
A Simple Sampling Lemma: Analysis and Applications in

Geometric Optimization∗

Bernd Gärtner and Emo Welzl†

April 2, 2001

Abstract

Random sampling is an efficient method to deal with constrained optimization problems
in computational geometry. In a first step, one finds the optimal solution subject to a
random subset of the constraints; in many cases, the expected number of constraints still
violated by that solution is then significantly smaller than the overall number of constraints
that remain. This phenomenon can be exploited in several ways, and typically results in
simple and asymptotically fast algorithms.

Very often the analysis of random sampling in this context boils down to a simple identity
(the sampling lemma) which holds in a general framework, yet has not been stated explicitly
in the literature.

In the more restricted but still general setting of LP-type problems, we prove tail esti-
mates for the sampling lemma, giving Chernoff-type bounds for the number of constraints
violated by the solution of a random subset. As an application, we provide the first the-
oretical analysis of multiple pricing, a heuristic used in the simplex method for linear pro-
gramming in order to reduce a large problem to few small ones. This follows from our
analysis of a reduction scheme for general LP-type problems, which can be considered as a
simplification of an algorithm due to Clarkson. The simplified version needs less random
resources and allows a Chernoff-type tail estimate.

1 Introduction

Random sampling and randomized incremental construction have become well-established, by
now even classical, design paradigms in the field of computational geometry, cf. [27]. Many
algorithms following that paradigm have been simplified to a point where they can easily be
taught in introductory CS courses, with almost no technical difficulties. This was not always
the case; pioneering papers, notably the ones by Clarkson and Shor [6, 9], Mulmuley [26], and
by Guibas, Knuth and Sharir [18], still required more technical derivations.

This changed when Seidel popularized the backwards analysis paradigm for randomized
algorithms [30]. Together with the abstract framework of configuration spaces, this technique
allows to treat many different algorithms in a simple and unified way [11].

The goal of this paper is to popularize and prove results around a simple identity (the
sampling lemma) which underlies the analysis of randomized algorithms for many geometric

∗The first author acknowledges support from the Swiss Science Foundation (SNF), project No. 21-50647.97.
A preliminary version of this paper appeared in the Proceedings of the 16th Annual ACM Symposium on
Computational Geometry (SCG), 2000, pp. 91–99

†Institut für Theoretische Informatik, ETH Zürich, ETH Zentrum, CH-8092 Zürich, Switzerland, gaert-
ner@inf.ethz.ch, emo@inf.ethz.ch

1

optimization problems. By that we mean problems defined in a low-dimensional space, which
usually implies that they have few constraints or few variables when written as mathematical
programs.

As we show below, special cases of the identity, or inequalities implied by it, are used in many
places, including the analysis of the general configuration space framework. To the knowledge
of the authors, the identity itself, however, has not been noticed explicitly.

The Sampling Lemma

Let S be a set of size n and φ a function that maps any set R ⊆ S to some value φ(R).1 Define

V (R) := {s ∈ S \ R | φ(R ∪ {s}) 6= φ(R)},
X(R) := {s ∈ R | φ(R \ {s}) 6= φ(R)}.

V (R) is the set of violators of R, while X(R) is the set of extreme elements in R. Obviously,

s violates R ⇔ s is extreme in R ∪ {s}. (1)

For a random sample R of size r, i.e. a set R chosen uniformly at random from the set
(

S
r

)

of
all r-element subsets of S, we define random variables Vr : R 7→ |V (R)| and Xr : R 7→ |X(R)|,
and we consider the expected values

vr := E(Vr),

xr := E(Xr).

Lemma 1.1 (Sampling Lemma). For 0 ≤ r < n,

vr

n − r
=

xr+1

r + 1
.

Proof: Using the definitions of vr and xr+1 as well as (1), we can argue as follows.

(

n

r

)

vr =
∑

R∈(S

r
)

∑

s∈S\R

[s violates R]

=
∑

R∈(S

r
)

∑

s∈S\R

[s is extreme in R ∪ {s}]

=
∑

Q∈(S

r+1)

∑

s∈Q

[s is extreme in Q]

=

(

n

r + 1

)

xr+1.

Here, [·] is the indicator variable for the event in brackets. Finally,
(

n
r+1

)

/
(

n
r

)

= (n− r)/(r +1).

To appreciate the simplicity (if not triviality) of the lemma, one should consider it as a
special case of the following observation: given a bipartite graph, the average vertex degree in

1Here, the only purpose of φ is to partition 2S into equivalence classes; later, the function-notation becomes
clear.

2

one color class times the size of that class equals the average vertex degree in the other color
class times its size.

In our case, the two color classes are the subsets of S of sizes r and r + 1, respectively, and
two sets R and R ∪ {s} share an edge if and only if s violates R (equivalently, if s is extreme
in R∪{s}). This means, the sampling lemma still holds if ‘violation’ is individually defined for
every pair (R, s).

A situation of quite similar flavor, where a simple bipartite graph underlies a probabilistic
scenario, has been studied by Dubhashi and Ranjan [12].

We can also establish a version of the sampling lemma in the model of Bernoulli sampling,
where R is chosen by picking each element of S independently with some fixed probability
p ∈ [0, 1] (we say, R is a random p-sample). Let V (p) and X(p) denote the random variables for
the number of violators and extreme elements, respectively, in a p-sample, and let v(p) and x(p)

be the corresponding expectations.

Lemma 1.2 (p-Sampling Lemma). For 0 ≤ p ≤ 1,

pv(p) = (1 − p)x(p).

Proof: Each r-element set R occurs as a p-sample with probability
(

n

r

)

pr(1 − p)n−r.

Using the Sampling Lemma 1.1 it follows that

pv(p) = p
n
∑

r=0

(

n

r

)

pr(1 − p)n−rvr = p
n−1
∑

r=0

(

n

r

)

pr(1 − p)n−rvr

= p
n−1
∑

r=0

(

n

r + 1

)

pr(1 − p)n−rxr+1 = p
n
∑

r=1

(

n

r

)

pr−1(1 − p)n−r+1xr

= (1 − p)
n
∑

r=1

(

n

r

)

pr(1 − p)n−rxr = (1 − p)
n
∑

r=0

(

n

r

)

pr(1 − p)n−rxr

= (1 − p)x(p).

