
Chapter -1How to avoid reading this thesisThis thesis surveys recent developments concerning randomized algorithms for linear pro-gramming, related and more general optimization problems. It is meant to be read chapterby chapter. If you would like to avoid this and only want to look up particular algorithmsand topics, this chapter gives some advice how and where things can be found.
-1.1 If you just want to know what the title meansRead Chapter 0, the introduction. It explains what randomization means in this thesisand what it does not mean. It explains the di�erences between combinatorial algorithmslike simplex and other methods like ellipsoid/interior point, in particular with respect tothe model of computation. Finally, it contains a rough account of the kinds of optimizationproblems studied in this thesis and what the results are concerning these problems.
-1.2 If you want to learn the Simplex MethodRead Chapter 1. You will �nd a presentation (staying very close to Chv�atal's [10]) byexample, containing all crucial ideas. No lemmas, no proofs, just small, actual LPs thatexplain the method in action. Topics covered are the standard and the revised simplexmethod (including treatment of infeasible, unbounded and degenerate cases) and pivotrules. This is basically the material of Chv�atal's Chapters 2, 3 and 7, however with aslightly di�erent (probably more theoretical) focus and much more condensed. Of course,some advanced material is missing; due to similarity of terminology you can easily look itup in Chv�atal's book. 9



-1.3 If you have read my STACS '96 paper with EmoWelzlIn this paper [20], my thesis is referenced several times. Here is where to look for theappropriate part of the text if you want to trace the respective references (ordered byoccurence in [20].� the explicit primitives for the polytope distance and minimum spanning ball problemappear in Chapter 4. They are obtained as specializations of a generic primitive fora certain class of convex optimization problems. The generic primitive appears inSubsection 4.2.4, the specializations together with the actual time bounds can befound in Subsections 4.3.1 and 4.3.2.� The subexponential bound for LP appears in the more general context of abstractoptimization problems in Chapter 5. It is stated in Subsection 5.2.1, Theorem 5.10and proved in Subsection 5.2.2. The main recurrence that entails the subexponentialbound appears in Lemma 5.5, where it is derived for the second time in the thesis(the �rst time being the proof of Theorem 3.10 (ii), see next item).� The simple (linear in n, exponential in d) bound for LP-type problems is proved inChapter 3, Subsection 3.2.2. As well as the subexponential bound from the previousitem it is based on the same recurrence relation, which is here solved in an easy butnonoptimal way.� for the concrete time bounds (O(d); O(d3)) that are mentioned for the primitiveoperations in the polytope distance and smallest enclosing ball problem see the �rstitem. Please note that in the thesis bounds of O(d4) for the second primitive isproved. This is due to the fact that the �rst version of the thesis (which is the onewe refer to in [20]) contained an error on which the O(d3) bound was based. Thebound is probably true but the techniques used in the thesis do only prove O(d4).� The subexponential bound for the small LP-type problems referred to in [20] appearsin Chapter 5, as an analysis for Algorithm 5.13 which is basically identical to theAlgorithm Small LPtype E in the paper. The bound is stated in Subsection 5.3.3and derived in Subsection 5.3.4.� The di�erence between basis computation and basis improvement is motivated andexplained in the beginning of Chapter 3, Section 3.1 where LP-type problems are �rstintroduced as an abstraction of LP. In the thesis, however, they are called LP-typesystems and have a slightly di�erent de�nition (which essentially is equivalent to theone of LP-type problems, as proved in Lemma 3.3).� The deterministic lower bound for abstract optimization problems is proved in in thelower bound Chapter 6, Section 6.1. 10



-1.4 If you want to understand subexponential LPin the version of Matou�sek, Sharir, WelzlDo not read this thesis. It contains the results by Matou�sek, Sharir and Welzl as a subset,but written up in a quite di�erent way. While [33] develops the subexponential algorithm`from scratch' and only later remarks that it can be cast as a dual simplex algorithm, Istart with the simplex method and obtain the algorithm of [33] as a concrete realizationvia some particular pivot rule (which turns history upside down). This means, in orderto get to the results of [33], you have to dig through the simplex method in chapter 1 atleast, and probably through quite some other overhead until you get to the insights youwould gain much faster by reading the original paper [33]. However, if you are interestedin a di�erent view of the results in [33], you might want to spend the e�ort after all.-1.5 If you want to understand subexponential LPin the version of KalaiKalai was the �rst to give a subexponential LP algorithm, which incidentally was a simplexalgorithm [27]. His paper is not easy to read, and the bounds he gives are not proved inthe paper. His main algorithm and the recurrence relation he develops for its runtimeare quite similar to my Algorithm 5.13 Small-Aop-E and the recurrence developed inLemma 5.18; in fact, my approach is motivated by Kalai's algorithm. If you manage tofollow my analysis, you will be able to apply it to Kalai's recurrence and obtain the boundshe claims. Algorithm 5.13 is a quite abstract realization of Kalai's main idea of `enlargingthe sample space', and this idea is extensively motivated and explained in Subsections5.3.1 and 5.3.2.
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