
Algorithms for the QR-Decomposition

WALTER GANDER

RESEARCH REPORT NO. 80-021

APRIL 1980

SEMINAR FUER ANGEWANDTE MATHEMATIK

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE

CH-8092 ZUERICH

1retyped in LATEX October 2003

IN MEMORY OF

PROF. H. RUTISHAUSER †1970

1

Abstract

In this report we review the algorithms for the QR decomposition that are
based on the Schmidt orthonormalization process and show how an accurate
decomposition can be obtained using modified Gram Schmidt and reorthogo-
nalization. We also show that the modified Gram Schmidt algorithm may be
derived using the representation of the matrix product as a sum of matrices
of rank one.

1 Introduction

Let A be a real m × n matrix (m > n) with rank(A) = n. It is well known
that A may be decomposed into the product

A = QR (1)

where Q is (m×n) orthogonal (QT Q = In) and R is (n×n) upper triangular.
The earliest proposal to compute this decomposition probably was to use the
Schmidt orthonormalization process. It was soon observed [8] however that
this algorithm is unstable and indeed, as it performs in Example 1 it must be
considered an algorithm of parallelization rather than orthogonalization! In
fact even the method, although we don’t recommend it, of computing Q via
the Cholesky decomposition of AT A,

AT A = RT R

and to put
Q = AR−1

seems to be superior than classical Schmidt.
The “modified Gram Schmidt” algorithm was a first attempt to stabilize

Schmidt’s algorithm. However, although the computed R is remarkably ac-
curate, Q need not to be orthogonal at all. Nevertheless, as was pointed out
by Björck [1], modified Gram Schmidt may be used to solve least squares
problems.

The remedy for really making Q orthogonal, as proposed by Rutishauser
[5,6] is reorthogonalization. Unfortunately this method has not become very
popular because at about the same time a new way to compute the decompo-
sition 1 was proposed [4] using elementary orthogonal Householder-matrices.
This algorithm is stable and the only objection is that it does not yield an
explicit representation of Q. Instead one has all information stored to com-
pute Q or QT acting on a given vector as an operator. When a vector is
reorthogonalized the matrix R should be updated. Rutishauser did not do so
on the grounds that the corrections are small. Nevertheless, by including these
corrections we obtain forming the product QR a matrix which is numerically
closer to A. In this paper we show how to compute these corrections. This
results in a small change in Rutishauser’s algorithm which is so inexpensive
that it would be a pity to omit it. In addition we derive the modified Gram
Schmidt algorithm using the representation of the matrix product as sum of
matrices of rank one.

2

2 Classical Schmidt Algorithm

We denote in this paper the k − th column of a matrix A by cAk. Similarly
we shall use rAj to refer to the j − th row of A. Furthermore we shall use
|| · || for the euclidian norm of a vector.

The classical Schmidt algorithm consists of n steps. In each of them one
cAk is used to produce a new column vector of Q. Consider the k − th step.
We already have k − 1 orthonormal vectors

cQ1, . . . , cQk−1.

We take cAk and compute the projections

rikcQi with rik := cQT
i cAk.

Then we form the vector

bk = cAk −
k−1∑
i=1

rikcQi (2)

which is orthogonal to cQ1, . . . , cQk−1 and thus we get

cQk := bk/||bk||. (3)

This leads to the following algorithm where A is overwritten by Q:

for k := 1 to n do
begin

for i := 1 to k − 1 do
begin s := 0

for j := 1 to m do s := s + aj,i ∗ aj,k;
rik := s;

end;
for i := 1 to k − 1 do
begin


to be left out
for modified
Gram-Schmidt.

for j := 1 to m do ajk := aj,k − aj,i ∗ ri,k;
end;
s := 0;
for j := 1 to m do s := s + a2

j,k;
rkk := sqrt(s);
for j := 1 to m do ajk := ajk/rk,k;

end k

If we look at Example 1 we see that the resulting matrix Q is not orthog-
onal at all. The algorithm is unstable. However the product QR equals A
perfectly. This is not a special virtue at all since for any arbitrary given non-
singular matrix R we can easily compute a matrix Q row by row by forward
substitution from

RT QT = AT . (4)

3

Of course we then have A = QR but in general QT Q 6= I.
Notice that if we eliminate the three lines

end;
for i := 1 to k − 1 do
begin

(5)

of the above algorithm then we get a variant of the modified Gram Schmidt
algorithm given by Schwarz and Rutishauser [7].

Assuming the existence of the QR decomposition of A one can derive the
classical Schmidt algorithm by letting [8]:

A = [cA1, . . . , cAn] = [cQ1, . . . , cQn] ·R

i.e.
cAk = cQ1r1k + cQ2r2k + ... + cQk−1rk−1,k + cQkrkk (6)

for k := 1, . . . , n.

If we suppose that Q and R are computed column by column, the unknown
in (6) are r1k, ..., rkk and cQk. By multiplying (6) from the left with cQT

i we
get first

cQT
i cAk = rik, i = 1, . . . , k − 1,

and rkk, cQk are obtained as in (2), (3).