In the next section we discuss some well-known results obtained by random sampling and
show that all of them easily follow from the sampling (respectively p-sampling) lemma. Con-
centrating on the Sampling Lemma 1.1, we elaborate on its connection to configuration spaces
and backwards analysis. Section 3 deals with LP-type problems, which can be considered as
functions φ with specific properties. Section 4 establishes Chernoff-type tail estimates for the
random variable Vr, i.e. for the number of violators of a random sample. The sampling lemma
and the tail estimates are finally used in Section 5 to analyze an algorithm for general LP-type
problem, which can be considered as the ‘practical’ version of Clarkson’s reduction scheme [16].
Its specialization to linear programming is a variant of multiple pricing [5].

2 Incarnations of the Sampling Lemmata

Searching in a sorted compact list

A sorted compact list represents a set S of n ordered keys in an array, where the order among
the keys is established by additional pointers linking each element to its predecessor in the

3

order, see Figure 1. It is well-known that the smallest key in a sorted compact list can be found
in O(

√
n) expected time [10, Problem 11-3].

12 345 6 78

Figure 1: A sorted list of 8 keys, compactly stored in an array

For this, one draws a random sample R of r = Θ(
√

n) keys, finds the smallest key s0 in the
sample, and finally follows the links from s0 to the overall smallest key. The efficiency comes
from the fact that an expected number of only Θ(

√
n) keys is still smaller than s0. In general,

setting φ(R) = min(R) and observing that Xr+1 ≡ 1, the sampling lemma yields

E(#{s ∈ S \ R | s < min(R)}) =
n − r

r + 1
. (2)

Note that s < min(R) is equivalent to min(R ∪ {s}) 6= min(R).
Property (2) was exploited by Seidel in the following observation: given a simple d-polytope

P with n vertices, specified by its 1-skeleton (the graph of vertices and edges of P), one can find
the vertex that minimizes some linear function f in expected time O(d

√
n). The corresponding

randomized subroutine serves as a building block of a simple algorithm for computing the
intersection of halfspaces, or dually, the convex hull of points in d-dimensional space. For
d ≥ 4, this algorithm achieves optimal expected worst-case performance [31].

Smallest enclosing ball

Consider the problem of computing the smallest enclosing ball of a set S of n points in d-
dimensional space, for some fixed d. Randomized incremental algorithms do this in expected
O(n) time [33], based on the following fact: if the points are added in random order, the
probability that the n-th point is outside the smallest enclosing ball of the first n − 1 points is
bounded by (d + 1)/n. In general, it holds that if R ⊆ S is a random sample of r points, and
ball(R) denotes the smallest enclosing ball of R, then

E(#{p ∈ S \ R | p 6∈ ball(R)}) ≤ (d + 1)
n − r

r + 1
. (3)

Again, this follows from the sampling lemma, with φ(R) = ball(R), together with the observa-
tion that any set R has at most d + 1 extreme elements [33], and the fact that s 6∈ ball(R) ⇔
ball(R ∪ {s}) 6= ball(R).

Similar results hold for the smallest enclosing ellipsoid problem. The randomized incremen-
tal algorithm based on them was the first one to achieve an expected runtime of O(n) for that
problem, cf. [33]. The pioneering applications of randomized incremental construction along
these lines were Clarkson’s and Seidel’s linear-time algorithms for linear programming with a
fixed number d of variables [8, 29].

Planar convex hull

For a planar point set S, |S| = n, the randomized incremental construction adds the points in
random order, always maintaining the convex hull of the points added so far. When a point

4

p is added, it has to ‘locate’ itself, i.e. it has to know whether it is outside the current convex
hull, and in this case identify some hull edge e visible from p.

As it turns out, the amortized expected cost for doing this in the r-th step (after which the
points added so far form a random sample R of size r) is proportional to ar/r, where

ar := E(#{p ∈ S \ R | p 6∈ conv(R)}).

The ‘trick’ now is to express this in terms of another quantity

br := E(#{p ∈ R | p vertex of conv(R)}).

The sampling lemma with φ(R) = conv(R) then shows that

ar = br+1
n − r

r + 1
. (4)

For this, we need the observation that p 6∈ conv(R) is equivalent to conv(R ∪ {s}) 6= conv(R),
which in turn means that p is a vertex of conv(R ∪ {s}). The expected overall location cost
(which dominates the runtime) is then proportional to

n
∑

r=1

ar

r
≤ n

n
∑

r=1

br+1

r(r + 1)
.

Because br+1 ≤ r + 1, this gives an O(n log n) algorithm. However, the bound is much better
in some cases. For example, if the input points are chosen randomly from the unit square (unit
disk, respectively), we get br = O(log r) (br = O(3

√
r), respectively) [28, 20]. In both cases, the

algorithm actually runs in linear time. In higher dimensions, an analysis along these lines is
available, but requires substantial refinements [9, 30].

Minimum spanning forests

Let G = (V, E) be an edge-weighted graph, |V | = n. For D ⊆ E, let msf(D) denote the
minimum spanning forest of the graph (V, D) (which we assume to be unique for all D). An
edge e ∈ E is called D-light if it either connects two components of msf(D), or it has smaller
weight than some edge on the unique path in msf(D) between its two vertices. The expected
linear-time algorithm for computing msf(E) due to Karger, Klein and Tarjan [21, 25] relies
(among other insights) on the following fact: if D is a random p-sample, the expected number
of D-light edges is bounded by n/p. Using the p-Sampling Lemma 1.2, this fact is easily derived.
Namely, it is a simple observation that e is D-light if and only if msf(D) 6= msf(D∪{e}). With
φ(D) = msf(D), this means that the set of D-light edges is exactly the set of violators of D.
By the p-sampling lemma, if D is a random p-sample, their expected number is given by

v(p) =
1 − p

p
x(p) ≤ x(p)

p
.

It remains to observe that x(p) ≤ n − 1, because X(D) contains exactly the edges in msf(D),
for all D.

Along these lines, Chan has proved a bound for the expected number of D-light edges in
the case where D is a random sample of size r [4]. His argument uses backwards analysis and
boils down to a proof of the Sampling Lemma 1.1 in this specific scenario.

5

Backwards analysis and configuration spaces

The Sampling Lemma 1.1 in its full generality can easily be proved using backwards analysis,
and as indicated in the previous subsection, this is usually the way its specializations are derived
in the applications. For this, one considers the randomized incremental ‘construction’ of φ(S),
via adding the elements of S in random order, and analyzes the situation in step r + 1 [30].

