
ZEROS OF DETERMINANTS OF λ-MATRICES

WALTER GANDER∗

Abstract. Jim Wilkinson discovered that the computation of zeros of polynomials is ill condi-
tioned when the polynomial is given by its coefficients. For many problems we need to compute zeros
of polynomials, but we do not necessarily need to represent the polynomial with its coefficients. We
develop algorithms that avoid the coefficients. They turn out to be stable, however, the drawback
is often heavily increased computational effort. Modern processors on the other hand are mostly
idle and wait for crunching numbers so it may pay to accept more computations in order to increase
stability and also to exploit parallelism. We apply the method for nonlinear eigenvalue problems.

Key words. Nonlinear eigenvalue problems, Gaussian Elimination, Determinants, Algorithmic
Differentiation.

AMS subject classifications. 35P30 , 65F15 , 65F05 , 65F40 ,

1. Introduction. The classical textbook approach to solve an eigenvalue prob-
lem Ax = λx is to first compute the coefficients of the characteristic polynomial
Pn(λ) = det(λI −A) by expanding the determinant

Pn(λ) = c0 + c1λ + · · ·+ cn−1λ
n−1 + λn.

Then second apply some iterative method like e.g. Newton’s method to compute the
zeros of Pn which are the eigenvalues of the matrix A.

In the beginning of the area of numerical analysis a research focus was to develop
reliable solvers for zeros of polynomials. A typical example is e.g. [4]. However,
the crucial discovery by Jim Wilkinson [6] was that the zeros of a polynomial can
be very sensitive to small changes of the coefficients of the polynomial. Thus the
determination of the zeros from the coefficients is ill conditioned. It is easy today
to repeat the experiment using a computer algebra system. Executing the following
Maple statements

p :=1:
for i from 1 by 1 to 20 do p := p*(x-i) od:
PP := expand(p);
Digits := 7
PPP := evalf(PP)
Digits := 30
Z := fsolve(PPP, x, complex, maxsols = 20)

we can simulate what Jim Wilkinson experienced. We first expand the product
20∏

i=1

(x− i) = x20 − 210x19 ± · · ·+ 20!

then round the coefficients to floating point numbers with 7 decimal digits.

x20 − 210.0 x19 + 2.432902× 1018 ∓ · · · − 8.752948× 1018 x + 20615.0 x18

Continuing now the computation with 30 decimal digits to determine the exact zeros
of the polynomial with truncated coefficients we note that we do not obtain the
numbers 1, 2, . . . , 20. Instead many zeros are complex such as e.g. 17.175 ± 9.397i.
Thus truncating the coefficients to 7 decimal digits has a very large effect on the zeros.
The problem is ill conditioned.

∗Computational Science, ETH, CH-8092 Zurich, Switzerland (gander@inf.ethz.ch).

1

2 WALTER GANDER

2. Matlab Reverses Computing. Instead of expanding the determinant to
obtain the coefficients of the characteristic polynomial the command P = poly(A) in
Matlab computes the eigenvalues of A by the QR-Algorithm and expands the linear
factors

Pn(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) = λn + cn−1λ
n−1 + ·+ c0

to compute the coefficients.
Given on the other hand the coefficients ck of a polynomial, the command lambda

= roots(P) forms the companion matrix

A =

−cn−1 −cn−2 · · · −c1 −c0

1 0 · · · · · · 0
0 1 0 · · · 0
...

.
...

0 0 0 1 0

and uses again the QR-Algorithm to find the eigenvalues which are the zeros of the
polynomial.

3. Evaluating the Characteristic Polynomial. How can we evaluate the
characteristic polynomial without first computing its coefficients? One way is to use
Gaussian elimination and the fact that it is easy to compute the determinant of a
triangular matrix. Assume that we have computed the decomposition

C = LU

with L a lower unit triangular and U an upper triangular matrix. Then

det(C) = det(L) det(U) = u11u22 · · ·unn

since det(L) = 1. Using partial pivoting for the decomposition we have to change the
sign of the determinant each time that we interchange two rows. The program then
becomes:
function f = determinant(C)
n = length(C);
f = 1;
for i = 1:n

[cmax,kmax]= max(abs(C(i:n,i)));
if cmax == 0 % Matrix singular

f = 0; return
end
kmax = kmax+i-1;
if kmax ~= i

h = C(i,:); C(i,:) = C(kmax,:); C(kmax,:) = h;
f = -f;

end
f = f*C(i,i);
% elimination step
C(i+1:n,i) = C(i+1:n,i)/C(i,i);
C(i+1:n,i+1:n) = C(i+1:n,i+1:n) - C(i+1:n,i)*C(i,i+1:n);

end

Zeros of Determinants of λ-Matrices 3

Let C(λ) = λI − A. We would like to use Newton’s method to compute zeros of
P (λ) = det(C(λ)) = 0. For this we need the derivative P ′(λ). It can be computed by
algorithmic differentiation, that is by differentiating each statement of the program to
compute P (λ). For instance the statement to update the determinant f = f*C(i,i);
will be preceded by the statement for the derivative, thus
fs =fs*C(i,i)+f*Cs(i,i) ; f = f*C(i,i);

We used the variable Cs for the matrix C ′(λ) and ds for the derivative of the deter-
minant.

