
Fast and Robust Smallest Enclosing Balls ?

Bernd Gärtner

Institut für Theoretische Informatik, ETH Zürich, ETH-Zentrum, CH-8092 Zürich,
Switzerland (gaertner@inf.ethz.ch)

Abstract. I describe a C++ program for computing the smallest en-
closing ball of a point set in d-dimensional space, using floating-point
arithmetic only. The program is very fast for d ≤ 20, robust and simple
(about 300 lines of code, excluding prototype definitions). Its new fea-
tures are a pivoting approach resembling the simplex method for linear
programming, and a robust update scheme for intermediate solutions.
The program with complete documentation following the literate pro-

gramming paradigm [3] is available on the Web.1

1 Introduction

The smallest enclosing ball (or Euclidean 1-center) problem is a classical problem
of computational geometry. It has a long history which dates back to 1857 when
Sylvester formulated it for points in the plane [8]. The first optimal linear-time
algorithm for fixed dimension was given by Megiddo in 1982 [4]. In 1991, Emo
Welzl developed a simple randomized method to solve the problem in expected
linear time [9]. In contrast to Megiddo’s method, his algorithm is easy to imple-
ment and very fast in practice, for dimensions 2 and 3. In higher dimensions, a
heuristic move-to-front variant considerably improves the performance.

The roots of the program I will describe go back to 1991 when I first imple-
mented Emo Welzl’s new method. Using the move-to-front variant I was able to
solve problems on 5000 points up to dimension d = 10 (see [9] for all results).
Back then, the program was written in MODULA-2 (the language I had learned
in my undergraduate CS courses), and it was running on a 80386 PC with 20
MHz.

After the algorithm and the implementation results had been published, we
constantly received requests for source code, from an amazingly wide range of
application areas. To name some, there was environmental science (design and
optimization of solvents), pattern recognition (finding reference points), biol-
ogy (proteine analysis), political science (analysis of party spectra), mechanical
engineering (stress optimization) and computer graphics (ray tracing, culling).

Soon it became clear that the MODULA-2 source was not of great help in
serving these requests; people wanted C or C++ code. Independently, at least two

? This work was supported by grants from the Swiss Federal Office for Education and
Science (Projects ESPRIT IV LTR No. 21957 CGAL and No. 28155 GALIA).

1 http://www.inf.ethz.ch/personal/gaertner/miniball.html

persons ported the undocumented program to C. (One of them remarked that
“although we don’t understand the complete procedure, we are confident that
the algorithm is perfect”.) Vishwa Ranjan kindly made his carefully adapted C

program accessible to me; subsequently, I was able to distribute a C version. (An
independent implementation by David Eberly for the cases d = 2, 3 based on [9]
is available online. 2)

Another shortcoming of my program—persisting in the C code—was the lack
of numerical stability, an issue not yet fashionable in computational geometry
at that time. The main primitive of the code was to solve a linear system, and
this was done with plain Gaussian elimination, with no special provisions to
deal with ill-conditioned systems. In my defense I must say that the code was
originally only made to get test results for Emo’s paper, and in the tests with
the usual random point sets I did for that, I discovered no problems, of course.

Others did. David White, who was developing code for the more general
problem of finding the smallest ball enclosing balls, noticed unstable behavior of
my program, especially in higher dimensions. In his code, he replaced the naive
Gaussian elimination approach by a solution method based on singular value
decomposition (SVD). This made his program pretty robust, and a C++ version
(excluding the SVD routines which are taken from Numerical Recipes in C [6])
is available from David White’s Web page. 3

Meanwhile, I got involved in the CGAL project, a joint effort of seven Eu-
ropean sites to build a C++ library of computational geometry algorithms.4 To
prepare my code for the library, I finally wrote a C++ version of it from scratch. As
the main improvement, the code was no longer solving a complete linear system
in every step, but was updating previous imformation instead. A “CGALized”
version of this code is now contained in the library, and using it together with
any exact (multiple precision) number type results in error-free computations.

Still, the numerical problems arising in floating-point computations were not
solved. Stefan Gottschalk, one of the first users of my new C++ code, encountered
singularities in the update routines, in particular if input points are (almost)
cospherical, very close together or even equal. The effect is that center and
squared radius of the ball maintained by the algorithm can become very large
or even undefined due to exponent overflow, even though the smallest enclosing
ball problem itself is well-behaved in the sense that small perturbations of the
input points have only a small influence on the result.