There is also a connection to configuration spaces. In general, such a space consists of an
abstract set of configurations over some set S, where each configuration ∆ has a defining set
D(∆) ⊆ S and a conflict set K(∆) ⊆ S. ∆ is active w.r.t. R ⊆ S if and only if D(∆) ⊆ R
and K(∆) ⊆ S \ R. The goal is to compute the configurations active w.r.t. S, by adding the
elements in random order, always maintaining the active configurations of the current subset.
The abstract framework provides bounds for the expected overall structural change (number of
configurations ever becoming active) during that construction [9, 27, 11].

In our case, every subset R has exactly one active configuration ∆ = φ(R) associated with
it, where D(∆) = X(R) and K(∆) = V (R).2 In this case, the sampling lemma provides a
bound for the expected structural change vr/(n − r) that occurs in step r + 1. For example, it
specializes to Theorem 9.14 of [11] if xr+1 is bounded by a constant d.

In the following, we will be interested not only in the expectation, but also in the distribution
of the random variable Vr, something the configuration space framework does not handle. For
this, we concentrate on the case in which (S, φ) has the structure of an LP-type problem. This
situation covers many important optimization problems, including linear programming and all
motivating examples discussed above.

3 LP-type problems

If φ maps subsets to some ordered set O, we can consider functions φ that are monotone, i.e.
φ(F) ≤ φ(G) for F ⊆ G. In this situation, we can regard a pair (S, φ) as an optimization
problem over O, as follows: S is an abstract set of constraints, and for any R ⊆ S, φ(R)
represents the minimum value in O subject to the constraints in R. The examples above are
all of this type, if we define appropriate orderings on the φ-values. For φ(R) = min(R) in case
of keys, we simply take the decreasing order on keys. For S a point set and φ(R) = ball(R), we
can order the balls according to their radii, while for φ(R) = conv(R), we may use the area of
conv(R).

Moreover, in all these examples, φ has another special property which we refer to as locality.
We say that φ is local if R ⊆ Q and φ(R) = φ(Q) implies V (R) = V (Q), for all R, Q ⊂ S. An
example for a non-local problem is the diameter : for a set S of points and R ⊆ S, we define
φ(R) to be the euclidean diameter of R. In Figure 2 we have φ(R) = φ(Q) for R = {q, s} and
Q = {p, q, s}, but ∅ = V (R) 6= V (Q) = {r}.

Still, locality is present in many problems of practical relevance, the most prominent one
being linear programming (LP). In a geometric formulation of LP, S is a set of halfspaces
in d-dimensional space, and φ(R) is the lexicographically smallest point among all the ones
that minimize some fixed linear function over the intersection of all halfspaces in R. If that
intersection is empty, we set φ(R) = ∞, with the understanding that this value dominates all
other values. If the function is unbounded over the intersection, we set φ(R) = ⊥, standing for
‘undefined’.

2Some care is in order here; in degenerate situations, R can define several configurations ∆ with different sets
D(∆), in which case X(R) is the intersection of all those sets.

6

q

s

p r
D

>D

Figure 2: The diameter problem: locality fails

Linear programming is also the motivating example for the following definition [32].

Definition 3.1 Let S be a finite set, O some ordered set, and φ : 2S → O ∪ {⊥} a function,
where ⊥ is assumed to be the minimum value in O∪{⊥}. The pair (S, φ) is called an LP-type
problem, if φ is monotone and local, i.e. if for all R ⊆ Q ⊆ S with φ(R) 6= ⊥

(i) φ(R) ≤ φ(Q), and

(ii) φ(R) = φ(Q) implies V (R) = V (Q).

The concept of LP-type problems has proved useful in the understanding of geometric opti-
mization, see for example [2]. For many problems (including linear programming and smallest
enclosing ball), the currently best theoretical runtime bounds in the unit cost model can be
obtained by an algorithm that works for general LP-type problems [16, 23].

We recall the following further notations only briefly and refer to the above literature for
details.

Definition 3.2 Let L = (S, φ) be an LP-type problem.

(i) A basis of R ⊆ S is an inclusion-minimal subset B ⊆ R with φ(B) = φ(R). A basis in L
is a basis of some set R ⊆ S. A basis in R is a basis in L contained in R.

(ii) The combinatorial dimension of L, denoted by δ = δ(L), is the size of a largest basis in
L.

(iii) L is regular if all bases of sets R, |R| ≥ δ (regular bases) have size exactly δ.

(iv) L is nondegenerate if every set R, |R| ≥ δ has a unique basis B(R).

The following implications can easily be derived.

Fact 3.3 Let L = (S, φ) be an LP-type problem and R ⊆ S with φ(R) 6= ⊥. Then

(i) φ(R) = φ(S \ V (R)), and

(ii) the set X(R) of extreme elements of R is the intersection of all bases of R.

If L has combinatorial dimension δ, it follows that |X(R)| ≤ δ for all R, so that the sampling
lemma yields

vr ≤ δ
n − r

r + 1
.

7

In particular, a random sample of size r ≈
√

δn has no more than r violators on average, and
this is the ‘balancing’ that will prove useful below.

In the next section we derive bounds for regular, nondegenerate LP-type problems that apply
to the general case only in a weaker form. While regularity can be enforced in the nondegenerate
case (we describe a well-behaved ‘regularizing’ construction below), nondegeneracy is a more
subtle issue. It is not known how to make a general LP-type problem nondegenerate without
substantially changing its structure [22]. For most geometric LP-type problems, however, a
slight perturbation of the input will entail a nondegenerate problem, essentially equivalent to
the original one. Most notably, this is the case for LP.

Enforcing regularity

Given a nondegenerate LP-type problem (S, φ) of combinatorial dimension δ, the idea is to
make it regular by ‘pumping up’ bases which are too small. For this, we define an arbitrary
linear order on S, and consider the function

φ′(R) := (φ(R), E(R)),

where E(R) consists of the vector of the m largest elements in R \B(R), for m = min(δ, |R|)−
|B(R)|. φ′-values are compared lexicographically, i.e. by the φ-component first. If the φ-values
are equal, the lexicographic order of the E-components (well defined w.r.t. the chosen order on
S) decides the comparison. φ′ can be considered as a ‘refinement’ of φ.