There is, however, for larger matrices the danger that the value of the determinant
over- respectively underflows. Notice that for Newton’s iteration we do not need both
values f = det(A−λI) and fs = d

d λ det(A−λI). It is sufficient to compute the ratio

P (λ)
P ′(λ)

=
f

fs
.

Overflow can be reduced by computing the logarithm. Thus instead of computing f
= f*C(i,i) we can compute lf = lf + log(C(i,i). Even better is the derivative
of the logarithm

lfs :=
d

d λ
log(f) =

fs

f

which yields directly the inverse Newton correction.
Thus instead updating the logarithm lf = lf + log(cii) we directly compute the

derivative

lfs = lfs +
csii

cii
.

This considerations lead to
function ffs = deta(C,Cs)
% DETA computes Newton correction ffs = f/fs
n = length(C);
lfs = 0;
for i = 1:n

[cmax,kmax]= max(abs(C(i:n,i)));
if cmax == 0 % Matrix singular

ffs = 0; return
end
kmax = kmax+i-1;
if kmax ~= i

h = C(i,:); C(i,:) = C(kmax,:); C(kmax,:) = h;
h = Cs(kmax,:); Cs(kmax,:) = Cs(i,:); Cs(i,:) = h;

end
lfs = lfs + Cs(i,i)/C(i,i);
% elimination step
Cs(i+1:n,i) = (Cs(i+1:n,i)*C(i,i)-Cs(i,i)*C(i+1:n,i))/C(i,i)^2;
C(i+1:n,i) = C(i+1:n,i)/C(i,i);
Cs(i+1:n,i+1:n) = Cs(i+1:n,i+1:n) - Cs(i+1:n,i)*C(i,i+1:n)- ...

C(i+1:n,i)*Cs(i,i+1:n);
C(i+1:n,i+1:n) = C(i+1:n,i+1:n) - C(i+1:n,i)*C(i,i+1:n);

end
ffs = 1/lfs;

4 WALTER GANDER

Note that as an alternative to the algorithmic differentiation presented here one
could use the Formula of Jacobi

d

d λ
det(C(λ)) = det(C(λ)) trace

(
C−1(λ)C ′(λ)

)
which gives an explicit expression for the derivative of the determinant.

4. Suppression instead Deflation. If x1, . . . , xk are already computed zeros
then we would like to continue working with the deflated polynomial

Pn−k(x) :=
Pn(x)

(x− x1) · · · (x− xk)
(4.1)

of degree n− k. However, we cannot explicitly deflate the zeros since we are working
with P (λ) = det(λI −A). Differentiating Equation (4.1) we obtain

P ′
n−k(x) =

P ′
n(x)

(x− x1) · · · (x− xk)
− Pn(x)

(x− x1) · · · (x− xk)

k∑
i=1

1
x− xi

.

Thus the Newton-iteration becomes

xnew = x− Pn−k(x)
P ′

n−k(x)
= x− Pn(x)

P ′
n(x)

1

1− Pn(x)
P ′

n(x)

k∑
i=1

1
x− xi

This variant of Newton’s Iteration is called Newton-Maehly Iteration [2, 3].

5. Example. We generate a random symmetric matrix A with eigenvalues 1, 2, . . . , n:
x = [1:n]’; Q = rand(n);
Q = orth(Q); A = Q*diag(x)*Q’;

respectively a non symmetric matrix with
x = [1:n]’; Q = rand(n);
A = Q*diag(x)*inv(Q);

Then we compute the solutions of det(C(λ)) = 0 with C(λ) = λI − A using the
Newton-Maehly iteration. We compare the results with the ones obtained by the QR-

n roots(poly(A)) eig(A) det(A− λI) = 0
50 1.3598e+02 3.9436e−13 4.7243e−14
100 9.5089e+02 1.1426e−12 1.4355e−13
150 2.8470e+03 2.1442e−12 3.4472e−13
200 −−− 3.8820e−12 6.5194e−13

Table 5.1
Norm of difference of the computed to the exact eigenvalues for a symmetric matrix

Algorithm eig(A) and with the zeros of the characteristic polynomial roots(poly(A)).
In Tables 5.1 and 5.2 the norm of the difference of the computed eigenvalues to the
exact ones is printed. Notice that due to ill-conditioning the roots of the characteristic
polynomial differ very much and that for n = 200 the coefficients of the characteristic
polynomial overflow and the zeros cannot be computed any more. On the other hand
we can see that the our method competes in accuracy very well with the standard
QR-algorithm.