As it turned out, previous implementations suffered from an inappropriate
representation of intermediate balls that ignores the good-naturedness of the
problem. The new representation scheme respects the underlying geometry—it
actually resulted from a deeper understanding of the geometric situation— and
solves most of the problems.

The second ingredient is a new high-level algorithm replacing the move-to-
front method. Its goal is to decrease the overall number of intermediate solutions

2 http://www.cs.unc.edu/~eberly/
3 http://vision.ucsd.edu/~dwhite
4 http://www.cs.uu.nl/CGAL

computed during the algorithm. This is achieved by reducing the problem to a
small number of calls to the move-to-front method, with only a small point set
in each call. These calls can then be interpreted as ‘pivot steps’ of the method.
The advantages are a substantial improvement in runtime for dimensions d ≥ 10,
and much more robust behavior.

The result is a program which I think reaches a high level of efficiency and
stability per lines of code. In simplicity, it is almost comparable to the popular
approximation algorithms from the Graphics Gems collection [7, 10]; because the
latter usually compute suboptimal balls, the authors stress their simplicity as
the main feature. The code presented here shares this feature, while computing
the optimal ball.

2 The Algorithms

Given an n-point set P = {p1, . . . , pn} ⊆ R
d, let mb(P) denote the ball of

smallest radius that contains P . mb(P) exists and is unique. For P,B ⊆ R
d, P ∩

B = ∅, let mb(P,B) be the smallest ball that contains P and has all points of B
on its boundary. We have mb(P) = mb(P, ∅), and if mb(P,B) exists, it is unique.
Finally, define mb(B) := mb(∅, B) to be the smallest ball with all points of B
on the boundary (if it exists).

A support set of (P,B) is an inclusion-minimal subset of P with mb(P,B) =
mb(S,B). If the points in B are affinely independent, there always exists a
support set of size at most d + 1 − |B|, and we have mb(S,B) = mb(S ∪ B).

If p 6∈ mb(P,B), then p lies on the boundary of mb(P ∪ {p}, B), provided
the latter exists—that means, mb(P ∪ {p}, B) = mb(P,B ∪ {p}). All this is
well-known, see e.g. [9] and the references there.

The basis of our method is Emo Welzl’s move-to-front heuristic to compute
mb(P,B) if it exists[9]. The method keeps the points in an ordered list L which
gets reorganized as the algorithm runs. Let Li denote the length-i prefix of the
list, pi the element at position i in L. Initially, L = Ln stores the points of P in
random order.

Algorithm 1.

mtf mb(Ln, B):
(* returns mb(Ln, B) *)
mb := mb(B)
IF |B| = d + 1 THEN

RETURN mb
END

FOR i = 1 TO n DO

IF pi 6∈ mb THEN

mb := mtf mb(Li−1, B ∪ {pi})
update L by moving pi to the front

END

END

RETURN mb

This algorithm computes mb(P,B) incrementally, by adding one point after
another from the list. One can prove that during the call to mtf mb(Ln, ∅), all
sets B that come up in recursive calls are affinely independent. Together with the
above mentioned facts, this ensures the correctness of the method. By induction,
one can also show that upon termination, a support set of (P,B) appears as a
prefix Ls of the list L, and below we will assume that the algorithm returns the
size s along with mb.

The practical efficiency comes from the fact that ‘important’ points (which
for the purpose of the method are points outside the current ball) are moved to
the front and will therefore be processed early in subsequent recursive calls. The
effect is that the ball maintained by the algorithm gets large fast.

The second algorithm uses the move-to-front variant only as a subroutine for
small point sets. Large-scale problems are handled by a pivoting variant which
in every iteration adds the point which is most promising in the sense that it
has largest distance from the current ball. Under this scheme, the ball gets large
even faster, and the method usually terminates after very few iterations. (As the
test results in Section 5 show, the move-to-front variant will still be faster for d
not too large, but there are good reasons to prefer the pivoting variant in any
case.)

Let e(p,mb) denote the excess of p w.r.t. mb, defined as ‖p− c‖2 − r2, c and
r2 the center and squared radius of mb.