Lemma 3.4 (Matoušek [22])
If L = (S, φ) is nondegenerate, then (S, φ′) is a regular, nondegenerate LP-type problem of

combinatorial dimension δ(L).

Moreover, if V (R) and V ′(R) denote the violating sets of R ⊆ S w.r.t. φ and φ′, we have
the following simple but important fact.

V (R) ⊆ V ′(R). (5)

This holds because φ(R ∪ {s}) > φ(R) implies φ′(R ∪ {s}) > φ′(R). It follows that when
we develop tail estimates for the expected size of V ′(R) (more generally, for any regular and
nondegenerate LP-type problem), those estimates then also apply to non-regular problems.

4 Tail estimates

In the following, we consider regular and nondegenerate LP-type problems (S, φ) with |S| = n
and δ(S, φ) = d, where we assume n and d to be fixed for the rest of this section.

For given parameters r ≥ d and k, we want to bound

prob(Vr ≥ k).

The most important observation is that this quantity does not depend on the LP-type
problem, but is merely a function of the parameters n, d, r and k.

This follows from a result first proved by Clarkson [7] in the context of linear programming,
and later generalized to LP-type problems by Matoušek [22]. Let us rederive the statement
here.

8

Theorem 4.1 Let (S, φ) be a regular, nondegenerate LP-type problem with |S| = n and δ(S, φ) =
d. Then

prob(Vr = k) =

(

k+d−1
d−1

)(

n−d−k
r−d

)

(

n
r

) .

Proof: A basis B is the basis of a set R if and only if B ⊆ R ⊆ S \ V (B). This means, for
any regular basis B with k violators, there are

(

n−d−k
r−d

)

sets R of size r which have B as their
(unique) basis. It follows that

prob(Vr = k) = bk

(

n−d−k
r−d

)

(

n
r

) , r = d, . . . , n,

where bk is the number of regular bases with k violators in (S, φ). By summing over all k, we
get

(

n

r

)

=
n−d
∑

k=0

bk

(

n − d − k

r − d

)

, r = d, . . . , n. (6)

This system of linear equations can be written in the form

((

n

d

)

,

(

n

d + 1

)

, . . . ,

(

n

n

))

= (bn−d, bn−d−1, . . . , b0) T,

where T is an upper-triangular matrix with all diagonal entries equal to 1, therefore invertible.
This means, the bk are uniquely determined by the system (6), from which

bk =

(

k + d − 1

d − 1

)

follows via a standard binomial coefficient identity [17, equation (5.26)]. This proves the state-
ment of the theorem.

This result leads to an explicit formula for prob(Vr ≥ k), but useful tail estimates do not
yet follow from that. By severe grinding it might be possible to extract good bounds directly
from the formula (we didn’t succeed), but there is another approach: as we know that the
quantity in question does not depend on the particular LP-type problem, we might as well use
our favorite LP-type problem in the analysis. In fact, for any given parameters n and d, there
is a ‘canonical’ LP-type problem from which statements about the distribution of Vr can be
extracted without pain.

The d-smallest number problem

Let N be the set {1, . . . , n}. For R ⊆ N , define mind(R) as the d-smallest number in R
(equivalently, the element of rank d in R). If |R| < d, this is undefined, and mind(R) := ⊥. We
have the following easy facts (proofs omitted).

Lemma 4.2

(i) (N, φ) with φ(R) := mind(R) is a regular, nondegenerate LP-type problem of combinatorial
dimension d, if φ-values are compared according to decreasing order in N .

(ii) The basis of any set R, |R| ≥ d, consists of the d smallest numbers in R.

9

(iii) s ∈ S \ R violates R if and only if s is smaller than the d-smallest number in R.

For d = 1, we have mind(R) = min(R), thus we recover the LP-type problem underlying
the efficient minimum search in a sorted compact list described in the introduction.

As a warm-up exercise, let us rederive the formula for the number of bases with exactly k
violators in a regular and nondegenerate LP-type problem, by using the fact that this number
does not depend on the actual LP-type problem, see Theorem 4.1.

Observation 4.3 The d-smallest number problem has

bk =

(

k + d − 1

d − 1

)

regular bases with exactly k violators.

Proof: Any set B with d elements is a regular basis. B has k violators if and only if the
d-smallest number x in B is the k + d-smallest number in N . The elements in B \ {x} can be
any d − 1 among the k + d − 1 smaller numbers in N .

The proof of this observation might be somewhat simpler than the one we had in the general
case, but it does not lead to new insights. However, the next theorem about higher moments of
Vr is an example of a statement which we think is not immediate to prove (let alone, discover)
without making use of the d-smallest number problem.

Theorem 4.4 Let (S, φ) be a regular, nondegenerate LP-type problem, R a random sample of
size r. For j ∈ {0, . . . , n − r}, we have

E

((

Vr

j

))

=

(

n
r+j

)(

j+d−1
j

)

(

n
r

) .

Proof: We evaluate the expectation for the d-smallest number problem and then use Theorem
4.1. For this, we need to count the expected number of sets J, |J | = j with J ⊆ V (R). Observe
that this inclusion holds if and only if all elements of J are smaller than the d-smallest number
in R, equivalently, if J is among the j + d− 1 smallest numbers in R ∪ J . For any set L of size
r + j, there are

(

j+d−1
j

)

pairs (R, J), R ∪ J = L, with this property. Thus we get

(

n

r

)

E

((

Vr

j

))

=
∑

|R|=r

∑

J⊆S\R
|J |=j

[J ⊆ V (R)]

=
∑

|L|=r+j

(

j + d − 1

j

)

=

(

n

r + j

)(

j + d − 1

j

)

.

When applied to j = 2, the Theorem can be used to compute the variance of Vr, leading to
a Chebyshev-type tail estimate. The higher moments give still better bounds. We are going for
Chernoff-type bounds, by exploiting the special structure of the d-smallest number problem.

10

A Chernoff-type tail estimate

To choose a random subset R ⊆ N of size r, one can proceed in r rounds, where round i selects
an element si uniformly at random among the ones not chosen so far. Equivalently, one may
choose a ‘rank’ `i uniformly at random in {1, . . . , n + 1 − i} and let si be the element of rank
`i among the ones not chosen so far.

