Department of Computer Science | Institute of Theoretical Computer Science

Theory of Combinatorial Algorithms

Prof. Emo Welzl

Given a Boolean Circuit with n inputs and n outputs, we want to decide if it represents a Unique Sink Orientation (USO). USOs are useful combinatorial objects that serve as abstraction of many relevant optimization problems. We prove that recognizing a USO is coNP-complete. However, the situation appears to be more complicated for recognizing acyclic USOs. Firstly, we give a construction to prove that there exist cyclic USOs where the smallest cycle is of superpolynomial size. This implies that the straightforward representation of a cycle (i.e. by a list of vertices) does not make up for a coNP certificate. Inspired by this fact, we investigate the connection of recognizing an acyclic USO to PSPACE and we prove that the problem is PSPACE-complete.