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Institute of Theoretical Computer Science, ETH Zürich, CH-8092 Zürich,
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Abstract. We show that the problem of finding optimal strategies for
both players in a simple stochastic game reduces to the generalized lin-
ear complementarity problem (GLCP) with a P-matrix, a well-studied
problem whose hardness would imply NP = co-NP. This makes the
rich GLCP theory and numerous existing algorithms available for sim-
ple stochastic games. As a special case, we get a reduction from binary
simple stochastic games to the P-matrix linear complementarity problem
(LCP).

1 Introduction

Simple stochastic games (SSG) form a subclass of general stochastic games, intro-
duced by Shapley in 1953 [1]. SSG are two-player games on directed graphs, with
certain random moves. If both players play optimally, their respective strategies
assign values v(i) to the vertices i, with the property that the first player wins
with probability v(i), given the game starts at vertex i. For a given start vertex
s, the optimization problem associated with the SSG is to compute the game
value v(s); the decision problem asks whether the game value is at least 1/2.

Previous work. Condon was first to study the complexity-theoretic aspects of
SSG [2]. She showed that the decision problem is in NP∩ co-NP. This is consid-
ered as evidence that the problem is not NP-complete, because the existence of
an NP-complete problem in NP∩ co-NP would imply NP = co-NP. Despite this
evidence and a lot of research, the question whether a polynomial time algorithm
exists remains open.

SSG are significant because they allow polynomial-time reductions from other
interesting classes of games. Zwick and Paterson proved a reduction from mean
payoff games [3] which in turn admit a reduction from parity games, a result of
Puri [4].

In her survey article from 1992, Condon reviews a number of algorithms for
the optimization problem (and shows some of them to be incorrect) [5]. These
algorithms compute optimal strategies for both players (we will say that they

? The authors acknowledge support from the Swiss Science Foundation (SNF), Project
No. 200021-100316/1.



solve the game). For none of these algorithms, the (expected) worst-case behavior
is known to be better than exponential in the number of graph vertices.

Ludwig was first to show that simple stochastic games can be solved in subex-
ponential time [6], in the binary case where all outdegrees of the underlying graph
are two. Under the known polynomial-time reduction from the general case to
the binary case [3], Ludwig’s algorithm becomes exponential, though. Björklund
et al. [7] and independently Halman [8] established a subexponential algorithm
also in the general case.

These subexponential methods had originally been developed for linear pro-
gramming and the more general class of LP-type problems, independently by
Kalai [9, 10] as well as Matoušek, Sharir and Welzl [11]. Ludwig’s contribution
was to extract the combinatorial structure underlying binary SSG, and to show
that this structure allows the subexponential algorithms to be applied. Halman
was first to show that the problem of finding an optimal strategy for one of
the players can actually be formulated as an LP-type problem [12]. Given a
strategy, the other player’s best response can be computed by a linear program.
In a later result, Halman avoided linear programming by computing the other
player’s best response again by an LP-type algorithm. This resulted in strongly
subexponential algorithms, the best known to date [8].

Independently, Björklund et al. arrived at subexponential methods by show-
ing that SSG (as well as mean payoff and parity games) give rise to very specific
LP-type problems [7]. Their contribution was to map all three classes of games
to the single combinatorial problem of optimizing a completely local-global func-
tion over the Cartesian product of sets. Along with this, they also carried out
an extensive study concerning the combinatorial properties of such functions.

Our contribution. In this paper, we show that the problem of solving a general
(not necessarily binary) simple stochastic game can be written as a generalized
linear complementarity problem (GLCP) with a P-matrix. The GLCP, as intro-
duced by Cottle and Dantzig [13], consists of a vertical block (m × n)-matrix
M where m ≥ n and a right-hand side m-vector q. M and q are partitioned in
conformity into n horizontal blocks M i and qi, i = 1, . . . n, where the size of
block i is mi×n in M and mi in q. Solving a GLCP means to find a nonnegative
m-vector w partitioned in conformity with M and q and a nonnegative n-vector
z such that

w −Mz = q, (1)
mi∏
j=1

wi
jzi = 0, ∀i ∈ {1, . . . , n}.

Here and in the following, wi
j is the j-th element in the i-th block of w. M i

j will
denote the j-th row of the i-th block of M . A representative submatrix of M is
an (n× n)-matrix whose i-th row is M i

j for some j ∈ {1, . . . ,mi}. M is defined
to be a P-matrix, if all principal minors of all its representative submatrices are
positive [13].