Algorithm 2.

pivot mb(Ln):
(* returns mb(Ln) *)
t := 1
(mb, s) := mtf mb(Lt, ∅)
REPEAT

(* Invariant: mb = mb(Lt) = mb(Ls), s ≤ t *)
choose k > t with e := e(pk,mb) maximal
IF e > 0 THEN

(mb, s′) := mtf mb(Ls, {pk})
update L by moving pk to the front
t := s + 1
s := s′ + 1

END

UNTIL e ≤ 0
RETURN mb

Because mb gets larger in every iteration, the procedure eventually termi-
nates. The computation of (mb, s′) can be viewed as a ‘pivot step’ of the method,
involving at most d + 2 points. The choice of k is done according to a heuris-
tic ‘pivot rule’, with the intention of keeping the overall number of pivot steps
small. With this interpretation, the procedure pivot mb is similar in spirit to
the simplex method for linear programming [1], and it has in fact been designed
with regard to the simplex method’s efficiency in practice.

3 The Primitive Operation

During a call to algorithm pivot mb, all nontrivial computations take place in
the primitive operation of computing mb(B) for a given set B in the subcalls to
mtf mb. The algorithm guarantees that B is always a set of affinely independent
points, from which |B| ≤ d + 1 follows. In that case, mb(B) is determined by
the unique circumsphere of the points in B with center restricted to the affine
hull of B. This means, the center c and squared radius r2 satisfy the following
system of equations, where B = {q0, . . . , qm−1},m ≤ d + 1.

(qi − c)T (qi − c) = r2, i = 0, . . . m − 1,
m−1
∑

i=0

λiqi = c,

m−1
∑

i=0

λi = 1.

Defining Qi := qi − q0, for i = 0, . . . ,m − 1 and C := c − q0, the system can
be rewritten as

CT C = r2,

(Qi − C)T (Qi − C) = r2, i = 1, . . . ,m − 1, (1)
m−1
∑

i=1

λiQi = C.

Substituting C with
∑m−1

i=1
λiQi in the equations (1), we deduce a linear

system in the variables λ1, . . . , λm−1 which we can write as

AB

λ1

...
λm−1

=

QT
1 Q1

...
QT

m−1Qm−1

, (2)

where

AB :=

2QT
1 Q1 · · · 2QT

1 Qm−1

...
...

2QT
1 Qm−1 · · · 2QT

m−1Qm−1

. (3)

Computing the values of λ1, . . . , λm−1 amounts to solving the linear system
(2). C and r2 are then easily obtained via

C =

m−1
∑

i=1

λiQi, r2 = CT C. (4)

We refer to C as the relative center w.r.t. the (ordered) set B.

4 The Implementation

Algorithms 1 and 2 are implemented in a straightforward manner, following
the pseudocode given above. In case of algorithm mtf mb, the set B does not
appear as a formal parameter but is updated before and after the recursive call
by ‘pushing’ resp. ‘popping’ the point pi. This stack-like behavior of B also
makes it possible to implement the primitive operation in a simple, robust and
efficient way. More precisely, the algorithm maintains a device for solving system
(2) which can conveniently be updated if B changes. The update is easy when
element pi is removed from B—we just need to remember the status prior to
the addition of pi. In the course of this addition, however, some real work is
necessary.

A possible device for solving system (2) is the explicit inverse A−1

B of the
matrix AB defined in (3), along with the vector

vB :=

QT
1 Q1

...
QT

m−1Qm−1

.

Having this inverse available, it takes just a matrix-vector multiplication to ob-
tain the values λ1, . . . , λm−1 that define C via (4).

Assume B is enlarged by pushing another point qm. Define B′ = B ∪ {qm}.
Let’s analyze how A−1

B′ can be obtained from A−1

B . We have

AB′ =

2QT
1 Qm

AB

...
2QT

m−1Qm

2QT
1 Qm · · · 2QT

m−1Qm 2QT
mQm

,

and it is not hard to check that this equation can be written as

AB′ = L

0

AB

...
0

0 · · · 0 z

LT ,

where

L =

1 0
. . .

...
1 0

µ1 · · · µm−1 1

, µ :=

µ1

...
µm−1

= A−1

B

2QT
1 Qm

...
2QT

m−1Qm

(5)

and

z = 2QT
mQm − (2QT

1 Qm, · · · , 2QT
m−1Qm)A−1

B

2QT
1 Qm

...
2QT

m−1Qm

. (6)

This implies

A−1

B′ = (LT)−1

0

A−1

B

...
0

0 · · · 0 1/z

L−1, (7)

where

L−1 =

1 0
. . .

