
Chapter 0IntroductionSuppose this was the abstract of a journal paper rather than the introduction to a disser-tation. Then it would probably end with some cryptic AMS subject classi�cations and afew key words. One of them surely would be randomized complexity of linear programming.Further suppose that you happen to stumble on this keyword while searching a databasefor references that have to do with your own work. Assuming that you are a randomperson, chances are 75% that the paper is not of interest to you.The reason is that both the terms randomization and complexity in connection withlinear programming (LP) independently allow for two rather di�erent interpretations.0.1 ComplexityTwo major questions have dominated the theory of linear programming for a long time.(i) Are linear programs solvable in polynomial time? In other words, does linear pro-gramming belong to the complexity class P?(ii) How many steps does the simplex method take to solve a linear program?While the �rst question has been answered in the a�rmative, only partial answers havebeen found to the second one.The Turing machine model. It was in 1980 when the russian mathematician Khachyiandeveloped his polynomial ellipsoid method for linear programming, thereby showing thatLP { formulated as the problem of deciding feasibility { is inP [30].1 Although the ellipsoidmethod is only an approximation algorithm that converges to a feasible solution, if thereis one, Khachyian was able to prove that a polynomial number of iterations (polynomialin the bitlengths of the inputs) su�ces to �nd a solution or certify that none exists. Thus,he constructed a polynomial-time Turing machine to solve the problem, and under thismeasure of complexity, the issue was settled from the point of view of classical complexitytheory.1See [25] for an introduction into the ellipsoid method.12



The real RAM model. Parallel to this development, people were investigating thecomplexity of the simplex method. This method has been introduced by Dantzig in theearly �fties [14], and it still presents the most e�cient method to solve LPs in practice.Unlike the ellipsoid method, simplex is a discrete method. It traces a sequence of vertices onthe boundary of the feasible region, and its actions are determined by the combinatorialstructure of the LP but not by the bitlengths of its actual coordinates. Therefore, thesimplex method never takes more steps than the number of vertices, even if the coordinateshave arbitrary encoding lengths, and in the unit-cost model or random access machine(RAM) model, this is exactly what one assumes. Motivated by the fact that on a `real'computer numbers are stored and manipulated within a constant amount of space and time,the real RAM model allows arithmetic operations on any real numbers to be performed inconstant time per operation. Only this convenient model allows statements like `A systemof n equations in n variables can be solved in time O(n3) by Gaussian elimination.' Todisable `dirty tricks' of speeding up computations by encoding huge amounts of informationinto a single number, the RAM model is usually enhanced with the `fairness assumption'that unit cost applies only to numbers that are not much larger than the input numbers(what `not much larger' means, depends on how fair you want to be, of course).To summarize, in the RAM model, the ellipsoid method is not even a �nite algorithm,while one gets combinatorial upper bounds on the runtime of the simplex method, andexactly such combinatorial bounds (i.e bounds in the RAM model) will be considered inthis thesis. Unfortunately, these bounds on the simplex method are not known to bepolynomial, and the same is true for any other combinatorial bounds that exist for LP. Wesay that LP is not known to be strongly polynomial.0.2 RandomizationThe situation concerning the analysis of the simplex algorithm is even worse than suggestedabove. First of all, talking about `the' simplex method does not really make sense becauseit becomes an actual algorithm only via a pivot rule, and under many pivot rules (amongthem the one originally proposed by Dantzig), the simplex method needs an exponentialnumber of steps in the worst case. This was �rst shown by Klee and Minty [31], therebydestroying any hope that the simplex method might turn out to be polynomial in the end,at least under Dantzig's pivot rule. Later this negative result was extended to many othercommonly used pivot rules. Two remedies are apparent and this is where the randomizationcomes in.(i) Analyze the average performance of the simplex method, i.e. its expected behavior onproblems chosen according to some natural probability distribution. A good boundin this model would explain the e�ciency of the method in practice.(ii) Analyze randomized methods, i.e. methods which base their decisions on internalcoin ips. All the exponential worst case examples rely on the fact that a maliciousadversary knows the strategy of the algorithm in advance and therefore can come13