In this paper, we will consider SSG with vertices of arbitrary outdegree and
with average vertices determining the next vertex according to an arbitrary prob-
ability distribution. This is a natural generalization of binary SSG introduced
by Condon [2]. A binary SSG will reduce to the more popular linear complemen-
tarity problem (LCP) where mi = 1 for all n blocks.

The fact that there is a connection between games and LCP is not entirely
surprising, as for example bimatrix games can be formulated as LCP [14]. Also
Cottle, Pang and Stone [15, Section 1.2] list a simple game on Markov chains
as an application for LCP, and certain (very easy) SSG are actually of the type
considered.

LCP and methods for solving them are well-studied for general matrices M ,
and for specific matrix classes. The book by Cottle, Pang and Stone is the most
comprehensive source for the rich theory of LCP, and for the various algorithms
that have been developed to solve general and specific LCP [15]. A lot of results
carry over to the GLCP. The significance of the class of P-matrices comes from
the fact that M is a P-matrix if and only if the GLCP has a unique solution
(w, z) for any right-hand side q [16]. Given this, the fact that our reduction yields
a P-matrix already follows from Shapley’s results. His class of games contains a
superclass of SSG for which our reduction may yield any right-hand side q in
(1). Shapley’s theorem proving uniqueness of game values then implies that the
matrix M in (1) must be a P-matrix. Our result provides an alternative proof of
Shapley’s theorem, specialized to SSG, and it makes the connection to matrix
theory explicit.

No polynomial-time methods are known to solve P-matrix LCP, but Megiddo
has shown that NP-hardness of the problem implies NP = co-NP [17], meaning
that the problem has an unresolved complexity status, similar to that of SSG.
Megiddo’s proof easily carries over to P-matrix GLCP.

Gärtner et al. proved that the combinatorial structure of P-matrix GLCP is
very similar to the structure derived by Björklund et al. for the games [18]. The
latter authors also describe a reduction to what they call controlled linear pro-
gramming [19]; controlled linear programs are easily mapped to (non-standard)
LCP. Independently from our work, Björklund et al. have made this mapping ex-
plicit by deriving LCP-formulations for mean payoff games [20]. Their reduction
is very similar to ours, but the authors do not prove that the resulting matrices
are P-matrices, or belong to some other known class. In fact, Björklund et al.
point out that the matrices they get are in general not P-matrices, and this stops
them from further investigating the issue. We have a similar phenomenon here:
Applying our reduction to non-stopping SSG (see next section), we may also
obtain matrices that are not P-matrices. The fact that comes to our rescue is
that the stopping assumption incurs no loss of generality. It would be interesting
to see whether the matrices of Björklund et al. are actually P-matrices as well,
after some transformation applied to the mean payoff game.

Matrix classes and algorithms. Various solution methods have been devised for
GLCP, and when we specialize to the P-matrix GLCP we get from SSG, some of
them are already familiar to the game community. Most notably, principal pivot



algorithms in the GLCP world correspond to switching algorithms. Such an
algorithm maintains a pair of strategies for both players and gradually improves
them by locally switching to a different behavior. There exist examples of SSG
where switching algorithms may cycle [5]. However, if switching is defined with
respect to only one player (where after each switch the optimal counterstrategy
of the other player is recomputed by solving a linear program), cycling is not
possible. The latter is the setup of Björklund et al. [7].

In order to assess the power of the GLCP approach, we must understand the
class of matrices resulting from SSG. Our result that these are P-matrices puts
SSG into the realm of ‘well-behaved’ GLCP, but it does not give improved run-
time bounds, let alone a polynomial-time algorithm. The major open question
resulting from our approach is therefore the following: Can we characterize the
subclass of P-matrices resulting from SSG? Is this subclass equal (or related) to
some known class? In order to factor out the peculiarities of our reduction, we
should require the subclass to be closed under scaling of rows and/or columns.
Without having a concrete example, we believe that we obtain a proper sub-
class of the class of all P-matrices. This is because the GLCP restricted to (the
variables coming from) any one of the two players is easy to solve by linear
programming, a phenomenon that will not occur for a generic P-matrix.

The class of hidden K-matrices is one interesting subclass of P-matrices for
which the GLCP can be solved in polynomial time. Mohan and Neogy [21] have
generalized results by Pang [22] and Mangasarian [23, 24] to show that a vertical
block hidden K-matrix can be recognized in polynomial time through a linear
program and that the solution to this linear program can in turn be used to set
up another linear program for solving the GLCP itself.

