�

The complexity of an arrangement is simply the total number of vertices, edges, and faces
(in general, cells of any dimension).

Exercise 9.6 Consider a set of lines in the plane with no three intersecting in a
common point. Form a graph G whose vertices are the intersection points of the
lines and such that two vertices are adjacent if and only if they appear consecutively
along one of the lines. Prove that χ(G) 6 3, where χ(G) denotes the chromatic
number of the graph G. In other words, show how to color the vertices of G using
at most three colors such that no two adjacent vertices have the same color.
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9.2 Construction

As the complexity of a line arrangement is quadratic, there is no need to look for a sub-
quadratic algorithm to construct it. We will simply construct it incrementally, inserting
the lines one by one. Let `1, . . . , `n be the order of insertion.

At Step i of the construction, locate `i in the leftmost cell of A({`1, . . . , `i−1}) it
intersects. (The halfedges leaving the in�nite vertex are ordered by slope.) This takes
O(i) time. Then traverse the boundary of the face F found until the halfedge h is found
where `i leaves F (see Figure 9.2 for illustration). Insert a new vertex at this point,
splitting F and h and continue in the same way with the face on the other side of h.

`

Figure 9.2: Incremental construction: Insertion of a line `. (Only part of the ar-
rangement is shown in order to increase readability.)

The insertion of a new vertex involves splitting two halfedges and thus is a constant
time operation. But what is the time needed for the traversal? The complexity of
A({`1, . . . , `i−1}) is Θ(i2), but we will see that the region traversed by a single line has
linear complexity only.

9.3 Zone Theorem

For a line ` and an arrangement A(L), the zone ZA(L)(`) of ` in A(L) is the set of cells
from A(L) whose closure intersects `.

Theorem 9.7 Given an arrangement A(L) of n lines in R2 and a line ` (not necessarily
from L), the total number of edges in all cells of the zone ZA(L)(`) is at most 6n.

Proof. Without loss of generality suppose that ` is horizontal (rotate the plane accord-
ingly).
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For each cell of ZA(L)(`) split its boundary at its topmost
vertex and at its bottommost vertex and orient all edges from
bottom to top, horizontal edges from left to right. Those edges
that have the cell to their right are called left-bounding for the
cell and those edges that have the cell to their left are called
right-bounding. For instance, for the cell depicted to the right
all left-bounding edges are shown blue and bold.

We will show that there are at most 3n left-bounding edges in ZA(L)(`) by induction
on n. By symmetry, the same bound holds also for the number of right-bounding edges
in ZA(L)(`).

For n = 1, there is at most one (exactly one, unless ` is parallel to and lies above the
only line in L) left-bounding edge in ZA(L)(`) and 1 6 3n = 3. Assume the statement is
true for n− 1.

`

r

`0

`1

Figure 9.3: At most three new left-bounding edges are created by adding r to A(L\{r}).

If no line from L intersects `, then all lines in L ∪ {`} are horizontal and there is at
most 1 < 3n left-bounding edge in ZA(L)(`). Else consider the rightmost line r from L

intersecting ` and the arrangement A(L \ {r}). By the induction hypothesis there are at
most 3n− 3 left-bounding edges in ZA(L\{r})(`). Adding r back adds at most three new
left-bounding edges: At most two edges (call them `0 and `1) of the rightmost cell of
ZA(L\{r})(`) are intersected by r and thereby split in two. Both of these two edges may be
left-bounding and thereby increase the number of left-bounding edges by at most two.
In any case, r itself contributes exactly one more left-bounding edge to that cell. The
line r cannot contribute a left-bounding edge to any cell other than the rightmost: to
the left of r, the edges induced by r form right-bounding edges only and to the right
of r all other cells touched by r (if any) are shielded away from ` by one of `0 or `1.
Therefore, the total number of left-bounding edges in ZA(L)(`) is bounded from above
by 3 + 3n− 3 = 3n. �

Corollary 9.8 The arrangement of n lines in R2 can be constructed in optimal O(n2)

time and space.
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Proof. Use the incremental construction described above. In Step i, for 1 6 i 6 n,
we do a linear search among i − 1 elements to �nd the starting face and then traverse
(part of) the zone of the line `i in the arrangement A({`1, . . . , `i−1}). By Theorem 9.7
the complexity of this zone and hence the time complexity of Step i altogether is O(i).
Overall we obtain

∑n
i=1 ci = O(n2) time (and space), for some constant c > 0, which is

optimal by Theorem 9.5. �

The corresponding bounds for hyperplane arrangements in Rd are Θ(nd) for the com-
plexity of a simple arrangement andO(nd−1) for the complexity of a zone of a hyperplane.

