Computing the Width of a Point Set in 3-Space

Bernd Géartner

Institute for Theoretical Computer Science

ETH Ziirich
CH-8092 Ziirich
Switzerland
gaertner@inf.ethz.ch

Abstract

We present a new algorithm to solve the 3-dimensional
width problem, i.e. to determine two parallel planes of
smallest distance such that the region between the two
planes contains a given point set. Like the algorithm of
Houle and Toussaint, our method has quadratic worst-
case complexity but is much faster in practice. In con-
trast to Houle and Toussaint, we do not use plane sweep
or point location techniques; instead, we apply simple
methods from linear optimization.

The resulting implementation seems to be faster than
an existing implementation of Houle and Toussaint’s
method using the LEDA library', and it is now part
of the Computational Geometry Algorithms Library
Caar 2.

1 The Width Problem

Given a point set P C R?, the width w(P) of P is the
smallest number w such that there exists a unit vector
u (width direction) and numbers ¢, § such that w = §—4
and

s<uTp<d, forallpeP.

The hyperplanes {z | u"2z = 6} and {z | Tz = §} are
perpendicular to v and define the width planes belong-
ing to an optimal direction u.

It is clear that w(P) = w(conv(P)), which means
that the computation of the convex hull is a natural
preprocessing step. Moreover (Lemma 2.1), the width
planes are supporting planes of the polytope conv(P).

In the plane, the width of a set of n points can be
computed in O(nlogn) time, where only O(n) time is
needed once the convex hull has been computed [2]. We
generalize this idea to 3-space, where the best theoreti-
cal solution is due to Agarwal and Sharir who presented

*European Graduate Program Combinatorics, Geometry, and

Computation (CGC), Berlin - Ziirich, http://www.cgc.ethz.ch
Thttp://www.algorithmic-solutions.com
’http://wuw.cgal.org

Thomas Herrmann*
Institute for Operations Research
ETH Ziirich
CH-8092 Ziirich
Switzerland
herrmann@ifor.math.ethz.ch

an O(n®/?*¢) algorithm [1]. An earlier algorithm due
to Houle and Toussaint has complexity O(n?) [2].

2 The
rithm

Houle-Toussaint Algo-

In the following we describe the basic outline of the
Houle-Toussaint method in the version which has been
implemented by Schwerdt et al. [3]. It starts with an
observation that also underlies our new method.

Let F and F' be a pair of faces of conv(P). F, F' are
called antipodal pairs, if there exist two parallel sup-
porting hyperplanes h # h' such that FF C h, F' Ch'.

Lemma 2.1 (Houle and Toussaint). There exists
a pair of antipodal faces F,F' of conv(P) such that
w(P) =w(FUF"), where F is a vertex and F' a facet,
or both F' and F' are nonparallel edges.

Houle and Toussaint’s algorithm enumerates all anti-
podal vertex-facet and edge-edge pairs and determines
an optimal pair. The width w, the width planes and the
width direction u of a single pair can easily be computed
in O(1) time.

The enumeration is done by constructing an instance
of a planar graph overlay problem. To get this instance,
one splits conv(P) into an upper and a lower hull and
builds an upper and a lower graph, both embedded in
the upper hemisphere S of the unit sphere S2.

The vertices of the upper graph G, are the outer nor-
mals of the facets of the upper hull, where two vertices
are connected by a great arc segment if the correspond-
ing facets are adjacent. For the lower hull, one proceeds
similarly, starting from the inner facet normals. This
yields to the graph Gy.

The crucial property is that there is a one-to-one cor-
respondence between antipodal edge-edge pairs and in-
tersections between edges of G, and Gy. Moreover, a
vertex-facet pair translates to a vertex of one graph
lying in a face of the other graph.

Thus, if there are I antipodal pairs, they can be re-
ported in time O(nlogn + I) by standard sweep and
point location techniques (where a slight twist is that
a hemisphere has to be swept).

The implementation of Schwerdt et al. uses the LEDA
library of efficient data types and algorithms, and han-
dles all degenerate cases. The computations do not
incur any roundoff errors because exact multi-precision
arithmetic is used.

This is the algorithm we are going to compare with;
we also use exact arithmetic and deal with degenera-
cies. However, we argue that the sweep technique -
which gets quite involved under degeneracies - is un-
necessary. Instead, simple optimization techniques and
the combinatorial properties of the convex hull can be
used. While the resulting algorithm is fast in prac-
tice, its worst-case complexity can be ©(n?) even if I
is small.

3 Rotating Plane Algorithm

Our new approach is to enumerate the antipodal
vertex-facet and edge-edge pairs directly. Therefore we
formulate the width-problem as an optimization prob-
lem having linear constraints but a non-convex objec-
tive function.

We are looking for the two parallel width-planes h; :
ar+by+cz+d=0and hy : ax + by +cz+ 1 =0 that
enclose P and have minimum distance. The problem is
now to find a, b, ¢,d minimizing the (squared) distance

(1—d)? h that th .
ez Suc that the constraints
apy +bpy +cp. +d <0
and

ap; +bpy +cp. +1>0

are satisfied for all points p € P. These inequalities
encode the conditions that the points lie between the
width planes.

The width itself is then the square root of the objec-
tive function value, the width direction is simply the
unit vector according to (a,b,c) and the width planes
are hy and hs.

To enumerate all edge-edge and vertex-facet pairs di-
rectly we start with an arbitrary facet f and determine
its antipodal vertices V' := {vy,...,v}. This prepro-
cessing step can be done in O(n) time.