The matrices we get from SSG are in general not hidden K-matrices. Still,
properties of the subclass of matrices we ask for might allow their GLCP to be
solved in polynomial time.

2 Simple Stochastic Games

We are given a finite directed graph G whose vertex set has the form

V = {1,0} ∪ Vmax ∪ Vmin ∪ Vavg,

where 1, the 1-sink, and 0, the 0-sink, are the only two vertices with no outgoing
edges. For reasons that become clear later, we allow multiple edges in G (in which
case G is actually a multigraph).

Vertices in Vmax belong to the first player which we call the max player, while
vertices in Vmin are owned by the second player, the min player. Vertices in Vavg

are average vertices. For i ∈ V \ {1,0}, we let N (i) be the set of neighbors of
i along the outgoing edges of i. The elements of N (i) are {η1(i), . . . , η |N (i)|(i)}.
An average vertex i is associated with a probability distribution P(i) that assigns
to each outgoing edge (i, j) of i a probability pij > 0,

∑
j∈N (i) pij = 1.

The SSG defined by G is played by moving a token from vertex to vertex,
until it reaches either the 1-sink or the 0-sink. If the token is at vertex i, it is
moved according to the following rules.



vertex type rule
i = 1 the game is over and the max player wins
i = 0 the game is over and the min player wins
i ∈ Vmax the max player moves the token to a vertex in N (i)
i ∈ Vmin the min player moves the token to a vertex in N (i)
i ∈ Vavg the token moves to a vertex in N (i) according to P(i)

An SSG is called stopping, if no matter what the players do, the token even-
tually reaches 1 or 0 with probability 1, starting from any vertex. In a stopping
game, there are no directed cycles involving only vertices in Vmax ∪ Vmin. The
following is well-known and has first been proved by Shapley [1], see also the
papers by Condon [2, 5]. Our reduction yields an independent proof of part (i).

Lemma 1. Let G define a stopping SSG.

(i) There are unique numbers v(i), i ∈ G, satisfying the equations

v(i) =



1, i = 1
0, i = 0

max
j∈N (i)

(v(j)), i ∈ Vmax

min
j∈N (i)

(v(j)), i ∈ Vmin∑
j∈N (i)

pijv(j), i ∈ Vavg

. (2)

(ii) The value v(i) is the probability for reaching the 1-sink from vertex i, if both
players play optimally.

For a discussion about what it means that ‘both players play optimally’, we
refer to Condon’s paper [5]. The important point here is that computing the
numbers v(i) solves the optimization version of the SSG in the sense that for
every possible start vertex s, we know the value v(s) of the game. It also solves
the decision version which asks whether v(s) ≥ 1/2. Additionally, the lemma
shows that there are pure optimal strategies that can be read off the numbers
v(i): If v is a solution to (2), then an optimal pure strategy is given by moving
from vertex i along one outoing edge to a vertex j with v(j) = v(i).

The stopping assumption can be made without loss of generality: In a non-
stopping game, replace every edge (i, j) by a new average vertex tij and new edges
(i, tij) (with the same probability as (i, j) if i ∈ Vavg), (tij , j) with probability
1 − ε and (tij ,0) with probability ε. Optimal strategies to this stopping game
(which are given by the v(i) values) correspond to optimal strategies in the
original game if ε is chosen small enough [2].

3 Reduction to P-matrix GLCP

In the following, we silently assume that G defines a stopping SSG and that every
non-sink vertex of G has at least two outgoing edges (a vertex of outdegree 1



can be removed from the game without affecting the values of other vertices). In
order to solve (2), we first write down an equivalent system of linear equations
and inequalities, along with (nonlinear) complementarity conditions for certain
pairs of variables. The system has one variable xi for each vertex i and one slack
variable yij for each edge (i, j) with i ∈ Vmax ∪Vmin. It has equality constraints

xi =



1, i = 1
0, i = 0

yij + xj , i ∈ Vmax, j ∈ N (i)
−yij + xj , i ∈ Vmin, j ∈ N (i)∑

j∈N (i)

pijxj , i ∈ Vavg,

(3)

inequality constraints

yij ≥ 0, i ∈ Vmax ∪ Vmin, j ∈ N (i), (4)

and complementarity constraints∏
j∈N (i)

yij = 0, i ∈ Vmax ∪ Vmin (5)

to model the max- and min-behavior in (2).
The statement of Lemma 1 (i) is equivalent to the statement that the system

consisting of (3), (4) and (5) has a unique solution x = (x1, . . . , xn), and we
will prove the latter statement. From the solution x, we can recover the game
values via v(i) = xi, and we also get the yij . Note that edges with yij = 0 in the
solution correspond to strategy edges of the players.