Exercise 9.9 For an arrangement A of a set of n lines in R2, let F :=
⋃
C is cell of AC

denote the union of the closure of all bounded cells. Show that the complexity
(number of vertices and edges of the arrangement lying on the boundary) of F is
O(n).

9.4 The Power of Duality

The real beauty and power of line arrangements becomes apparent in context of projective
point ↔ line duality. It is often convenient to assume that no two points in the primal
have the same x-coordinate so that no line de�ned by any two points is vertical (and
hence becomes an in�nite point in the dual). This degeneracy can be tested for by sorting
according to x-coordinate (in O(n logn) time) and resolved by rotating the whole plane
by some su�ciently small angle. In order to select the rotation angle it is enough to
determine the line of maximum absolute slope that passes through two points. Then we
can take, say, half of the angle between such a line and the vertical direction. As the
line of maximum slope through any given point can be found in linear time, the overall
maximum can be obtained in O(n2) time.

The following problems can be solved in O(n2) time and space by constructing the
dual arrangement.

General position test. Given n points in R2, are any three of them collinear? (Dual: do
three lines meet in a point?)

Minimum area triangle. Given n points in R2, what is the minimum area triangle spanned
by any three of them? For any vertex `∗ of the dual arrangement (primal: line ` through
two points p and q) �nd the closest point vertically above/below `∗ through which an
input line passes (primal: closest line below/above and parallel to ` that passes through
an input point). In this way one can �nd O(n2) candidate triangles by constructing
the arrangement of the n dual lines. For instance, maintain over the incremental con-
struction for each vertex a vertically closest line. The number of vertices to be updated
during insertion of a line ` corresponds to the complexity of the zone of ` in the arrange-
ment constructed so far. Therefore maintaining this information comes at no extra cost
asymptotically.
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The smallest among those candidates can be determined by a straightforward mini-
mum selection (comparing the area of the corresponding triangles). Observe that vertical
distance is not what determines the area of the corresponding triangle but orthogonal
distance. However, the points that minimize these measures for any �xed line are the
same. . .

Exercise 9.10 A set P of n points in the plane is said to be in ε-general position for
ε > 0 if no three points of the form

p+ (x1,y1),q+ (x2,y2), r+ (x3,y3)

are collinear, where p,q, r ∈ P and |xi|, |yi| < ε, for i ∈ {1, 2, 3}. In words: P remains
in general position under changing point coordinates by less than ε each.

Give an algorithm with runtime O(n2) for checking whether a given point set P
is in ε-general position.

9.5 Rotation Systems�Sorting all Angular Sequences

Recall the notion of a combinatorial embedding from Chapter 2. It is speci�ed by
the circular order of edges along the boundary of each face or�equivalently, dually�
around each vertex. In a similar way we can also give a combinatorial description of the
geometry of a �nite point set P ⊂ R2 using its rotation system. This is nothing else but a
combinatorial embedding of the complete geometric (straight line) graph on P, speci�ed
by the circular order of edges around vertices.1

For a given set P of n points, it is trivial to construct the corresponding rotation
system in O(n2 logn) time, by sorting each of the n lists of neighbors independently.
The following theorem describes a more e�cient, in fact optimal, algorithm.

Theorem 9.11 Consider a set P of n points in the plane. For a point q ∈ P let cP(q)

denote the circular sequence of points from S \ {q} ordered counterclockwise around
q (in order as they would be encountered by a ray sweeping around q). The rotation
system of P, consisting of all cP(q), for q ∈ P, collectively can be obtained in O(n2)

time.

Proof. Consider the projective dual P∗ of P. An angular sweep around a point q ∈ P
in the primal plane corresponds to a traversal of the line q∗ from left to right in the
dual plane. (A collection of lines through a single point q corresponds to a collection of
points on a single line q∗ and slope corresponds to x-coordinate.) Clearly, the sequence of
intersection points along all lines in P∗ can be obtained by constructing the arrangement
in O(n2) time. In the primal plane, any such sequence corresponds to an order of the
remaining points according to the slope of the connecting line; to construct the circular

1As these graphs are not planar for |P| > 5, we do not have the natural dual notion of faces as in the
case of planar graphs.
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sequence of points as they are encountered around q, we have to split the sequence
obtained from the dual into those points that are to the left of q and those that are to
the right of q; concatenating both yields the desired sequence. �

Exercise 9.12 (Eppstein [1]) Describe an O(n2) time algorithm that given a set P of n
points in the plane �nds a subset of �ve points that form a strictly convex empty
pentagon (or reports that there is none if that is the case). Empty means that the
convex pentagon may not contain any other points of P.