Fix some positive integer k and let Uk be the random variable for the number of indices i
with `i ≤ k. We have the following relation to the random variable Vr.

Lemma 4.5 Let R = R(`) denote the set determined by ` = (`1, . . . , `r). Then

Uk(`) ≥ d ⇒ Vr(R) ≤ k − 1.

Proof: We claim that Uk ≥ d implies mind(R) ≤ k + d− 1. Because the latter is equivalent to
Vr ≤ k − 1, the lemma follows.

To prove the claim, we first note that

si = `i + #{j < i | sj < si}. (7)

Consider some set I of d indices i such that `i ≤ k for i ∈ I. Such a set exists if Uk ≥ d. If
si ≤ k + d − 1 for all i ∈ I, we get mind(R) ≤ k + d − 1, as required. Otherwise, there is some
i ∈ I such that si = k + e, e ≥ d. Then we get

#{j < i | sj < k + e} = k + e − `i ≥ e,

which implies #{j < i | sj < k + d} ≥ d. As before, this means that mind(R) ≤ k + d − 1.

Corollary 4.6 prob(Vr ≥ k) ≤ prob(Uk ≤ d − 1).

Chernoff-type bounds for Uk are easy to obtain now. Uk can be expressed as the sum of
independent random variables Uk,i, i = 1, . . . , r, where

Uk,i :=

{

1, if `i ≤ k
0, otherwise,

and it holds that

prob(Uk,i = 1) =
k

n + 1 − i
=: pi.

The following is one of the basic Chernoff bounds [19].

Lemma 4.7 With E(Uk) = (p1 + · · · + pr)/r and t ≥ 0,

prob(Uk ≤ E(Uk) − t) ≤ exp

(

− t2

2E(Uk)

)

.

Using t = E(Uk) − d + 1 (which is nonnegative for the values of k we will be interested in
below), we obtain

prob(Uk ≤ d − 1) ≤ exp

(

−(E(Uk) − d + 1)2

2E(Uk)

)

.

11

Fix some value λ ≥ 0 and choose k in such a way that E(Uk) = (1 + λ)d. Then we get

prob(Uk ≤ d − 1) ≤ exp

(

− (λd + 1)2

2(1 + λ)d

)

≤ exp

(

− λ2

2(1 + λ)
d

)

.

The value of k that entails E(Uk) = (1 + λ)d satisfies

k =
(1 + λ)d

∑r−1
i=0 1/(n − i)

≤ (1 + λ)d
n

r
,

and we obtain our result.

Theorem 4.8 Let L = (S, φ) be a nondegenerate LP-type problem with |S| = n and dim(S, φ) =
d. For r ≥ d and any λ ≥ 0,

prob
(

Vr ≥ (1 + λ)d
n

r

)

≤ exp

(

− λ2

2(1 + λ)
d

)

.

We have derived this bound only for regular problems, but as we have shown before, any problem
can be regularized, and by (5), the estimate then also holds for nonregular problems.

Because E(Vr) ≤ d(n − r)/(r + 1) ≈ dn/r, this bound establishes estimates for the tail ‘to
the right’ of the expectation.

It might seem that the bound is rather weak, in particular because it does not depend on n
and r. However, it is essentially best possible, as the following lower bound shows (the actual
formulation has been chosen in order to minimize the computational effort).

Theorem 4.9 Let L = (S, φ) be a nondegenerate LP-type problem with |S| = n and dim(S, φ) =
d. For r ≥ d and any λ ≥ 0 such that (1 + λ)d ≤ r/2,

prob

(

Vr > (1 + λ)d
n + 1 − r

r
− d

)

≥ exp

(

−(1 + λ)d − (1 + λ)2d2

r

)

.

Proof: With Uk as defined above and R = R(`), the relation (7) immediately entails

Vr(R) ≤ k − d ⇔ mind(R) ≤ k ⇒ Uk(`) ≥ d,

so that we get prob(Vr > k − d) ≥ prob(Uk ≤ d − 1). Furthermore,

prob(Uk ≤ d − 1) ≥ prob(Uk = 0) =

r
∏

i=1

(

1 − k

n + 1 − i

)

≥
(

1 − k

n + 1 − r

)r

.

With k = (1 + λ)d(n + 1 − r)/r, it follows that

prob(Uk ≤ d − 1) ≥
(

1 − (1 + λ)d

r

)r

≥ exp

(

−(1 + λ)d − (1 + λ)2d2

r

)

,

using the inequality 1 − x ≥ exp(−x − x2) for x ≤ 1/2.
An open question is whether the statement of Theorem 4.8 also holds in the degenerate case.

It is tempting to conjecture that prob(Vr ≥ k) is maximized for nondegenerate problems—this
would yield Theorem 4.8 for the general case. Moreover, while the bound is tight in the regular
case, one might be able to improve it for a given nonregular problem.

We conclude this section by proving a weaker tail estimate which applies to the general case.
Using this, we can show that the number of violators exceeds the expected value by no more
than a logarithmic factor, with high probability.

12

Theorem 4.10 Let L = (S, φ) be an LP-type problem with |S| = n and dim(S, φ) = d. For
r ≥ d and any λ ≥ 0,

prob
(

Vr ≥
(

ln
ne

d
+ λ
)

d
n

r

)

≤ exp (−λd) .

Proof: Let Bk denote the set of regular bases with exactly k violators (recall that a regular
basis is a basis of some set R with |R| ≥ d). Any fixed B ∈ Bk is a basis of all the sets R
satisfying B ⊆ R ⊆ S \ V (B). It follows that B is a basis of a random sample R of size r with
probability

(

n−|B|−k

r−|B|

)

(

n
r

) ≤
(

n−k
r

)

(

n
r

) .

We have |V (R)| = k if and only if R has some basis (equivalently, all its bases) in Bk, which
gives

prob(Vr = k) ≤ bk

(

n−k
r

)

(

n
r

) , bk = |Bk|.

Consequently,

prob(Vr ≥ k) ≤
n−r
∑

`=k

b`

(

n−`
r

)

(

n
r

) ,

where we know that
n−r
∑

`=k

b` ≤
(

n

≤ d

)

:=
d
∑

i=0

(

n

i

)

,

because all bases have size at most d. Then we can further argue that

prob(Vr ≥ k) ≤
(

n−r
∑

`=k

b`

)(

max
`=k...n−r

(

n−`
r

)

(

n
r

)

)

≤
(

n

≤ d

)

(

n−k
r

)

(

n
r

) .