...
1 0

−µ1 · · · −µm−1 1

.

Expanding (7) then gives the desired update formula

A−1

B′ =

(

A−1

B + µµT /z −µ/z
−µT /z 1/z

)

, (8)

with µ and z as defined in (5) and (6).
Equation (8) shows that AB may become ill-conditioned (and the entries

of A−1

B very large and unreliable), if z evaluates to a very small number. The
subsequent lemma develops a geometric interpretation of z from which we can
see that this happens exactly if the new point qm is very close to the affine hull
of the previous ones. This can be the case e.g. if input points are very close
together or even equal. To deal with such problems, we need a device that stays
bounded in every update operation.

As it turns out, a suitable device is the (d × d)-matrix

MB := 2QBA−1

B QT
B ,

where
QB := (Q1 · · ·Qm−1)

stores the points Qi as columns. Lemma 1 below proves that the entries of MB

stay bounded, no matter what. We will also see how the new center is obtained
from MB , which is not clear anymore now.

Lemma 1.

(i) With µ as in (5), we have

m−1
∑

i=1

µiQi = Q̄m,

where Q̄m is the projection of Qm onto the subspace spanned by the Qi.
(ii) MBQm = Q̄m.
(iii) z = 2(Qm − Q̄m)T (Qm − Q̄m), i.e. z is twice the distance from Qm to its

projection.

(iv) If C and r2 are relative center and squared radius w.r.t. B, then the new
relative center C ′ and squared radius r′2 (w.r.t. B′) satisfy

C ′ = C +
e

z
(Qm − Q̄m), (9)

r′2 = r2 +
e2

2z
, (10)

where
e = (Qm − C)T (Qm − C) − r2.

(v) MB is updated according to

MB′ = MB +
2

z
(Qm − Q̄m)(Qm − Q̄m)T . (11)

The proof involves only elementary calculations and is omitted here. Property
(ii) gives MB an interpretation as a linear function: MB is the projection onto
the linear subspace spanned by Q1, . . . , Qm−1. Furthermore, property (v) implies
that MB stays bounded. This of course does not mean that no ‘bad’ errors can
occur anymore. In (11), small errors in Qm − Q̄m can get hugely amplified if z is
close to zero. Still, MB degrades gracefully in this case, and the typical relative
error in the final ball is by an order of magnitude smaller if the device MB is
used instead of A−1

B .
The lemma naturally suggests an algorithm to obtain C ′, r′2 and MB′ from

C, r2 and MB , using the values Q̄m, e and z.
As already mentioned, even MB may get inaccurate, in consequence of a

very small value of z before. The strategy to deal with this is very simple: we
ignore push operations leading to such dangerously small values! In the ambient
algorithm mtf mb this means that the point to be pushed is treated as if it
were inside the current ball (in pivot mb the push operation is never dangerous,
because we push onto an empty set B). Under this scheme, it could happen that
points end up outside the final ball computed by mtf mb, but they will not be
very far outside, if we choose the threshold for z appropriately.

The criterion is that we ignore a push operation if and only if the relative
size of z is small, meaning that

z

r2
curr

< ε (12)

for some constant ε, where r2
curr is the current squared radius. Now consider a

subcall to mtf mb(Ls, {pk}) inside the algorithm pivot mb, and assume that a
point p ∈ Ls ends up outside the ball mb0 with support set S0 and radius r0

computed by this subcall.
One can check that after the last time the query ‘pi 6∈ mb ?’ has been executed

with pi being equal to p in mtf mb, no successful push operations have occured
anymore. It follows that mb = mb0 in this last query, the query had a positive
answer (because p lies outside), and the subsequent push operation failed. This
means, we had z/r2

0 < ε at that time.

Let rmax denote the radius of mb(Ls, {pk}). Because of (10), we also had
e2/2z ≤ r2

max at the time of the failing push operation, where e is the excess of
p w.r.t. a ball mb(B ∪ {pk}) with B ⊆ S0. We then get

(

e

r2
max

)2

≤ 2z

r2
max

≤ 2z

r2
0

≤ 2ε.

Assuming that rmax is not much larger than r0 (we expect push operations
to fail rather at the end of the computation, when the ball is already large), we
can argue that

e

r2
0

= O(
√

ε).