Hint: For each p ∈ P discard all points to the left of p and consider the polygon
S(p) formed by p and the remaining points taken in circular order around p. Ex-
plain why it su�ces to check for all p whether S(p) has four vertices other than p
that form an empty convex quadrilateral. How do you check this in O(n2) time?

Remark: It was shown by Harborth [5] that every set of ten or more points in
general position contains a subset of �ve points that form a strictly convex empty
pentagon.

9.6 3-Sum

The 3-Sum problem is the following: Given a set S of n integers, does there exist a
three-tuple2 of elements from S that sum up to zero? By testing all three-tuples this
can obviously be solved in O(n3) time. If the tuples to be tested are picked a bit more
cleverly, we obtain an O(n2) algorithm.

Let (s1, . . . , sn) be the sequence of elements from S in increasing order. This sequence
can be obtained by sorting in O(n logn) time. Then we test the tuples as follows.

For i = 1, . . . ,n {
j = i, k = n.
While k > j {

If si + sj + sk = 0 then exit with triple si, sj, sk.
If si + sj + sk > 0 then k = k− 1 else j = j+ 1.

}
}

The runtime is clearly quadratic. Regarding the correctness observe that the following
is an invariant that holds at the start of every iteration of the inner loop: si+sx+sk < 0,
for all x ∈ {i, . . . , j− 1}, and si + sj + sx > 0, for all x ∈ {k+ 1, . . . ,n}.

Interestingly, until very recently this was the best algorithm known for 3-Sum. But
at FOCS 2014, Grønlund and Pettie [4] present a deterministic algorithm that solves
3-Sum in O(n2(log logn/ logn)2/3) time. They also give a bound of O(n3/2

√
logn) on

2That is, an element of S may be chosen twice or even three times, although the latter makes sense for
the number 0 only. :-)
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the decision tree complexity of 3-Sum. The big open question remains whether an
O(n2−ε) algorithm can be achieved. On the other hand, in some very restricted models
of computation�such as the linear decision tree model�3-Sum cannot be solved in
sub-quadratic time [2].

3-Sum hardness There is a whole class of problems that are equivalent to 3-Sum up to
sub-quadratic time reductions [3]; such problems are referred to as 3-Sum-hard.

De�nition 9.13 A problem P is 3-Sum-hard if and only if every instance of 3-Sum
of size n can be solved using a constant number of instances of P�each of O(n)

size�and o(n2) additional time.3

For instance, it is not hard to show that the following variation of 3-Sum�let us
denote it by 3-Sum◦�is 3-Sum hard: Given a set S of n integers, does there exist a
three-element subset of S whose elements sum up to zero?

Exercise 9.14 Show that 3-Sum◦ is 3-Sum hard.

As another example, consider the Problem GeomBase: Given n points on the three
horizontal lines y = 0, y = 1, and y = 2, is there a non-horizontal line that contains at
least three of them?

3-Sum can be reduced to GeomBase as follows. For an instance S = {s1, . . . , sn} of
3-Sum, create an instance P of GeomBase in which for each si there are three points in
P: (si, 0), (−si/2, 1), and (si, 2). If there are any three collinear points in P, there must
be one from each of the lines y = 0, y = 1, and y = 2. So suppose that p = (si, 0),
q = (−sj/2, 1), and r = (sk, 2) are collinear. The inverse slope of the line through p
and q is −sj/2−si

1−0
= −sj/2 − si and the inverse slope of the line through q and r is

sk+sj/2

2−1
= sk+ sj/2. The three points are collinear if and only if the two slopes are equal,

that is, −sj/2 − si = sk + sj/2 ⇐⇒ si + sj + sk = 0.

A very similar problem is General Position, in which one is given n arbitrary points
and has to decide whether any three are collinear. For an instance S of 3-Sum◦, create
an instance P of General Position by projecting the numbers si onto the curve y = x3,
that is, P = {(a,a3) |a ∈ S}.

Suppose three of the points, say, (a,a3), (b,b3), and (c, c3) are collinear. This is the
case if and only if the slopes of the lines through each pair of them are equal. (Observe

3In light of the recent results of Grønlund and Pettie one should probably write O(n2−ε) here. Anyway,
the reductions discussed here will be either linear or O(n logn) time.
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that a, b, and c are pairwise distinct.)

