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hAbstra
tWe present a new algorithm to solve the 3-dimensionalwidth problem, i.e. to determine two parallel planes ofsmallest distan
e su
h that the region between the twoplanes 
ontains a given point set. Like the algorithm ofHoule and Toussaint, our method has quadrati
 worst-
ase 
omplexity but is mu
h faster in pra
ti
e. In 
on-trast to Houle and Toussaint, we do not use plane sweepor point lo
ation te
hniques; instead, we apply simplemethods from linear optimization.The resulting implementation seems to be faster thanan existing implementation of Houle and Toussaint'smethod using the Leda library1, and it is now partof the Computational Geometry Algorithms LibraryCgal 2.1 The Width ProblemGiven a point set P � Rd , the width !(P) of P is thesmallest number ! su
h that there exists a unit ve
toru (width dire
tion) and numbers Æ; Æ su
h that ! = Æ�Æand Æ � uTp � Æ; for all p 2 P :The hyperplanes fx j uTx = Æg and fx j uTx = Æg areperpendi
ular to u and de�ne the width planes belong-ing to an optimal dire
tion u.It is 
lear that !(P) = !(
onv(P)), whi
h meansthat the 
omputation of the 
onvex hull is a naturalprepro
essing step. Moreover (Lemma 2.1), the widthplanes are supporting planes of the polytope 
onv(P).In the plane, the width of a set of n points 
an be
omputed in O(n logn) time, where only O(n) time isneeded on
e the 
onvex hull has been 
omputed [2℄. Wegeneralize this idea to 3-spa
e, where the best theoreti-
al solution is due to Agarwal and Sharir who presented�European Graduate Program Combinatori
s, Geometry, andComputation (CGC), Berlin - Z�uri
h, http://www.
g
.ethz.
h1http://www.algorithmi
-solutions.
om2http://www.
gal.org

an O(n3=2+") algorithm [1℄. An earlier algorithm dueto Houle and Toussaint has 
omplexity O(n2) [2℄.2 The Houle-Toussaint Algo-rithmIn the following we des
ribe the basi
 outline of theHoule-Toussaint method in the version whi
h has beenimplemented by S
hwerdt et al. [3℄. It starts with anobservation that also underlies our new method.Let F and F 0 be a pair of fa
es of 
onv (P). F; F 0 are
alled antipodal pairs, if there exist two parallel sup-porting hyperplanes h 6= h0 su
h that F � h, F 0 � h0.Lemma 2.1 (Houle and Toussaint). There existsa pair of antipodal fa
es F; F 0 of 
onv (P) su
h that!(P) = !(F [ F 0), where F is a vertex and F 0 a fa
et,or both F and F 0 are nonparallel edges.Houle and Toussaint's algorithm enumerates all anti-podal vertex-fa
et and edge-edge pairs and determinesan optimal pair. The width !, the width planes and thewidth dire
tion u of a single pair 
an easily be 
omputedin O(1) time.The enumeration is done by 
onstru
ting an instan
eof a planar graph overlay problem. To get this instan
e,one splits 
onv(P) into an upper and a lower hull andbuilds an upper and a lower graph, both embedded inthe upper hemisphere S2+ of the unit sphere S2.The verti
es of the upper graphGu are the outer nor-mals of the fa
ets of the upper hull, where two verti
esare 
onne
ted by a great ar
 segment if the 
orrespond-ing fa
ets are adja
ent. For the lower hull, one pro
eedssimilarly, starting from the inner fa
et normals. Thisyields to the graph G`.The 
ru
ial property is that there is a one-to-one 
or-responden
e between antipodal edge-edge pairs and in-terse
tions between edges of Gu and G`. Moreover, avertex-fa
et pair translates to a vertex of one graphlying in a fa
e of the other graph.



Thus, if there are I antipodal pairs, they 
an be re-ported in time O(n logn + I) by standard sweep andpoint lo
ation te
hniques (where a slight twist is thata hemisphere has to be swept).The implementation of S
hwerdt et al. uses the Ledalibrary of eÆ
ient data types and algorithms, and han-dles all degenerate 
ases. The 
omputations do notin
ur any roundo� errors be
ause exa
t multi-pre
isionarithmeti
 is used.This is the algorithm we are going to 
ompare with;we also use exa
t arithmeti
 and deal with degenera-
ies. However, we argue that the sweep te
hnique -whi
h gets quite involved under degenera
ies - is un-ne
essary. Instead, simple optimization te
hniques andthe 
ombinatorial properties of the 
onvex hull 
an beused. While the resulting algorithm is fast in pra
-ti
e, its worst-
ase 
omplexity 
an be �(n2) even if Iis small.3 Rotating Plane AlgorithmOur new approa
h is to enumerate the antipodalvertex-fa
et and edge-edge pairs dire
tly. Therefore weformulate the width-problem as an optimization prob-lem having linear 
onstraints but a non-
onvex obje
-tive fun
tion.We are looking for the two parallel width-planes h1 :ax+ by+ 
z+ d = 0 and h2 : ax+ by+ 
z+1 = 0 thaten
lose P and have minimum distan
e. The problem isnow to �nd a; b; 
; d minimizing the (squared) distan
e(1�d)2a2+b2+
2 , su
h that the 
onstraintsapx + bpy + 
pz + d � 0and apx + bpy + 
pz + 1 � 0are satis�ed for all points p 2 P . These inequalitiesen
ode the 
onditions that the points lie between thewidth planes.The width itself is then the square root of the obje
-tive fun
tion value, the width dire
tion is simply theunit ve
tor a