Zeros of Determinants of λ-Matrices 5

n roots(poly(A)) eig(A) det(A− λI) = 0
50 1.3638e+02 3.7404e−12 2.7285e−12
100 9.7802e+02 3.1602e−11 3.5954e−11
150 2.7763e+03 6.8892e−11 3.0060e−11
200 −−− 1.5600e−10 6.1495e−11

Table 5.2
Norm of difference of the computed to the exact eigenvalues for a non-symmetric matrix

6. Generalization to λ-matrices. Consider a quadratic eigenvalue problem

det(C(λ)) = 0, with C(λ) = λ2M + λC + K.

If det(M) 6= 0 then one way to “linearize” the problem is to consider the equivalent
general eigenvalue-problem with dimension 2n:

det
([

M 0
0 K

]
− λ

[
0 M

−M −C

])
= 0

Alternatively with our approach we can compute the zeros of det(C(λ)) with
Newton’s iteration. Take the mass-spring system example from [5]. For the nonover-
damped case the matrix is C(λ) = λ2M + λC + K with

M = I, C = τ tridiag(−1, 3,−1), K = κ tridiag(−1, 3,−1)

and with κ = 5, τ = 3 and n = 50. The Matlab program to compute the eigenvalues
is
% Figure 3.3 in Tisseur-Meerbergen
clear, format compact
n=50
tau = 3, kappa = 5,
e = -ones(n-1,1);
C = (diag(e,-1)+ diag(e,1)+ 3*eye(n));
K = kappa*C;
C = tau*C;
lam = -0.5+0.1*i;
tic
for k=1:2*n
ffs = 1; q=0;
while abs(ffs)>1e-14
Q = lam*(lam*eye(n)+ C)+K;
Qs = 2*lam*eye(n)+C;
ffs = deta(Q,Qs);
s = 0;
if k>1

s = sum(1./(lam-lamb(1:k-1)));
end
lam = lam-ffs/(1-ffs*s); q=q+1;

end
clc
k, lam, q, ffs, lamb(k) = lam;
lam = lam*(1+0.01*i);

6 WALTER GANDER

end
toc
clf
plot(real(lamb),imag(lamb),’o’)

and produces Figure 6.1. The computation in Matlab needed 13.9 seconds on a

Fig. 6.1. Eigenvalues in the complex plane for the nonoverdamped case

IBM X41 laptop. As starting values for the iteration we used the complex number
λ(1 + 0.01i) near the last computed eigenvalue λ. In the second “overdamped” case

Fig. 6.2. Real eigenvalues for the overdamped case

we have κ = 5, τ = 10. Since the eigenvalues are all real we can choose real starting
values. We chose 1.01λ where again λ was the last eigenvalue found. Figure 6.2 shows
the eigenvalues which are all real and computed with Matlab in 16.3 seconds.

Finally we recomputed a cubic eigenvalue problem from [1]. Here we have

C(λ) = λ3A3 + λ2A2 + λA1 + A0

with

Zeros of Determinants of λ-Matrices 7

A0 = tridiag(1, 8, 1) A2 = diag(1, 2, . . . , n) and A1 = A3 = I.
In [1] the matrix dimension was n = 20 thus 60 eigenvalues had to be computed. Using
our method we compute these in 1.9 seconds. Figure 6.3 shows the 150 eigenvalues
for n = 50 which have been computed in 17.9 seconds.

Fig. 6.3. Cubic Eigenvalue Problem

REFERENCES

[1] P. Arbenz and W. Gander, Solving nonlinear Eigenvalue Problems by Algorithmic Differen-
tiation, Computing 36, 205-215, 1986.

[2] H. J. Maehly, Zur iterativen Auflösung algebraischer Gleichungen, ZAMP (Zeitschrift für ange-
wandte Mathematik und Physik), (1954), pp. 260–263.

[3] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, 1991.
[4] W. Kellenberger, Ein konvergentes Iterationsverfahren zur Berechnung der Wurzeln eines

Polynoms, Z. Angew. Math. Phys. 21 (1970) 647–651.
[5] F. Tisseur and K. Meerbergen, The Quadratic Eigenvalue Problem, SIAM. Rev., 43, pp.

234–286, 2001.
[6] J. H. Wilkinson, Rounding errors in algebraic processes, Dover Publications, 1994.

7. Conclusion. We have demonstrated that computing zeros of polynomials
from their coefficients is ill-conditioned. However, direct evaluation of the charac-
teristic polynomial is feasible. With this computational intensive method we have
shown that medium size nonlinear eigenvalue problems may be solved with a simple
program which computes determinants by Gaussian elimination and applies algorith-
mic differentiation and suppresses already computed zeros. We obtained results in
reasonable time in spite that we did not compile the Matlab program and that we
did not make use of the banded structure of the matrices. This algorithm, though
computational expensive, maybe useful for its potential for parallelization on future
multicore architectures.