It turns out that the variables xi are redundant, and in order to obtain a
proper GLCP formulation, we will remove them. For variables xi, i /∈ Vavg, this
is easy.

Definition 1. Fix i ∈ V .

(i) The first path of i is the unique directed path that starts from i, consists
only of edges (j, η1(j)) with j ∈ Vmax ∪ Vmin, and ends at some vertex in
{1,0} ∪ Vavg. The second path is defined analogously, with edges of the
form (j, η2(j)).

(ii) The substitution Si of xi is recursively defined as the linear polynomial

Si =


1, i = 1
0, i = 0

yiη1(i) + Sη1(i), i ∈ Vmax

−yiη1(i) + Sη1(i), i ∈ Vmin

xi, i ∈ Vavg

. (6)

(iii) S̄i is the homogeneous polynomial obtained from Si by removing the con-
stant term (which is 0 or 1, as a consequence of (ii)).



Note that the first and the second path always exist, because there are no cycles
involving only vertices in Vmax ∪ Vmin and each non-sink vertex has outdegree
at least 2. The substitution Si expresses xi in terms of the y-variables associated
with the first path edges of i, and in terms of the substitution of the last vertex
on the first path, which is either an average vertex, or a sink.

Lemma 2. The following system of equations is equivalent to (3).

yij = yiη1(i) + Sη1(i) − Sj , i ∈ Vmax, j ∈ N (i) \ η1(i)
yij = yiη1(i) − Sη1(i) + Sj , i ∈ Vmin, j ∈ N (i) \ η1(i)

0 = xi −
∑

j∈N (i)

pijSj , i ∈ Vavg.
(7)

Proof. By induction on the length of the first path, it can be shown that in every
feasible solution to (3), xi has the same value as its substitution. The system (3)
therefore implies (7). Vice versa, given any solution to (7), we can simply set

xi =


1, i = 1
0, i = 0

yiη1(i) + Sη1(i), i ∈ Vmax

−yiη1(i) + Sη1(i), i ∈ Vmin

to guarantee that xi and Si have the same value for all i. Then, the equations
of (7) imply that xi satisfies (3), for all i. ut

3.1 A non-standard GLCP

Let us assume that Vmax ∪ Vmin = {1, . . . , u}, Vavg = {u + 1, . . . , n}. Moreover,
for i, j ∈ {1, . . . , u} and i < j, we assume that there is no directed path from
j to i that avoids average vertices. This is possible, because G restricted to
V \Vavg is acyclic, by our stopping assumption. In other words, the order 1, . . . , u
topologically sorts the vertices in Vmax ∪ Vmin, with respect to the subgraph
induced by V \ Vavg. Defining vectors

z = (y1η1(1), . . . , yuη1(u))T , w = (w1, . . . , wu)T , x = (xu+1, . . . , xn)T , (8)

where wi = (yiη2(i), . . . , yiη |N(i)|(i)) is the vector consisting of the yij for all
j ∈ N (i) \ η1(i), conditions (4), (5) and (7)— and therefore the problem of
computing the v(i)—can now be written as

find w, z
subject to w ≥ 0, z ≥ 0,

|N (i)|−1∏
j=1

wi
jzi = 0, i ∈ Vmax ∪ Vmin

(
w
0

)
−

(
Q C
A B

) (
z
x

)
=

(
s
t

)
,

(9)



where

P =
(

Q C
A B

)
, q =

(
s
t

)
are a suitable matrix and a suitable vector. The vertical block matrix Q is
partitioned according to w and encodes the connections between player vertices
(along first paths), whereas the square matrix B encodes the connections between
average vertices. A and C describe how player and average vertices interconnect.

3.2 The structure of the matrix P

The following three lemmas are needed to show that P is a P-matrix, i.e. all
principal minors of all representative submatrices of P are positive.

Lemma 3. Q is a P-matrix.

Proof. Every representative submatrix of Q is upper-triangular, with all diagonal
entries being equal to 1. The latter fact is a direct consequence of (7), and the
former follows from our topological sorting: For any k ∈ N (j)\η1(j), the variable
yiη1(i) cannot occur in the equation of (7) for yjk, j > i, because this would
mean that i is on the first path of either η1(j) > j > i or k > j > i. Thus, every
representative submatrix has determinant 1. ut

It can even be shown that Q is a hidden K-matrix [25].

Lemma 4. B is a P-matrix.

