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Thomas Herrmann�Institute for Operations ResearhETH Z�urihCH-8092 Z�urihSwitzerlandherrmann�ifor.math.ethz.hAbstratWe present a new algorithm to solve the 3-dimensionalwidth problem, i.e. to determine two parallel planes ofsmallest distane suh that the region between the twoplanes ontains a given point set. Like the algorithm ofHoule and Toussaint, our method has quadrati worst-ase omplexity but is muh faster in pratie. In on-trast to Houle and Toussaint, we do not use plane sweepor point loation tehniques; instead, we apply simplemethods from linear optimization.The resulting implementation seems to be faster thanan existing implementation of Houle and Toussaint'smethod using the Leda library1, and it is now partof the Computational Geometry Algorithms LibraryCgal 2.1 The Width ProblemGiven a point set P � Rd , the width !(P) of P is thesmallest number ! suh that there exists a unit vetoru (width diretion) and numbers Æ; Æ suh that ! = Æ�Æand Æ � uTp � Æ; for all p 2 P :The hyperplanes fx j uTx = Æg and fx j uTx = Æg areperpendiular to u and de�ne the width planes belong-ing to an optimal diretion u.It is lear that !(P) = !(onv(P)), whih meansthat the omputation of the onvex hull is a naturalpreproessing step. Moreover (Lemma 2.1), the widthplanes are supporting planes of the polytope onv(P).In the plane, the width of a set of n points an beomputed in O(n logn) time, where only O(n) time isneeded one the onvex hull has been omputed [2℄. Wegeneralize this idea to 3-spae, where the best theoreti-al solution is due to Agarwal and Sharir who presented�European Graduate Program Combinatoris, Geometry, andComputation (CGC), Berlin - Z�urih, http://www.g.ethz.h1http://www.algorithmi-solutions.om2http://www.gal.org

an O(n3=2+") algorithm [1℄. An earlier algorithm dueto Houle and Toussaint has omplexity O(n2) [2℄.2 The Houle-Toussaint Algo-rithmIn the following we desribe the basi outline of theHoule-Toussaint method in the version whih has beenimplemented by Shwerdt et al. [3℄. It starts with anobservation that also underlies our new method.Let F and F 0 be a pair of faes of onv (P). F; F 0 arealled antipodal pairs, if there exist two parallel sup-porting hyperplanes h 6= h0 suh that F � h, F 0 � h0.Lemma 2.1 (Houle and Toussaint). There existsa pair of antipodal faes F; F 0 of onv (P) suh that!(P) = !(F [ F 0), where F is a vertex and F 0 a faet,or both F and F 0 are nonparallel edges.Houle and Toussaint's algorithm enumerates all anti-podal vertex-faet and edge-edge pairs and determinesan optimal pair. The width !, the width planes and thewidth diretion u of a single pair an easily be omputedin O(1) time.The enumeration is done by onstruting an instaneof a planar graph overlay problem. To get this instane,one splits onv(P) into an upper and a lower hull andbuilds an upper and a lower graph, both embedded inthe upper hemisphere S2+ of the unit sphere S2.The verties of the upper graphGu are the outer nor-mals of the faets of the upper hull, where two vertiesare onneted by a great ar segment if the orrespond-ing faets are adjaent. For the lower hull, one proeedssimilarly, starting from the inner faet normals. Thisyields to the graph G`.The ruial property is that there is a one-to-one or-respondene between antipodal edge-edge pairs and in-tersetions between edges of Gu and G`. Moreover, avertex-faet pair translates to a vertex of one graphlying in a fae of the other graph.



Thus, if there are I antipodal pairs, they an be re-ported in time O(n logn + I) by standard sweep andpoint loation tehniques (where a slight twist is thata hemisphere has to be swept).The implementation of Shwerdt et al. uses the Ledalibrary of eÆient data types and algorithms, and han-dles all degenerate ases. The omputations do notinur any roundo� errors beause exat multi-preisionarithmeti is used.This is the algorithm we are going to ompare with;we also use exat arithmeti and deal with degenera-ies. However, we argue that the sweep tehnique -whih gets quite involved under degeneraies - is un-neessary. Instead, simple optimization tehniques andthe ombinatorial properties of the onvex hull an beused. While the resulting algorithm is fast in pra-tie, its worst-ase omplexity an be �(n2) even if Iis small.3 Rotating Plane AlgorithmOur new approah is to enumerate the antipodalvertex-faet and edge-edge pairs diretly. Therefore weformulate the width-problem as an optimization prob-lem having linear onstraints but a non-onvex obje-tive funtion.We are looking for the two parallel width-planes h1 :ax+ by+ z+ d = 0 and h2 : ax+ by+ z+1 = 0 thatenlose P and have minimum distane. The problem isnow to �nd a; b; ; d minimizing the (squared) distane(1�d)2a2+b2+2 , suh that the onstraintsapx + bpy + pz + d � 0and apx + bpy + pz + 1 � 0are satis�ed for all points p 2 P . These inequalitiesenode the onditions that the points lie between thewidth planes.The width itself is then the square root of the obje-tive funtion value, the width diretion is simply theunit vetor aording to (a; b; ) and the width planesare h1 and h2.To enumerate all edge-edge and vertex-faet pairs di-retly we start with an arbitrary faet f and determineits antipodal verties V := fv1; : : : ; vkg. This prepro-essing step an be done in O(n) time.One suh an initial pair is known we rotate the pa-rallel planes h1; h2, supporting V and f respetively,about an inident edge e of f until h2 supports the otherfaet f 0 inident to e. During this rotation proedurewe preserve parallelism and the supporting property ofthe two planes, and we report all edge-edge pairs be-longing to e as well as the antipodal verties of f 0.