Moreover, because mb0 contains the intersection of mb(B∪{pk}) with the affine
hull of B ∪ {pk}, to which set p is quite close due to z being small, we also get

e0

r2
0

= O(
√

ε), (13)

where e0 is the excess of p w.r.t. the final ball mb0, as desired. This argument
is not a strict proof for the correctness of our rejection criterion, but it explains
why the latter works well in practice. In the code, ε is chosen as 10−32. Because
of (13), the relative error of a point w.r.t. the final ball is then expected to
stay below 10−16 in magnitude. The latter value is the relative accuracy in the
typical situations where the threshold criterion is not applied by the algorithm
at all. Thus, ε is chosen in such a way that even when the criterion comes in,
the resulting error does not go up.

Checking

While it is easy to verify that the computed ball is admissible in the sense
that it contains all input points and has all support points on the boundary
(approximately), its optimality does not yet follow from this; if there are less than
d + 1 support points, many balls are admissible with respect to this definition.
The following lemma gives an optimality condition.

Lemma 2. Let S be a set of affinely independent points. mb(S) is the smallest
enclosing ball of S if and only if its center lies in the convex hull of S.

The statement seems to be folklore and can be proved e.g. by using the
Karush-Kuhn-Tucker optimality conditions for constrained optimization [5], or
by elementary methods.

From Section 2 we know that the algorithm should compute a support set S
that behaves according to the lemma; still, we would like to have a way to check
this in order to safeguard against numerical errors that may lead to admissible
balls which are too large. Under the device A−1

B , this is very simple—the coeffi-
cients λi we extract from system (2) in this case give us the desired information:
exactly if they are all nonnegative, S defines the optimal ball.

The weakness in this argumentation is that due to (possibly substantial)
errors in A−1

B , the λi might appear positive, although they are not. One has to
be aware that “checking” in this case only adds more plausibility to a seemingly
correct result. Real checking would ultimately require the use of exact arithmetic,
which is just not the point of this code.

Still, if the plausibility test fails (and some λi turn out to be far below zero),
we do know that something went wrong, which is important information in
evaluating the code.

Unfortunately, in using the improved device MB during the computations,
we do not have immediate access to the λi. To obtain them, we express C as
well as the points Q1, . . . , Qm−1 with respect to a different basis of the linear
span of Q1, . . . , Qm−1. In this representation, the linear combination of the Qi

that defines C will be easy to deduce.
The basis we use will be the set of (pairwise orthogonal) vectors Qi − Q̄i, i =

1, . . . ,m−1. From the update formula for the center (9) we immediately deduce
that

C =
m−1
∑

i=1

fi(Qi − Q̄i),

where fi is the value e/z that was computed according to Lemma 1(iv) when
pushing qi. This means, the coordinates of C in the new basis are (f1, . . . , fm−1).

To get the representations of the Qi, we start off by rewriting MB as

MB =

m−1
∑

k=1

2

zk

(Qk − Q̄k)(Qk − Q̄k)T ,

which follows from Lemma 1(v). Here, zk denotes the value z we got when
pushing point qk.

Now consider the point Qi. We need to know the coefficient αik of Qk − Q̄k

in the representation

Qi =

m−1
∑

k=1

αik(Qk − Q̄k).

With

MBi :=

i
∑

k=1

2

zk

(Qk − Q̄k)(Qk − Q̄k)T (14)

we get
MBiQi = Qi

(after adding qi to B, Qi projects to itself). Via (14), this entails αi,i+1 = · · · =
αi,m−1 = 0 and

αik =
2

zk

(Qk − Q̄k)T Qi, k ≤ i.

In particular we get αii = 1. The coefficients λi in the equation

C =

m−1
∑

i=1

λiQi

are now easy to compute in the new representations of C and the Qi we have
just developed. For this, we need to solve the linear system

a11 · · · am−1,1

...
...

a1,m−1 · · · am−1,m−1

λ1

...
λm−1

=

f1

...
fm−1

This system is triangular—everything below the diagonal is zero, and the
entries on the diagonal are 1. So we can get the λi by a simple back substitution,
according to

λi = fi −
m−1
∑

k=i+1

αkiλk.