Since (cf. [24])
(

n

≤ d

)

≤
(ne

d

)d

and
(

n−k
r

)

(

n
r

) =

(

1 − k

n

)(

1 − k

n − 1

)

· · ·
(

1 − k

n − r + 1

)

≤
(

1 − k

n

)r

,

we finally get, by substituting k =
(

ln ne
d

+ λ
)

dn
r
,

prob(Vr ≥ k) ≤
(ne

d

)d

(

1 −
(

ln ne
d

+ λ
)

d

r

)r

≤
(ne

d

)d

exp
(

−
(

ln
ne

d
+ λ
)

d
)

= exp (−λd) .

5 Multiple Pricing and Clarkson’s Reduction Scheme

The simplex method [5] is usually the most efficient algorithm to solve linear programming
problems in practice. Even in the theoretical setting, all known algorithms to solve general
LP-type problems boil down to variants of the (dual) simplex method, when they are applied
to LP [13]. In this section we introduce and analyze an algorithm in the general framework,

13

which—although being new in its precise formulation— follows a well-known design paradigm,
whose simplex counterpart is known as multiple pricing [5]. The idea of multiple pricing is to
reduce a large problem to a (hopefully) small number of small problems. This can be useful in
case the whole problem does not fit into main memory, but it also helps in general to reduce
the cost of a single simplex iteration. Taking a slightly different approach, partial pricing [5] is
a related technique following the same paradigm. Applications have been found in the context
of very large-scale linear programming [3], but also in geometric optimization [14, 15].

We will not elaborate on those simplex techniques here; the reader may verify that the
algorithm we are going to present is actually a variant of multiple pricing, when translated into
simplex terminology.

Consider an LP-type problem (S, φ) (not necessarily nondegenerate) of combinatorial di-
mension d, and assume we are given an algorithm lp type(G, B) to compute for any subset G
of S some basis BG of G, given a candidate basis B ⊆ G. Of course, one can directly solve
the problem of finding BS by calling lp type with the large set S and some basis B ⊆ S. As
we will see, an efficient alternative is provided by the following method, parameterized with a
sample size r. We assume the initial basis B to be fixed for the rest of this section.

Algorithm 5.1

lp type samplingr(S, B):
(* returns some basis BS of S *)
choose R with |R| = r, R ⊆ S \ B at random
G := R ∪ B
REPEAT

B :=lp type(G, B)
G := G ∪ V (B)

UNTIL V (B) = ∅
RETURN B

lp type sampling reduces the problem to several calls of lp type, and Fact 3.3(i) shows
that if the procedure terminates, V (B) = ∅ implies that B is a basis of S. Moreover, it must
eventually terminate, because every round adds at least one element to G. The algorithm
captures the spirit of Clarkson’s linear programming algorithm [8] (and its generalizations
[1, 16]), but is simpler and more practical. To guarantee its theoretical complexity, Clarkson’s
algorithm draws a random sample in every round, and it restarts a round whenever |V (B)| turns
out to be too large. Thus, Algorithm 5.1 can be interpreted as the canonical simplification of
Clarkson’s algorithm for practical use, where one observes that resampling and restarting are
not necessary (and even decrease the efficiency).

The general phenomenon behind this is that often the theoretically best algorithms are not
competitive in practice, while the algorithms one actually chooses in an implementation cannot
be analyzed. On the one hand this is due to the fact that the worst-case complexity is an
inappropriate measure in many practical situations; on the other hand, sometimes algorithms
used in practice are simply not understood, although they might allow a worst-case analysis.

In case of Algorithm 5.1, we have the fortunate situation that it combines efficiency in
practice with provable time bounds (developed below). With the procedure lp type replaced
by a call to a standard simplex implementation, the method has been successfully used in a
linear programming code for geometric optimization [14, 15], without any further changes. In its
original version, due to Clarkson, Algorithm 5.1 is a building-block of an ingenious linear-time
algorithm for linear programming in constant dimension d [8, 16].

14

The theoretical analysis starts with a bound on the number of rounds.

Observation 5.2 (Clarkson[8]). Fix some basis BS of S. Then in every round except the last
one, V (B) contains an element of BS. In particular, there are at most d + 1 rounds.

Proof: Assume that BS is disjoint from V (B). From Fact 3.3 and monotonicity we then get
φ(B) = φ(S \ V (B)) ≥ φ(BS) = φ(S), from which φ(B) = φ(S) follows. Locality then implies
V (B) = V (S) = ∅, which means that we are already in the last round.

The critical parameter we will be interested in is the size of G in the last round. If this is
small, then all calls to lp type(G, B) are cheap.

Let us fix some notation for that. We define S ′ := S \ B, B the initial candidate basis
plugged into lp type sampling. By

B
(i)
R , V

(i)
R , and G

(i)
R

we denote the sets B, V (B) and G computed in round i. Furthermore, we set G
(0)
R = R ∪ B,

while B
(0)
R and V

(0)
R are undefined. This means, we have

B
(i)
R is a basis of G

(i−1)
R , V

(i)
R = V (G

(i−1)
R).

If the algorithm performs exactly ` rounds, sets with indices i > ` are defined to be the
corresponding sets in round `.

We will need a generalization of Observation 5.2.

Lemma 5.3 For j < i ≤ `, B
(i)
R ∩ V

(j)
R 6= ∅.

Proof: Assume on the contrary that B
(i)
R ∩ V

(j)
R = ∅. As in the proof of Observation 5.2, Fact

3.3 and monotonicity then imply

φ(G
(j−1)
R) = φ(S \ V

(j)
R) ≥ φ(B

(i)
R) = φ(G

(i−1)
R),

a contradiction to the fact that φ(G) strictly increases in every but the last round.
The following lemma is the crucial result. It interprets Algorithm 5.1 as an LP-type problem

itself! Under this interpretation, the set G in the last round is essentially the set of violators of
the initial sample R. Then, the techniques of the previous sections (the sampling lemma, and
the tail estimates) can be applied to bound the expected size of |G|, and even get Chernoff-type
bounds for the distribution of |G|.

Lemma 5.4 For R ⊆ S ′ := S \ B define

φ′(R) =
(

φ(G
(0)
R), φ(G

(1)
R), . . . , φ(G

(d−1)
R)

)

.