up with just the input for which the strategy is bad. Randomized strategies cannotbe fooled in this easy way, if the measure of complexity is the maximum expectednumber of steps, expectation over the internal coin ips performed by the algorithm.Average performance. In his pioneering work, Borgwardt has shown that the averagebehavior of the simplex method is indeed polynomial, for a certain variant called theshadow vertex algorithm, and under a certain probability distribution imposed on theinput [9]. This breakthrough was followed by a sequence of other results improving on thepolynomials, weakening the probabilistic model, or considering other pivot rules. It seemsthat nowadays the average performance of the simplex method is fairly well understood.Randomized performance. In suggesting remedy (ii) above (which { as you mightguess by now { is the one we treat in this thesis), we have not explicitly mentioned thesimplex method but randomized methods in general. This is no accident. In fact, ran-domized algorithms for solving LP in the RAM model have been proposed that are notsimplex, although they have `converged' to the simplex method over the years. For this,the RAM model needs to be enhanced with the assumption that a random number fromthe set f1; : : : ; kg can be obtained in constant time, for any integer k, where `random'means that each element is chosen with the same probability 1=k.Interestingly, this development started with a deterministic algorithm. Megiddo showedthat LPs with �xed number of variables (i.e. �xed dimension) can be solved in time linearin the number n of constraints, which is optimal[36]. However, the dependence on thedimension d was doubly exponential. This was improved in a series of papers, by Dyer[15], Dyer and Frieze [16], Clarkson [11], [12] and Seidel [43], the latter establishing avery simple randomized algorithm with expected runtime O(d!n). (We come back tothe remarkable algorithm by Clarkson [12] in the Discussion concluding Chapter 5). Itwas not noticed that Seidel's algorithm was already close in spirit to a dual Random-Facet-Simplex algorithm, see Chapter 2, but Seidel deserves credit for the subsequentdevelopments, including the results of this thesis.Then two things happened independently. First, Sharir and Welzl enhanced Seidel'sincremental algorithm with a method of reusing in each step much of the informationobtained in previous steps. This led to a more e�cient algorithm, with runtime O(d22dn).Moreover, this algorithm was formulated in the abstract framework of LP-type problemsthat made it possible to solve problems more general than linear programming [45].At the same time, Kalai really applied randomization to the simplex method, andonly his result lets remedy (ii) actually appear as a remedy. Kalai was able to provethat the Random-Facet-Simplex algorithm takes an expected subexponential numberof steps on any linear program [27]. In other words, this variant defeats all the worstcase counterexamples that have been developed for the deterministic variants. (Still, it isnot a polynomial variant, of course.) Only at this stage it explicitly became clear thatSharir and Welzl's algorithm was actually a dual Random-Facet-Simplex algorithmin disguise, their information reusage scheme corresponding to a dual pivot step. (How14



explicit the correspondence really is has only recently been shown by Goldwasser who givesa nice survey about the developments we address here [23].)Motivated by Kalai's result, Sharir and Welzl, together with Matou�sek, subsequentlyproved a subexponential bound on the expected number of iterations their algorithm needs,under a certain condition even in the abstract setting of LP-type problems. However, LPwas the only concrete problem that could actually be solved within these time bounds [33].0.3 Overview and Statement of ResultsThe main new results of this thesis are the following.� Chapter 4, Convex Optimization. We introduce a class of convex programmingproblems (including the polytope distance problem and the minimum spanning ballproblem) and develop a concrete simplex-type method for solving all the problems inthis class. In the framework of LP-type problems, this leads to a uni�ed, linear timealgorithm for all problems in this class, when the dimension is �xed. Previously, onlyspeci�c solutions to some problems were known, like Wolfe's simplex algorithm forquadratic programming [41, section 7.3].� Chapter 5, Upper bounds for Abstract Optimization. We derive randomized,subexponential upper bounds for the polytope distance and the minimum spanningball problem (and more general, for any quadratic programming problem in ourclass of convex programs). This follows from a subexponential algorithm we developfor abstract optimization problems which is an abstract class of problems still sub-stantially more general than LP-type problems. We thus establish subexponentialbounds both for concrete geometric problems as well as for general abstract problems(in particular, for all LP-type problems), where prior to this they were only knownto apply to LP and some LP-type problems.� Chapter 6, Lower Bounds for Abstract Optimization. We prove a deter-ministic, exponential lower bound for abstract optimization problems, showing thatrandomization is a crucial tool in solving them.We derive a nearly tight lower bound on the performance of the Random-Edge-Simplex algorithm on speci�c LPs, thereby answering a long-standing open questionabout the behavior of this algorithm. The result naturally extends to the frameworkof LP-type problems and the abstract version of Random-Edge-Simplex in thisframework.All the material in this thesis is consequently motivated and derived from the simplexmethod that we carefully review in Chapter 1.Turning history upside down, we obtain Sharir and Welzl's algorithm for LP-type prob-lems as an abstraction of theRandom-Facet-Simplex algorithm. This means, we pursuean inverse approach in two respects. First, we proceed `backwards in time' and second,15