Proof. We may assume that the average vertices are ‘topologically sorted’ in
the following sense. For i, j ∈ {u + 1, . . . , n} and i ≤ j, there is a neighbor
k ∈ N (i) such that the first path of k avoids j. To construct this order, we
use our stopping assumption again. Assume we have built a prefix of the order.
Starting the game in one of the remaining average vertices, and with both players
always moving the token along edges (i, η1(i)), we eventually reach a sink. The
last of the remaining average vertices on this path is the next vertex in our order.

Theorem 3.11.10 in the book by Cottle, Pang and Stone [15] states that a
square matrix M with all off-diagonal entries nonpositive is a P-matrix if there
exists a positive vector s such that Ms > 0. As B has all off-diagonal entries
nonpositive by construction (last line of (7)), it thus remains to provide the
vector s. We define s to be the monotone increasing vector

st = 1− εt, t = 1, . . . , |Vavg|,

where ε = min
i,j

pij is the smallest probability occuring in the average vertices’

probability distributions over the outgoing edges. s > 0 as 0 < ε ≤ 1/2, and we
claim that also Bs > 0. Consider the row of B corresponding to average vertex
i, see (7). Its diagonal entry is a positive number x. We have ε ≤ x ≤ 1 by our
stopping assumption (x < 1 occurs if the first path of any neighbor of i comes
back to i). The off-diagonal values of the row are all nonpositive and sum up to
at least −x. Our topological sorting on the average vertices implies that the row



elements to the right of x sum up to −(x− ε) at least. Assume that the diagonal
element x is at position t in the row. Under these considerations, the value of
the scalar product of the row with s is minimized if the last element of the row
has value −(x− ε) and the element at position t− 1 has value −ε. As claimed,
by the following formula the value is then positive (at least for 1 < t < |Vavg|,
but the cases t = 1 and t = |Vavg| can be checked in the same way):

−ε(1− εt−1) + x(1− εt)− (x− ε)(1− ε|Vavg|) = εt(1− x) + ε|Vavg|(x− ε) > 0.

ut
We note that B is even a K-matrix. K-matrices form a proper subclass of

hidden K-matrices [15]

Property 1. An (n× n) representative submatrix

Prep =
(

Qrep Crep

A B

)
of P is given by a representative submatrix Qrep of Q and Crep which consists of
the rows of C corresonding to the rows of Qrep. Prep corresponds to a subgame
where edges have been deleted such that every player vertex has exactly two
outgoing edges.

Such a subgame is a slightly generalized binary SSG, as average vertices can
have more than two outgoing edges and arbitrary probability distributions on
them.

Lemma 5. Using elementary row operations, we can transform a representative
submatrix Prep of P into a matrix P ′

rep of the form

P ′
rep =

(
Qrep Crep

0 B′

)
with B′ being a P-matrix.

Proof. We process the rows of the lower part (AB) of Prep one by one. In the
following, first and second paths (and thus also substitutions S̄i) are defined
w.r.t. the subgame corresponding to Prep.

For k ∈ {1, . . . , n}, let Rk be the k-th row of Prep and assume that we are
about to process Ri, i ∈ {u + 1, . . . , n}. According to (7), we have

Ri

(
z
x

)
= xi −

∑
j∈N (i)

pijS̄j . (10)

We will eliminate the contribution of S̄j for all j ∈ N (i), by adding suitable
multiples of rows Rk, k ∈ {1, . . . , u}. For such a k, (7) together with (6) implies

Rk

(
z
x

)
=

{
S̄k − S̄η1(i), k ∈ Vmax

S̄η1(i) − S̄k, k ∈ Vmin
. (11)



Let η∗2(j) be the last vertex on the second path of j. Summing up (11) over all
vertices on the second path of vertex k with suitable multiples from {1,−1}, the
sum telescopes, and we get that for all j ∈ {1, . . . , u}, S̄j − S̄η∗2 (j) is obtainable
as a linear combination of the row vectors

Rk

(
z
x

)
, k ≤ u.

Actually, if j is an average vertex or a sink, we have η∗2(j) = j, so that S̄j −
S̄η∗2 (j) = 0 is also obtainable as a (trivial) linear combination in this case.

Thus, adding (S̄j − S̄η∗2 (j))pij to (10) for all j ∈ N (i) transforms our current
matrix into a new matrix whose i-th row has changed and yields

R′
i

(
z
x

)
= xi −

∑
j∈N (i)

pijS̄η∗2 (j). (12)

Moreover, this transformation is realized through elementary row operations.
Because (12) does not contain any y-variables anymore, we get the claimed
structure after all rows Ri, i ∈ {u + 1, . . . , n} have been processed.