Then the following holds.

(i) (S′, φ′) is an LP-type problem of combinatorial dimension at most
(

d+1
2

)

, under the lexi-
cographic order of the d-tuples φ′(R).

(ii) The set V ′(R) := {s ∈ S ′ \R | φ′(R) 6= φ′(R∪ {s})} of violators of R w.r.t. φ′ is given by

V ′(R) = V
(1)
R ∪ · · · ∪ V

(d)
R = G

(d)
R \ (R ∪ B).

15

(iii) If (S, φ) is nondegenerate, so is (S ′, φ′).

Before we go into the technical (although not difficult) proof, let us derive the main result of
this section, namely the analysis of Algorithm 5.1. This analysis is now merely a consequence
of previous results.

Theorem 5.5 For R ⊆ S ′ a random sample of size r,

E(|G(d)
R |) ≤

(

d + 1

2

)

n − d − r

r + 1
+ (r + d).

Choosing r = d
√

n/2 yields

E(|G(d)
R |) ≤ 2(d + 1)

√

n

2
.

Proof: The first inequality directly follows from the sampling lemma, applied to the LP-type
problem (S′, φ′), together with part (ii) of the previous lemma. The second inequality is routine.

The theorem shows that Algorithm lp type sampling reduces a problem of size n to at
most d problems of expected size no more than O(d

√
n). This explains the practical efficiency

of multiple pricing and similar reduction schemes if d ¿ n.
If (S, φ) is nondegenerate, we get the following tail estimate, using part (iii) of Lemma 5.4

and Theorem 4.8. Again, routine computations yield

Theorem 5.6 If (S, φ) is a nondegenerate LP-type problem, then for R ⊆ S ′ a random sample
of size r = d

√

n/2, and λ ≥ 0,

prob

(

|G(d)
R | ≥ (2 + λ)(d + 1)

√

n

2

)

≤ exp

(

− λ2

2(1 + λ)

(

d + 1

2

))

.

In the degenerate case, Theorem 4.10 can be used to derive the following weaker (but still
useful) result.

Theorem 5.7 If (S, φ) is a general LP-type problem, then for R ⊆ S ′ a random sample of size
r = d

√

(n ln n)/2, and λ ≥ 0,

prob

(

|G(d)
R | ≥ (3 + λ) (d + 1)

√

n lnn

2

)

≤ exp

(

−λ

(

d + 1

2

))

.

We conclude this section with the proof of Lemma 5.4.
Proof: We start by establishing an auxiliary claim: for any set Q with Q = R

.∪ T ⊆ S′ and
i < d,

φ(G
(j)
R) = φ(G

(j)
Q), j ≤ i

implies

G
(j)
Q = G

(j)
R

.∪ T, j ≤ i + 1,

V
(j+1)
Q = V

(j+1)
R , j ≤ i.

To prove the claim, we proceed by induction on i, noting that the statements hold for i = 0 by
locality of φ. Now assume the implications are true for j ≤ i − 1. Then we get

G
(i)
Q = G

(i−1)
Q

.∪ V
(i)
Q

= G
(i−1)
R

.∪ T
.∪ V

(i)
R = G

(i)
R

.∪ T.

16

Because φ(G
(i)
R) = φ(G

(i)
Q), locality of φ implies

V
(i+1)
Q = V

(i+1)
R ,

which in turn proves G
(i+1)
Q = G

(i+1)
R

.∪ T . This establishes the claim.
To proceed, let us first prove part (ii) of Lemma 5.4. Assume s ∈ V ′(R), set Q := R ∪ {s}

and consider the largest index i < d − 1 such that

φ(G
(j)
R) = φ(G

(j)
Q), j ≤ i.

By the claim above, G
(i+1)
Q = G

(i+1)
R ∪ {s}, and monotonicity of φ implies

φ(G
(i+1)
R) < φ(G

(i+1)
Q). (8)

This means, s ∈ V
(i+2)
R .

On the other hand, if s 6∈ V ′(R), then the precondition of the claim holds for i = d − 1,
implying

V
(j+1)
R = V

(j+1)
Q 63 s, j ≤ d − 1.

This means s 6∈ V
(1)
R , . . . , V

(d)
R .

To prove (i), we need to verify monotonicity and locality (cf. Definition 3.1). Inequality (8)
shows that φ′(R) ≤ φ′(R ∪ {s}) in the lexicographic order, for all s ∈ V ′(R), and this implies
monotonicity.

For locality, assume R ⊆ Q with φ′(R) = φ′(Q). From the claim and part (ii), we get

V ′(R) =
d
⋃

i=1

V
(i)
R =

d
⋃

i=1

V
(i)
Q = V ′(Q),

and this is the required property.
It remains to bound the combinatorial dimension of (S ′, φ′). To this end we prove that

φ′(BR) = φ′(R), for

BR := R ∩
d
⋃

i=1

B
(i)
R .

We equivalently show that φ(G
(j)
R) = φ(G

(j)
BR

), for j ≤ d − 1, using induction on j. For j = 0,
we get

G
(j)
R = G

(j)
BR

∪ R \ BR,

hence
φ(G

(j)
R) = φ(G

(j)
BR

∪ R \ BR) = φ(G
(j)
BR

), (9)

because R \ BR is disjoint from B
(1)
R , the basis of G

(0)
R . Hence, R \ BR can be removed from

G
(0)
R without changing the φ-value.

Now assume the statement holds for j ≤ d − 2 and consider the case j = d − 1. By the

claim, we get G
(j)
R = G

(j)
BR

∪ R \ BR, so as before, (9) follows, because R \ BR is disjoint from

the basis B
(j+1)
R of G

(j)
R .

To bound the size of BR, we observe that

|R ∩ B
(i)
R | ≤ d + 1 − i,

17

for all i ≤ ` (the number of rounds in which V (B) 6= ∅). This follows from Lemma 5.3: B(i) has

at least one element in each of the i − 1 sets V
(1)
R , . . . , V

(i−1)
R , which are in turn disjoint from

R. Hence we get

|BR| ≤
∑̀

i=1

|R ∩ B
(i)
R | ≤

(

d + 1

2

)

.

(iii) Nondegeneracy of (S ′, φ′) follows, if we can show that every set R ⊆ S ′ has the set BR

as its unique basis. To this end we prove that whenever we have L ⊆ R with φ′(L) = φ′(R),
then BR ⊆ L.