The ritial step is as follows: Suppose an antipodalvertex-edge pair w; e and parallel planes h1 and h2 aregiven, supporting w and e respetively. We rotate h2about e. Two events might happen during this rotationproedure:(i) Either h2 supports a faet f 0 inident to e, or(ii) h1 supports an additional vertex v.In the �rst ase we found an antipodal vertex-faet pair,in the latter ase an edge-edge pair ourred.To detet whih ase ours �rst, the adjaent ver-ties v1; : : : ; vk of w are determined. These are the an-didates to beome tight, if the rotation angle inreases.Then for eah vi, the rotation angle neessary to makevi tight is omputed. The vertex v with minimal angle�v will be supported next during the rotation proe-dure unless f 0 is supported �rst. If both events happensimultaneously then we deteted a degenerate ase ofan edge-faet or faet-faet pair. After reporting thenew pair, we repeat this rotating proedure with e andthe new vertex v until h2 supports f 0.Degeneray handling is very simple: The only asethat an our is that there is not a unique vertex vhaving minimal angle. To �nd all verties whih be-ome tight next, we perform a graph searh, startingin w, and exploring the neighborhoods of all tight ver-ties. We stop as soon as every vertex adjaent to atight vertex is non-tight. This is muh easier than thedegeneray handling neessary in sweep tehniques.To have linear worst ase time for proessing a sin-gle edge e (a \round"), one has to mark the vertiesto prevent from looking at an edge twie. After re-porting (wv; e) as an edge-edge pair the `new' vertex vbeomes ative and the `old' vertex w beomes markedas passive.3 This means that we never proess an edgeinident to this vertex in the same round anymore. Af-ter a round, all verties beome unmarked again.We do this rotating proedure for every edge e. Webegin with plane h2 supporting a faet f 3 e and aparallel plane h1 supporting the antipodal verties of f .The marking prevents from looking at a vertex twieduring a round, and thus every edge is proessed atmost one. Hene all edge-edge pairs belonging to aertain edge e are enumerated in O(n) worst ase time.Sine there are O(n) edges the algorithm has worst aserunning time O(n2).Potentially bad inputs for our algorithm are poly-topes with high-degree verties. It might happen thatthe neighborhoods of these verties are heked in manyrounds. This means, we might have �(n2) runtime evenif there are only very few edge-edge pairs.3in the degenerate ase, these might be sets of verties



4 ResultsA preliminary variant of the algorithm desribed here isembedded in Cgal as the Width 3 pakage. We testedthis ode on a Sun Spar Ultra-1 with random pointsets di�ering in size and type.The points were taken uniformly at random from aube, from a ball or on a sphere. We ompared theresults to the existing implementation by Shwert etal. that uses point loation and sweeping tehniques(Cwidth).Sine both programs use a onvex hull omputation�rst, the time (in seonds) in Table 1 is measured with-out the initial onvex hull step.Size Cwidth Width31.000 9.13 s 2.94 s10.000 16.45 s 5.56 s100.000 23.08 s 10.75 sInCube 1.000.000 17.29 s 21.77 s100 3.72 s 1.15 s1.000 17.61 s 5.39 s10.000 64.94 s 19.37 sInBall 100.000 219.93 s 66.72 s10 0.96 s 0.38 s100 14.78 s 5.95 s1.000 191.39 s 72.01 sOnSphere 10.000 2303.02 s 832.33 sTable 1: Comparison between algorithms for di�erenttypes of point sets.Remark: Currently, we annot explain why Cwidthoutperforms our method for 1.000.000 points in a ube,while it is slower for less points.5 ConlusionOur algorithm has the big advantage that we an di-retly determine all edge-edge and vertex-faet pairs bysimple alulations and some ombinatorial properties.Instead of doing some preproessing steps { like graphoverlay { and sweeping with quite diÆult degenerayhandling, we only have to look at neighborhoods of ver-ties. The prie we pay for this is that our algorithm isnot output-sensitive, meaning that the runtime is notdominated by the number of edge-edge pairs in general.Still, we have shown that our method an be faster inpratie.Referenes[1℄ Pankaj K. Agarwal andMiha Sharir. EÆient Ran-domized Algorithms for some Geometri Optimiza-

tion Problems. Disrete & Computational Geome-try, 16:317{337, 1996.[2℄ Mihael E. Houle and Godfried T. Toussaint. Com-puting the Width of a Set. IEEE Transa-tions on Pattern Analysis and Mahine Intelligene,10(5):761{765, 1988.[3℄ J�org Shwerdt, Mihiel Smid, Jayanth Majhi, andRavi Janardan. Computing the Width of a Three-dimensional Point Set: An Experimantal Study.In Kurt Mehlhorn, editor, Proeedings WAE'98Saarbr�uken, Germany, pages 62{73, August 1998.AknowledgementsWe thank Mihael Ho�mann and Sven Sh�onherr fortheir help in porting our ode to Cgal, and J�orgShwerdt for sharing his implementation of the Houle-Toussaint algorithm.