We still need to show that B′ is a P-matrix, but this is easy. B encodes
for each average vertex the average vertices reached along the first paths of its
successors. According to (12), B′ does the same thing, but replacing first paths
with second paths. The two situations are obviously completely symmetric, so
the fact that B is a P-matrix also yields that B′ is a P-matrix. Note that in
order to obtain a monotone vector s as in the proof of Lemma 4, we need to
reshuffle rows and columns so that the corresponding vertices are ‘topologically
sorted’ according to second paths. ut

Lemma 6. P is a P-matrix.

Proof. We show that every representative submatrix Prep of P is a P-matrix.
By Lemma 5, det(Prep) = det(P ′

rep) = det(Qrep) det(B′), so Prep has positive
determinant as both Q and B′ are P-matrices by Lemmas 3 and 4. To see that all
proper principal minors are positive, we can observe that any principal submatrix
of Prep is again the matrix resulting from a SSG. The subgame corresponding
to a principal submatrix can be derived from the SSG by deleting vertices and
redirecting edges. This may generate multiple edges, which is the reason why we
allowed them in the definition of the SSG. (The easy details are omitted.) ut

3.3 A standard GLCP

Problem (9) is a non-standard GLCP because there are variables x with no
complementarity conditions. But knowing that B is regular (as B is a P-matrix),
we can express x in terms of z and obtain an equivalent standard GLCP, whose
matrix is a Schur complement of B in P .



find w, z
subject to w ≥ 0, z ≥ 0,

wT z = 0,
w − (Q− CB−1A)z = s− CB−1t.

(13)

Lemma 7. Q− CB−1A, is a P-matrix.

Proof. We have to show that every representative submatrix of Q − CB−1A is
a P-matrix. Such submatrices are derived through Qrep − CrepB

−1A. It thus
suffices to show that Qrep−CrepB

−1A is a P-matrix, given that Prep (as defined
in Property 1) is a P-matrix. This is well known (see for example Tsatsomeros
[26]). ut

We have finally derived our main theorem:

Theorem 1. A simple stochastic game is reducible in polynomial time to a gen-
eralized linear complementarity problem with a P-matrix.

This theorem also provides a proof of Lemma 1: going through our chain of
reductions again yields that the equation system in Lemma 1 (i) for the values
v(i) has a unique solution if and only if the GLCP (13) has a unique solution for
the slack variables yij . The latter holds because the matrix of (13) is a P-matrix.

As mentioned earlier, the reduction works for a superclass of SSGin which
edges are associated with a payoff. But for general stochastic games as introduced
by Shapley [1], the reduction (as described in this paper) is not possible. This
follows from two facts. First, optimal strategies for stochastic games are generally
non-pure. Second, it is possible to get irrational solutions (vertex values) for the
stochastic game even if all input data is rational. This is not possible for GLCP.
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18. Gärtner, B., Morris, Jr., W.D., Rüst, L.: Unique sink orientations of grids. In:
Proc. 11th Conference on Integer Programming and Combinatorial Optimization
(IPCO). Volume 3509 of Lecture Notes in Computer Science. (2005) 210–224

19. Björklund, H., Svensson, O., Vorobyov, S.: Controlled linear programming for infi-
nite games. Technical Report 2005-13, DIMACS: Center for Discrete Mathematics
and Theoretical Computer Science, Rutgers University, NJ (2005)

20. Björklund, H., Svensson, O., Vorobyov, S.: Linear complementarity algorithms
for mean payoff games. Technical Report 2005-05, DIMACS: Center for Discrete
Mathematics and Theoretical Computer Science, Rutgers University, NJ (2005)

21. Mohan, S.R., Neogy, S.K.: Vertical block hidden Z-matrices and the generalized
linear complementarity problem. SIAM J. Matrix Anal. Appl. 18 (1997) 181–190

22. Pang, J.: On discovering hidden Z-matrices. In Coffman, C.V., Fix, G.J., eds.:
Constructive Approaches to Mathematical Models. Proceedings of a conference in
honor of R. J. Duffin, New York, Academic Press (1979) 231–241

23. Mangasarian, O.L.: Linear complementarity problems solvable by a single linear
program. Math. Program. 10 (1976) 263–270

24. Mangasarian, O.L.: Generalized linear complementarity problems as linear pro-
grams. Oper. Res.-Verf. 31 (1979) 393–402
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