Fix L ⊆ R with φ′(L) = φ′(R), i.e.

φ(G
(i)
R) = φ(G

(i)
L), i ≤ d − 1.

By the claim, this implies

G
(i)
R = G

(i)
L

.∪ (R \ L), i ≤ d − 1,

and the nondegeneracy of φ yields that G
(i)
R and G

(i)
L have the same unique basis B

(i+1)
R , for all

i. It follows that G
(d−1)
L contains

d
⋃

i=1

B
(i)
R ,

so L contains

L ∩
d
⋃

i=1

B
(i)
R = R ∩

d
⋃

i=1

B
(i)
R .

The latter equality holds because R\L is disjoint from G
(d−1)
L , thus in particular from the union

of the B
(i)
R .

6 Conclusion

The curious fact that—in the regular and nondegenerate case—the distribution of Vr does not
depend on the actual LP-type problem, deserves a word of warning: namely, this property does
not mean that all nondegenerate LP-type problems with given parameters n and d are equally
difficult (or easy) to solve. On the contrary, because the random variable Vr does not depend
on the actual problem, it does not carry any information about the difficulty of a particular
problem. There are very easy problems (like d-smallest number), and very difficult ones (like
linear programming). For example, Algorithm 5.1 never needs more than two rounds in case of
d-smallest number, and for other easy LP-type problems characterized by the following property:
for any sets B ⊆ R such that φ(B) = φ(R), and for any set T ,

φ(B ∪ T) = φ(R ∪ T)

holds. This means, elements in R \B can be ‘forgotten’, as they will not contribute to the final
solution. The absence of this property is what makes linear programming and other problems
difficult.

In general, it seems that the combinatorial dimension of the LP-type problem (S ′, φ′) derived
from (S, φ) according to the definition in Lemma 5.4 is a more meaningful indicator of (S, φ)’s
difficulty then δ(S, φ) itself. For example, in case of d-smallest number, we get δ(S ′, φ′) = d,

18

much less than the O(d2) upper bound. This alternative notion of dimension needs to be further
investigated.

An open problem that remains is to improve the tail estimates in case of degenerate LP-type
problems. Here, the distribution of Vr typically depends on the concrete instance, and so does
bk, the number of bases with k violators. Using only trivial bounds for the numbers bk, we have
obtained the weaker estimate given by Theorem 4.10, indicating that this estimate might not
be the final answer.

Acknowledgment

We like to thank the referee for carefully pointing out simplifications and suggesting improve-
ments in the presentation. In particular, we are grateful for the question concerning the sharp-
ness of our main Chernoff-type bound.

References

[1] I. Adler and R. Shamir. A randomized scheme for speeding up algorithms for linear and
convex programming with high constraints-to-variable ratio. Math. Programming, 61:39–
52, 1993.

[2] N. Amenta. Helly-type theorems and generalized linear programming. Discrete Comput.
Geom., 12:241–261, 1994.

[3] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very large-
scale linear programming: a case study in combining interior point and simplex methods.
Operations Research, 40(5):885–897, 1992.

[4] T. Chan. Backwards analysis of the Karger-Klein-Tarjan algorithm for minimum spanning
trees. Inform. Proc. Letters, 67:303–304, 1998.

[5] V. Chvátal. Linear Programming. W. H. Freeman, New York, NY, 1983.

[6] K. L. Clarkson. New applications of random sampling in computational geometry. Discrete
Comput. Geom., 2:195–222, 1987.

[7] K. L. Clarkson. A bound on local minima of arrangements that implies the upper bound
theorem. Discrete Comput. Geom., 10:427–233, 1993.

[8] K. L. Clarkson. Las Vegas algorithms for linear and integer programming. J. ACM,
42:488–499, 1995.

[9] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geom-
etry, II. Discrete Comput. Geom., 4:387–421, 1989.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA., 1990.

[11] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[12] D. Dubhashi and D. Ranjan. Great(er) expectations. BRICS Newsletter, 5, 1996.

19

[13] B. Gärtner. Randomized Optimization by Simplex-Type Methods. PhD thesis, Freie Uni-
versität Berlin, 1995.

[14] B. Gärtner. Exact arithmetic at low cost – a case study in linear programming. Compu-
tational Geometry - Theory and Applications, 13:121–139, 1999.

[15] B. Gärtner and S. Schönherr. An efficient, exact and generic quadratic programming solver
for geometric optimization. In Proc. 16th ACM Sympos. Comput. Geom., 2000.

[16] B. Gärtner and E. Welzl. Linear programming – randomization and abstract frameworks. In
Proc. 13th Sympos. Theoret. Aspects Comput. Sci., volume 1046 of Lecture Notes Comput.
Sci., pages 669–687. Springer-Verlag, 1996.

[17] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,
Reading, MA, 1989.

[18] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of De-
launay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

[19] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Inform. Process. Lett., 33:305–
308, 1990.

[20] S. Har-Peled. On the expected complexity of random convex hulls. Technical Report 330,
School of Math. Sciences, Tel-Aviv University, 1998.

[21] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find
minimum spanning trees. J. ACM, 42:321–328, 1995.

[22] J. Matoušek. On geometric optimization with few violated constraints. Discrete Comput.
Geom., 14:365–384, 1995.

[23] J. Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear program-
ming. Algorithmica, 16:498–516, 1996.

[24] J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford University Press,
1998.

[25] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New
York, NY, 1995.

[26] K. Mulmuley. A fast planar partition algorithm, I. J. Symbolic Comput., 10(3-4):253–280,
1990.

[27] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, Englewood Cliffs, NJ, 1994.

[28] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. Z.
Wahrscheinlichkeitstheorie, 2:75–84, 1963.

[29] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
Comput. Geom., 6:423–434, 1991.

[30] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New
Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combina-
torics, pages 37–68. Springer-Verlag, 1993.

20

[31] R. Seidel. Personal communication, 1996.

[32] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related prob-
lems. In Proc. 9th Sympos. Theoret. Aspects Comput. Sci., volume 577 of Lecture Notes
Comput. Sci., pages 569–579. Springer-Verlag, 1992.

[33] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results
and New Trends in Computer Science, volume 555 of Lecture Notes Comput. Sci., pages
359–370. Springer-Verlag, 1991.

21