(b3 − a3)/(b− a) = (c3 − b3)/(c− b) ⇐⇒
b2 + a2 + ab = c2 + b2 + bc ⇐⇒

b = (c2 − a2)/(a− c) ⇐⇒
b = −(a+ c) ⇐⇒

a+ b+ c = 0 .

Minimum Area Triangle is a strict generalization of General Position and, therefore, also
3-Sum-hard.

In Segment Splitting/Separation, we are given a set of n line segments and have to
decide whether there exists a line that does not intersect any of the segments but splits
them into two non-empty subsets. To show that this problem is 3-Sum-hard, we can
use essentially the same reduction as for GeomBase, where we interpret the points along
the three lines y = 0, y = 1, and y = 2 as su�ciently small �holes�. The parts of the
lines that remain after punching these holes form the input segments for the Splitting
problem. Horizontal splits can be prevented by putting constant size gadgets somewhere
beyond the last holes, see the �gure below. The set of input segments for the segment

splitting problem requires sorting the points along each of the three horizontal lines,
which can be done in O(n logn) = o(n2) time. It remains to specify what �su�ciently
small� means for the size of those holes. As all input numbers are integers, it is not hard
to show that punching a hole of (x − 1/4, x + 1/4) around each input point x is small
enough.

In Segment Visibility, we are given a set S of n horizontal line segments and two
segments s1, s2 ∈ S. The question is: Are there two points, p1 ∈ s1 and p2 ∈ s2 which
can see each other, that is, the open line segment p1p2 does not intersect any segment
from S? The reduction from 3-Sum is the same as for Segment Splitting, just put s1
above and s2 below the segments along the three lines.

In Motion Planning, we are given a robot (line segment), some environment (modeled
as a set of disjoint line segments), and a source and a target position. The question is:
Can the robot move (by translation and rotation) from the source to the target position,
without ever intersecting the �walls� of the environment?

To show that Motion Planning is 3-Sum-hard, employ the reduction for Segment
Splitting from above. The three �punched� lines form the doorway between two rooms,
each modeled by a constant number of segments that cannot be split, similar to the
boundary gadgets above. The source position is in one room, the target position in the
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other, and to get from source to target the robot has to pass through a sequence of three
collinear holes in the door (suppose the doorway is su�ciently small compared to the
length of the robot).

Exercise 9.15 The 3-Sum' problem is de�ned as follows: given three sets S1,S2,S3 of
n integers each, are there a1 ∈ S1, a2 ∈ S2, a3 ∈ S3 such that a1 + a2 + a3 = 0?
Prove that the 3-Sum' problem and the 3-Sum problem as de�ned in the lecture
(S1 = S2 = S3) are equivalent, more precisely, that they are reducible to each other
in subquadratic time.

9.7 Ham Sandwich Theorem

Suppose two thieves have stolen a necklace that contains rubies and diamonds. Now it
is time to distribute the prey. Both, of course, should get the same number of rubies
and the same number of diamonds. On the other hand, it would be a pity to completely
disintegrate the beautiful necklace. Hence they want to use as few cuts as possible to
achieve a fair gem distribution.

To phrase the problem in a geometric (and somewhat more general) setting: Given
two �nite sets R and D of points, construct a line that bisects both sets, that is, in either
halfplane de�ned by the line there are about half of the points from R and about half of
the points from D. To solve this problem, we will make use of the concept of levels in
arrangements.

De�nition 9.16 Consider an arrangement A(L) induced by a set L of n non-vertical
lines in the plane. We say that a point p is on the k-level in A(L) if there are at
most k− 1 lines below and at most n− k lines above p. The 1-level and the n-level
are also referred to as lower and upper envelope, respectively.

Figure 9.4: The 3-level of an arrangement.

Another way to look at the k-level is to consider the lines to be real functions; then the
lower envelope is the pointwise minimum of those functions, and the k-level is de�ned
by taking pointwise the kth-smallest function value.
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Theorem 9.17 Let R,D ⊂ R2 be �nite sets of points. Then there exists a line that
bisects both R and D. That is, in either open halfplane de�ned by ` there are no
more than |R|/2 points from R and no more than |D|/2 points from D.

Proof. Without loss of generality suppose that both |R| and |D| are odd. (If, say, |R| is
even, simply remove an arbitrary point from R. Any bisector for the resulting set is also
a bisector for R.) We may also suppose that no two points from R ∪ D have the same
x-coordinate. (Otherwise, rotate the plane in�nitesimally.)