Finally, we set

λ0 = 1 −
m−1
∑

k=1

λk,

and check whether all these values are nonnegative.
How much effort is necessary to determine the values αik? Here comes the

punch line: if we actually represent the MBi according to (14) and during the
push of qi evaluate the product

MBi−1Qi =

i−1
∑

k=1

2

zk

(Qk − Q̄k)(Qk − Q̄k)T Qi =

i−1
∑

k=1

αik(Qk − Q̄k)

according to this expansion, we have already computed αik by the time we need
it for the checking!

Moreover, if we make representation (14) implicit by only storing the zk and
the vectors Qk − Q̄k, we can even perform the multiplication MBi−1Qi with
Θ(di) arithmetic operations, compared to Θ(d2) operations when we really keep
MB as a matrix or a sum of matrices.

The resulting implementation of the ‘push’ routine is extremely simple and
compact (about 50 lines of code), and it allows the checker to be implemented
in 10 more lines of code.

5 Experimental Results

I have tested the algorithm on various point sets: random point sets (to evalu-
ate the speed), vertices of a regular simplex (to determine the dimension limits)
and (almost) cospherical points (to check the degeneracy handling). In further
rounds, all these examples have been equipped with ‘extra degeneracies’ ob-
tained by duplicating input points, replacing them by ‘clouds’ of points very
close together, or embedding them into a higher dimensional space. This cov-
ers all inputs that have ever been reported as problematic to me. A test suite

(distributed with the code) automatically generates all these scenarios from the
master point sets and prints out the results.

In most cases, the correct ball is obtained by the pivoting method, while
the move-to-front method frequently fails (results range from mildly wrong to
wildly wrong on cospherical points, and under input point duplication resp.
replacement by clouds). This means, although the move-to-front approach is
still slightly faster than pivoting in low dimensions (see the results in the next
paragraph), it is highly advisable to use the pivoting approach; it seems to work
very well together with the robust update scheme based on the matrix MB , as
described in Section 4. The main drawbacks of the move-to-front method are
its dependence on the order of the input points, and its higher number of push
operations (the more you push, the more can go wrong). Of course, the input
order can be randomly rearranged prior to computation (as originally suggested
in [9]), but that eats up the gain in runtime over the pivoting method. On the
other hand, if one does not rearrange, it is very easy to come up with bad input
orders (try a set of points ordered along a line).

Random point sets. I have tested the algorithm on random point sets up to di-
mension 30 to evaluate the speed of the method, in particular with respect to the
relation between the pivoting and the move-to-front variant. Table 1 (left) shows
the respective runtimes for 100, 000 points randomly chosen in the d-dimensional
unit cube, in logarithmic scale (averaged over 100 runs). All runtimes (excluding
the time for generating and storing the points) have been obtained on a SUN
Ultra-Sparc II (248 MHz), compiling with the GNU C++-Compiler g++ Version
2.8.1, and options -O3 -funroll-loops. The latter option advises the compiler
to perform loop unrolling (and g++ does this to quite some extent). This is pos-
sible because the dimension is fixed at compile time via a template argument.
By this mechanism, one also gets rid of dynamic storage management.

As it turns out, the move-to-front method is faster than the pivoting ap-
proach up to dimension 8 but then loses dramatically. In dimension 20, pivoting
is already more than ten times faster. Both methods are exponential in the di-
mension, but for applications in low dimensions (e.g. d = 3), even 1, 000, 000
points can be handled in about two seconds.

Vertices of a simplex. The results for random point sets suggest that dimension
30 is still feasible using the pivoting method. This, however, is not the case for
all inputs. In high dimensions, the runtime is basically determined by the calls to
the move-to-front method with point set S∪{pi}, S the current support set. We
know that |S| ≤ d + 1, but if the input is random, |S| will frequently be smaller
(in dimension 20, for example, the average number of support points turns out to
be around 17). In this case, a ‘pivot step’ and therefore the complete algorithm
is much faster than in the worst case. To test this worst case, I have chosen as
input the vertices of a regular d-simplex in dimension d, spanned by the unit
vectors. In this case, the number of support points is d. Table 1 (right) shows
the result (move-to-front and pivoting variant behave similarly). Note that to

.05

.1

.2

.4

.8
1.6
3.2
6.4

12.8
25.6
51.2

102.4
204.8
409.6

s

5 10 15 20 25 301 d 10 15 20

.05

.1

.2

.4

.8
1.6
3.2
6.4

12.8
25.6
51.2

102.4

d

s

Table 1. Runtime in seconds for 100, 000 random points in dimension d: pivoting (solid
line) and move-to-front (dotted line) (left). Runtime in seconds on regular d-simplex
in dimension d (right).

solve the problem on 20 points in dimension 20, one needs about as long as for
100, 000 random points in dimension 26!