ording to (a; b; 
) and the width planesare h1 and h2.To enumerate all edge-edge and vertex-fa
et pairs di-re
tly we start with an arbitrary fa
et f and determineits antipodal verti
es V := fv1; : : : ; vkg. This prepro-
essing step 
an be done in O(n) time.On
e su
h an initial pair is known we rotate the pa-rallel planes h1; h2, supporting V and f respe
tively,about an in
ident edge e of f until h2 supports the otherfa
et f 0 in
ident to e. During this rotation pro
edurewe preserve parallelism and the supporting property ofthe two planes, and we report all edge-edge pairs be-longing to e as well as the antipodal verti
es of f 0.

The 
riti
al step is as follows: Suppose an antipodalvertex-edge pair w; e and parallel planes h1 and h2 aregiven, supporting w and e respe
tively. We rotate h2about e. Two events might happen during this rotationpro
edure:(i) Either h2 supports a fa
et f 0 in
ident to e, or(ii) h1 supports an additional vertex v.In the �rst 
ase we found an antipodal vertex-fa
et pair,in the latter 
ase an edge-edge pair o

urred.To dete
t whi
h 
ase o

urs �rst, the adja
ent ver-ti
es v1; : : : ; vk of w are determined. These are the 
an-didates to be
ome tight, if the rotation angle in
reases.Then for ea
h vi, the rotation angle ne
essary to makevi tight is 
omputed. The vertex v with minimal angle�v will be supported next during the rotation pro
e-dure unless f 0 is supported �rst. If both events happensimultaneously then we dete
ted a degenerate 
ase ofan edge-fa
et or fa
et-fa
et pair. After reporting thenew pair, we repeat this rotating pro
edure with e andthe new vertex v until h2 supports f 0.Degenera
y handling is very simple: The only 
asethat 
an o

ur is that there is not a unique vertex vhaving minimal angle. To �nd all verti
es whi
h be-
ome tight next, we perform a graph sear
h, startingin w, and exploring the neighborhoods of all tight ver-ti
es. We stop as soon as every vertex adja
ent to atight vertex is non-tight. This is mu
h easier than thedegenera
y handling ne
essary in sweep te
hniques.To have linear worst 
ase time for pro
essing a sin-gle edge e (a \round"), one has to mark the verti
esto prevent from looking at an edge twi
e. After re-porting (wv; e) as an edge-edge pair the `new' vertex vbe
omes a
tive and the `old' vertex w be
omes markedas passive.3 This means that we never pro
ess an edgein
ident to this vertex in the same round anymore. Af-ter a round, all verti
es be
ome unmarked again.We do this rotating pro
edure for every edge e. Webegin with plane h2 supporting a fa
et f 3 e and aparallel plane h1 supporting the antipodal verti
es of f .The marking prevents from looking at a vertex twi
eduring a round, and thus every edge is pro
essed atmost on
e. Hen
e all edge-edge pairs belonging to a
ertain edge e are enumerated in O(n) worst 
ase time.Sin
e there are O(n) edges the algorithm has worst 
aserunning time O(n2).Potentially bad inputs for our algorithm are poly-topes with high-degree verti
es. It might happen thatthe neighborhoods of these verti
es are 
he
ked in manyrounds. This means, we might have �(n2) runtime evenif there are only very few edge-edge pairs.3in the degenerate 
ase, these might be sets of verti
es



4 ResultsA preliminary variant of the algorithm des
ribed here isembedded in Cgal as the Width 3 pa
kage. We testedthis 
ode on a Sun Spar
 Ultra-1 with random pointsets di�ering in size and type.The points were taken uniformly at random from a
ube, from a ball or on a sphere. We 
ompared theresults to the existing implementation by S
hwert etal. that uses point lo
ation and sweeping te
hniques(Cwidth).Sin
e both programs use a 
onvex hull 
omputation�rst, the time (in se
onds) in Table 1 is measured with-out the initial 
onvex hull step.Size Cwidth Width31.000 9.13 s 2.94 s10.000 16.45 s 5.56 s100.000 23.08 s 10.75 sInCube 1.000.000 17.29 s 21.77 s100 3.72 s 1.15 s1.000 17.61 s 5.39 s10.000 64.94 s 19.37 sInBall 100.000 219.93 s 66.72 s10 0.96 s 0.38 s100 14.78 s 5.95 s1.000 191.39 s 72.01 sOnSphere 10.000 2303.02 s 832.33 sTable 1: Comparison between algorithms for di�erenttypes of point sets.Remark: Currently, we 
annot explain why Cwidthoutperforms our method for 1.000.000 points in a 
ube,while it is slower for less points.5 Con
lusionOur algorithm has the big advantage that we 
an di-re
tly determine all edge-edge and vertex-fa
et pairs bysimple 
al
ulations and some 
ombinatorial properties.Instead of doing some prepro
essing steps { like graphoverlay { and sweeping with quite diÆ
ult degenera
yhandling, we only have to look at neighborhoods of ver-ti
es. The pri
e we pay for this is that our algorithm isnot output-sensitive, meaning that the runtime is notdominated by the number of edge-edge pairs in general.Still, we have shown that our method 
an be faster inpra
ti
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