Let R∗ and D∗ denote the set of lines dual to the points from R and D, respectively.
Consider the arrangement A(R∗). The median level of A(R∗) de�nes the bisecting lines
for R. As |R| = |R∗| is odd, both the leftmost and the rightmost segment of this level
are de�ned by the same line `r from R∗, the one with median slope. Similarly there is a
corresponding line `d in A(D∗).

Since no two points from R∪D have the same x-coordinate, no two lines from R∗∪D∗
have the same slope, and thus `r and `d intersect. Consequently, being piecewise linear
continuous functions, the median level of A(R∗) and the median level of A(D∗) intersect
(see Figure 9.5 for an example). Any point that lies on both median levels corresponds
to a primal line that bisects both point sets simultaneously. �

Figure 9.5: An arrangement of 3 green lines (solid) and 3 blue lines (dashed) and
their median levels (marked bold on the right hand side).

How can the thieves use Theorem 9.17? If they are smart, they drape the necklace
along some convex curve, say, a circle. Then by Theorem 9.17 there exists a line that
simultaneously bisects the set of diamonds and the set of rubies. As any line intersects
the circle at most twice, the necklace is cut at most twice. It is easy to turn the proof
given above into an O(n2) algorithm to construct a line that simultaneously bisects both
sets.

You can also think of the two point sets as a discrete distribution of a ham sandwich
that is to be cut fairly, that is, in such a way that both parts have the same amount of
ham and the same amount of bread. That is where the name �ham sandwich cut� comes
from. The theorem generalizes both to higher dimension and to more general types of
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measures (here we study the discrete setting only where we simply count points). These
generalizations can be proven using the Borsuk-Ulam Theorem, which states that any
continuous map from Sd to Rd must map some pair of antipodal points to the same
point. For a proof of both theorems see, for instance, Matou²ek's book [8].

Theorem 9.18 Let P1, . . . ,Pd ⊂ Rd be �nite sets of points. Then there exists a hy-
perplane H that simultaneously bisects all of P1, . . . ,Pd. That is, in either open
halfspace de�ned by H there are no more than |Pi|/2 points from Pi, for every
i ∈ {1, . . . ,d}.

This implies that the thieves can fairly distribute a necklace consisting of d types of
gems using at most d cuts.

In the plane, a ham sandwich cut can be found in linear time using a sophisticated
prune and search algorithm by Lo, Matou²ek and Steiger [7]. But in higher dimension,
the algorithmic problem gets harder. In fact, already for R3 the complexity of �nding a
ham sandwich cut is wide open: The best algorithm known, from the same paper by Lo
et al. [7], has runtime O(n3/2 log2 n/ log∗ n) and no non-trivial lower bound is known.
If the dimension d is not �xed, it is both NP-hard and W[1]-hard4 in d to decide the
following question [6]: Given d ∈ N, �nite point sets P1, . . . ,Pd ⊂ Rd, and a point
p ∈ ⋃di=1 Pi, is there a ham sandwich cut through p?

Exercise 9.19 The goal of this exercise is to develop a data structure for halfspace
range counting.

a) Given a set P ⊂ R2 of n points in general position, show that it is possible to
partition this set by two lines such that each region contains at most dn

4
e points.

b) Design a data structure of size O(n), which can be constructed in time O(n logn)

and allows you, for any halfspace h, to output the number of points |P ∩ h| of P
contained in this halfspace h in time O(nα), for some 0 < α < 1.

Exercise 9.20 Prove or disprove the following statement: Given three �nite sets A,B,C
of points in the plane, there is always a circle or a line that bisects A, B and C
simultaneously (that is, no more than half of the points of each set are inside or
outside the circle or on either side of the line, respectively).

Questions

39. How can one construct an arrangement of lines in R2? Describe the incremen-
tal algorithm and prove that its time complexity is quadratic in the number of lines
(incl. statement and proof of the Zone Theorem).

4Essentially this means that it is unlikely to be solvable in time O(f(d)p(n)), for an arbitrary function
f and a polynomial p.
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40. How can one test whether there are three collinear points in a set of n given
points in R2? Describe an O(n2) time algorithm.

41. How can one compute the minimum area triangle spanned by three out of n
given points in R2? Describe an O(n2) time algorithm.

42. What is a ham sandwich cut? Does it always exist? How to compute it?
State and prove the theorem about the existence of a ham sandwich cut in R2 and
describe an O(n2) algorithm to compute it.

43. Is there a subquadratic algorithm for General Position? Explain the term
3-Sum hard and its implications and give the reduction from 3-Sum to General
Position.

44. Which problems are known to be 3-Sum-hard? List at least three problems
(other than 3-Sum) and brie�y sketch the corresponding reductions.
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