we derive the runtime bounds of [33] for LP by applying the primal Random-Facet-Simplex algorithm to the dual LP. In this approach, the primitive operations { whosenature and realization remain somewhat obscure in [33] { are just well-understood pivotsteps in the simplex method. Chapter 2 introduces algorithms Random-Facet-Simplexand Random-Edge-Simplex, and prepares the ground for the subsequent `lifting' ofthese algorithms to the abstract level.In Chapter 3, we review the concept of LP-type problems and derive the O(d22dn)bound for LP in the abstract framework. We actually start with a di�erent concept,namely LP-type systems which we prove to be essentially equivalent to LP-type problems.LP-type systems naturally arise in our simplex-type approach that builds on the bases ofan LP, while LP-type problems rather come up in the original { dual { approach that buildson subproblems. In fact, subproblem solvability is a crucial feature of both. We concludethe chapter by proving that the framework of abstract polytopes with objective functionas introduced by Adler and Saigal [3] to abstract from properties of linear programming,is closely related to LP-type systems, although less general. However, the spirit of bothframeworks turns out to be the same, it boils down to a feature called locality in [33].Chapter 4 presents concrete non-linear LP-type problems and proves that they allowa fast `pivoting routine' similar to the one performed by the simplex algorithm on LP.Therefore, the resulting solution method is called `simplex-type'. After having developedsuch pivoting routines, the problems under consideration are solvable in linear time (in�xed dimension) by the algorithm for LP-type problems that we have derived in Chapter3. Among the problems that the approach can handle are the polytope distance problemand the minimum spanning ball problem, where we need to prove the latter to have areformulation as a problem of minimizing a convex function subject to linear constraints;at �rst sight, such a reformulation is not apparent from the problem.In Chapter 5 we prove the subexponential bounds for abstract optimization problems(AOP). These problems are obtained by further relaxing the de�ning properties of LP-type problems. In particular, we will drop the locality condition addressed above andonly keep subproblem solvability. As it turns out, the latter is the crucial requirement forthe subexponential results. Locality becomes obsolete under the improvement oracle thatwe consider for AOP. This oracle is an abstraction of the pivot step in case of LP resp.the primitive operations in case of LP-type problems. The results on AOPs apply to thegeometric problems of Chapter 4 and lead to subexponential bounds there.Chapter 6 slowly takes us back, all the way to linear programming. We start by showingthat randomization provably helps in solving AOPs. More speci�cally, we prove that nodeterministic algorithm can beat a trivial runtime bound, while exactly such a bound hasbeen developed for a randomized algorithm in Chapter 5.We proceed by reviewing a result of Matou�sek, proving that the kind of subexponen-tial analysis performed in Chapter 5 is essentially best possible for the algorithms underconsideration, already for LP-type problems [34]. In other words, to obtain better bounds,the algorithm would have to be altered. 16



Finally, we analyze the behavior of the abstract Random-Edge-Simplex algorithmon Matou�sek's examples. We �nd that a quadratic upper and nearly quadratic lower boundholds. (This does not mean that Random-Edge-Simplex is polynomial or even betterthan Random-Facet-Simplex on other problems { Matou�sek's example are of specialnature). As the most interesting application of our methods we obtain a lower bound forthe actual Random-Edge-Simplex algorithm on an actual LP, the so-called Klee-Mintycube. This is exactly the LP that serves as the basic building block for all known worst-case examples proving exponential behavior of deterministic simplex variants. Therefore,this LP is a natural test problem for randomized variants; the particular question howRandom-Edge-Simplex behaves on it was open since a wrong answer had been suggestedin 1982.Chapter 7 is an appendix containing facts and bounds referenced elsewhere in the text.This is meant to keep the thesis mostly self-contained. If you �nd some piece of terminologyin the text that you don't understand, it might appear in the Appendix.One �nal remark: this thesis does not contain any `big-Oh's, unless they occur inbounds that are standard or that we do not prove (like O(n3) denoting the time to solvea system of linear equations by Gaussian elimination). All the bounds that we derivecontain explicit constants. Just to stress their order of magnitude, `big-Oh' versions areoccasionally added. Only in some places does this rigor require substantial technical e�ort.Most of the time, the explicit constants are just a consequence of a clean proof.
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