As a conclusion, the method reaches its limits much earlier than in dimension
30, when it comes to the worst case. In dimension 20, however, you can still
expect reasonable performance in any case.

Cospherical points. Here, the master point sets are exactly cocircular points in
dimension 2, almost cospherical points in higher dimensions (obtained by scaling
random vectors to unit length), a tesselation of the unit sphere in 3-space by
longitude/latitude values, and vertices of a regular d-cube. While the pivoting
method routinely handles most test scenarios, the move-to-front method mainly
has problems with duplicated input points and slightly perturbed inputs. It
may take very long and computes mildly wrong results in most cases. The slow
behavior is induced by many failing push-operations due to the value z being
too small, see Section 4. This causes many points which have mistakenly been
treated as inside the current ball to reappear outside later.

The most difficult problems for the pivoting method arise from the set of
6144 integer points on the circle around the origin with squared radius r2 =
3728702916375125. The set itself is handled without any rounding errors at all
appearing in the result (this is only possible because r2 still fits into a floating-
point value of the C++ type double). However, embedding this point set into
4-space (by adding zeros in the third and fourth coordinate), combined with a
random perturbation by a relative amount of about 10−30 in each coordinate
makes the algorithm fail occasionally. In these case, the computed support set
does not have the orgin in its convex hull, which is detected by the checking
routine.

6 Conclusion

I have presented a simple, fast and robust code to compute smallest enclosing
balls. The program is the last step so far in a chain of improvements and simplifi-

cations of the original program written back in 1991. The distinguishing feature
is the nice interplay between a new high-level algorithm (the pivoting method)
and improved low-level primitives (the MB-based update scheme).

For dimensions d ≤ 10, the method is extremely fast, beyond that it slows
down a bit, and for d > 20 it is not suitable anymore in some cases. This is
because every ‘pivot step’ (a call to the move-to-front method with few points)
takes time exponential in d. Even slight improvements here would considerably
boost the performance of the whole algorithm. At this point, it is important
to note that high dimension is not prohibitive for the smallest enclosing ball
problem itself, only for the method presented. Interior point methods, or ‘real’
simplex-type methods in the sense that the pivot step is a polynomial-time
operation (see e.g.[2]) might be able to handle very high dimensions in practice,
but most likely at the cost of losing the simplicity and stability of the solution
I gave here.

Acknowledgment

I would like to thank all the people that have in one way or the other contributed
to this code over the last eight years, by using previous versions, making sug-
gestions and reporting bugs. Special thanks go to Emo Welzl for acquainting
me with his algorithm eight years ago, and for always keeping an eye on the
progress.

References

1. V. Chvátal. Linear Programming. W. H. Freeman, New York, NY, 1983.
2. B. Gärtner. Geometric optimization. Lecture Notes for the Equinoctial School on

Geometric Computing, ETH Zürich, 1997, http://www.inf.ethz.ch/personal/

gaertner/publications.html
3. Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,

1984.
4. N. Megiddo. Linear-time algorithms for linear programming in R3 and related

problems. In Proc. 23rd Annu. IEEE Sympos. Found. Comput. Sci., pages 329–
338, 1982.

5. A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The Mathematics of Nonlinear

Programming. Undergraduate Texts in Mathematics. Springer-Verlag, 1988.
6. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in C. Cambridge University Press, Cambridge, England, 2nd
edition, 1993.

7. J. Ritter. An efficient bounding sphere. In Andrew S. Glassner, editor, Graphics

Gems. Academic Press, Boston, MA, 1990.
8. J. J. Sylvester. A question on the geometry of situation. Quart. J. Math., 1:79,

1857.
9. Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,

New Results and New Trends in Computer Science, volume 555 of Lecture Notes

Comput. Sci., pages 359–370. Springer-Verlag, 1991.
10. X. Wu. A linear-time simple bounding volume algorithm. In D. Kirk, editor,

Graphics Gems III. Academic Press, Boston, MA, 1992.