Once such an initial pair is known we rotate the pa-
rallel planes hq, hs, supporting V' and f respectively,
about an incident edge e of f until hy supports the other
facet f' incident to e. During this rotation procedure
we preserve parallelism and the supporting property of
the two planes, and we report all edge-edge pairs be-
longing to e as well as the antipodal vertices of f'.

The critical step is as follows: Suppose an antipodal
vertex-edge pair w, e and parallel planes h; and ho are
given, supporting w and e respectively. We rotate ho
about e. Two events might happen during this rotation
procedure:

(i) Either hy supports a facet f' incident to e, or
(ii) h; supports an additional vertex v.

In the first case we found an antipodal vertex-facet pair,
in the latter case an edge-edge pair occurred.

To detect which case occurs first, the adjacent ver-
tices vy, ..., v of w are determined. These are the can-
didates to become tight, if the rotation angle increases.
Then for each v;, the rotation angle necessary to make
v; tight is computed. The vertex v with minimal angle
a, will be supported next during the rotation proce-
dure unless f' is supported first. If both events happen
simultaneously then we detected a degenerate case of
an edge-facet or facet-facet pair. After reporting the
new pair, we repeat this rotating procedure with e and
the new vertex v until hy supports f'.

Degeneracy handling is very simple: The only case
that can occur is that there is not a unique vertex v
having minimal angle. To find all vertices which be-
come tight next, we perform a graph search, starting
in w, and exploring the neighborhoods of all tight ver-
tices. We stop as soon as every vertex adjacent to a
tight vertex is non-tight. This is much easier than the
degeneracy handling necessary in sweep techniques.

To have linear worst case time for processing a sin-
gle edge e (a “round”), one has to mark the vertices
to prevent from looking at an edge twice. After re-
porting (wv, e) as an edge-edge pair the ‘new’ vertex v
becomes active and the ‘old’ vertex w becomes marked
as passive.? This means that we never process an edge
incident to this vertex in the same round anymore. Af-
ter a round, all vertices become unmarked again.

We do this rotating procedure for every edge e. We
begin with plane hs supporting a facet f > e and a
parallel plane h; supporting the antipodal vertices of f.

The marking prevents from looking at a vertex twice
during a round, and thus every edge is processed at
most once. Hence all edge-edge pairs belonging to a
certain edge e are enumerated in O(n) worst case time.
Since there are O(n) edges the algorithm has worst case
running time O(n?).

Potentially bad inputs for our algorithm are poly-
topes with high-degree vertices. It might happen that
the neighborhoods of these vertices are checked in many
rounds. This means, we might have ©(n?) runtime even
if there are only very few edge-edge pairs.

3in the degenerate case, these might be sets of vertices

4 Results

A preliminary variant of the algorithm described here is
embedded in CGAL as the Width_3 package. We tested
this code on a Sun Sparc Ultra-1 with random point
sets differing in size and type.

The points were taken uniformly at random from a
cube, from a ball or on a sphere. We compared the
results to the existing implementation by Schwert et
al. that uses point location and sweeping techniques
(Cwidth).

Since both programs use a convex hull computation
first, the time (in seconds) in Table 1 is measured with-
out the initial convex hull step.

[Size | Cwidth | Width3 |

1.000 9.13 s 2.94 s

2 10.000 16.45 s 5.56 s
3 100.000 23.08 s 10.75 s
S || 1.000.000 17.29 s 21.77 s
100 3.72s 1.15s

= 1.000 17.61 s 5.39 s
2 10.000 | 64.94s | 19.37s
5 100.000 219.93 s 66.72 s
o 10 0.96 s 0.38 s
% 100 14.78 s 595 s
"é 1.000 191.39 s 72.01 s
o 10.000 | 2303.02 s | 832.33 s

Table 1: Comparison between algorithms for different
types of point sets.

Remark: Currently, we cannot explain why Cwidth
outperforms our method for 1.000.000 points in a cube,
while it is slower for less points.

5 Conclusion

Our algorithm has the big advantage that we can di-
rectly determine all edge-edge and vertex-facet pairs by
simple calculations and some combinatorial properties.
Instead of doing some preprocessing steps — like graph
overlay — and sweeping with quite difficult degeneracy
handling, we only have to look at neighborhoods of ver-
tices. The price we pay for this is that our algorithm is
not output-sensitive, meaning that the runtime is not
dominated by the number of edge-edge pairs in general.
Still, we have shown that our method can be faster in
practice.

References

[1] Pankaj K. Agarwal and Micha Sharir. Efficient Ran-
domized Algorithms for some Geometric Optimiza-

tion Problems. Discrete €& Computational Geome-
try, 16:317-337, 1996.

[2] Michael E. Houle and Godfried T. Toussaint. Com-
puting the Width of a Set. IFEE Transac-
tions on Pattern Analysis and Machine Intelligence,
10(5):761-765, 1988.

[3] Jorg Schwerdt, Michiel Smid, Jayanth Majhi, and
Ravi Janardan. Computing the Width of a Three-
dimensional Point Set: An Experimantal Study.
In Kurt Mehlhorn, editor, Proceedings WAE’98
Saarbricken, Germany, pages 62-73, August 1998.

Acknowledgements

We thank Michael Hoffmann and Sven Schonherr for
their help in porting our code to CGAL, and Jorg
Schwerdt for sharing his implementation of the Houle-
Toussaint algorithm.