3 Modified Gram Schmidt

Our aim again is to compute Q and R from the relation A = QR. But now
in place of (6) we represent the matrix product as

A =
n∑

i=1

cQirR
T
i , (7)

i.e. as the sum of matrices of rank one. Observe that the first i − 1 columns
of the matrix

cQirR
T
i = 0

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
���

���

�
��

�
�

(8)

are zero because R is an upper triangular matrix.
We define the matrices

A(k) = A−
k−1∑
i=1

cQirR
T
i , k = 1, . . . , n + 1 (9)

which have the same shape as (8) (first k−1 columns are zero) since it follows
from (7) that also

A(k) =
n∑

i=k

cQirR
T
i . (10)

4

Clearly there holds the recursion

A(1) = A (11)
A(k+1) = A(k) − cQkrR

T
k , k = 1, . . . , n (12)

A(n+1) = 0. (13)

We wish to exploit the recursion (12) for computing Q and R. If we assume
that the first k − 1 columns of Q and the first k − 1 rows of R are already
known then letting ek = (0, . . . , 1, . . . 0)T we have, using (10),

A(k)ek = cA(k)
k =

n∑
i=k

cQi(rR
T
i ek) = cQkrkk. (14)

Therefore
rkk = ||cA(k)

k || and cQk = cA(k)/rkk. (15)

Thus we can compute from A(k) the k-th column of Q. To compute the
k-th row of R we note that

A(k+1) =
n∑

i=k+1

cQirR
T
i (16)

as well as
A(k+1) = A(k) − cQkrR

T
k . (17)

Therefore multiplying (16) from the left by cQT
k we get

cQT
k A(k+1) = 0T because cQk is orthogonal to cQi

Using this in (17) we have

0T = cQT
k A(k) − rRT

k

which on rearranging yields the rule to compute the k-th row of R:

rRk = A(k)T
cQk (18)

Notice that equation (18) means that we may compute

rik = cA(k)T

i cQk

rather than
rik = cAT

i cQk

which follows from A = QR. Using equations (12), (15) and (18) leads to the
following algorithm:

Modified Gram Schmidt:

for k := 1 to n do
begin

s := 0;
for j := 1 to m do s := s + a2

jk

rkk := sqrt(s) ;

5

for j := 1 to m do qjk := ajk/rkk;
for i := k + 1 to n do
begin

s := 0;
for j := 1 to m do s := s + aji ∗ qjk;
rki := s;
for j := 1 to m do aji := aji − rki ∗ qjk;

end;
end

4 Modified Gram Schmidt: Variant

of Schwarz-Rutishauser

From §3 we have

A(j) = A−
j−1∑
i=1

cQirR
T
i =

n∑
i=j

cQirR
T
i (19)

Considering the k-th column of A(j) (j < k)

A(j)ek = cA(j)
k = cAk −

j−1∑
i=1

cQirik =
k∑

i=j

cQirik. (20)

We note that the last sum in (20) has the upper bound k and not n, since
rRT ek = 0 for i > k because R is triangular. Therefore we may compute
cA(k)

k as follows:

cA(1)
k = cAk (21)

cA(j)
k = cA(j−1)

k − cQ(j−1)rj−1,k

j = 2, . . . , k.

This means that Q and R are computed column by column and for each new
rik

cA(i+1)
k = cA(i)

k − cQirik

is subtracted. By doing so we perform numerically the same operations as with
modified Gram Schmidt. The operations and the rounding errors are the same
only the temporal sequence of the operations is different. Comparing the k-th
step we have the following:

6

k k

k

tt
tt
tt
tt
tt

tt
tt
tt
tt
tt

tt
tt
tt
tt
tt

t t t tt
t

tt
tt
tt
tt
tt

�
���
���
���
���
���
���
���
���
����

�� �
���
���
���
���
���
���
���
���
����

��

@
@

@@

@
@

@@

�� �
�

�
��

�
�

�

�
�

�
�

�� ��

�� �
���

already computed

updated in the k-th step.

�� �
�� ��

tt tt

modified Gram Schmidt variant of Schwarz Rutishauser

While in modified Gram Schmidt the whole remaining matrix A is treated
in the k-th step and R is computed row by row, the variant of Schwarz
Rutishauser leaves the columns k + 1 to n of A untouched and R is com-
puted column by column.

Modified Gram Schmidt can be compared to Gaussian Elimination while
the Schwarz Rutishauser variant is like direct triangular decomposition. For-
mally the variant of Schwarz Rutishauser is obtained by omitting three lines
in the classical Schmidt algorithm: we do not wait until all rik are computed
to subtract ajirik from ajk but rather do so immediately after each rik is
computed.

What has been derived here algebraically can of course be interpreted
geometrically and that is how modified Gram Schmidt is usually explained
[7]. Subtracting from cAk the projections onto cQi i = l, . . . , k − 1 does not
change the scalar product

cQT
k cAk = cQT

k

(
cAk −

k−1∑
i=1

cQirik

)
= cQT

k cA(k)
k (22)

because cQk is orthogonal to cQi.
We think that the motivation to subtracting those projections to improve

the algorithm is not obvious at all. The only argument is that after subtract-
ing the vectors become shorter and that therefore cancellation gets smaller.
The algebraic approach given in §3 seems more naturally to lead to a new
algorithm. In spite of the fact that a better decomposition is obtained by

7

modified Gram Schmidt (more accurate matrix R) and that this algorithm
may be used successfully for least squares problems [1] the matrix Q is in
general not orthogonal at all (see Example 2). The only way to ensure or-
thogonality is reorthogonalization.

5 Reorthogonalization

The reason why the columns of Q depart from orthogonality to almost arbi-
trary extent is the extensive cancellation that can take place in forming

b = cAk −
k−1∑
i=1

rikcQi (23)

(This was pointed out in [8] for a matrix of the order two). An indication
that cancellation has occurred is given if

||b|| << ||cAk||.

In particular one may state the rule of thumb that at least one decimal digit
is lost by cancellation if

||b|| ≤ 1
10
||cAk||. (24)

Equation (24) is the criterion used by Rutishauser to decide whether reorthog-
onalization is necessary. If cancellation has taken place the vector b will be
inaccurate and thus fails to be orthogonal to the cQi for i = 1, . . . , k−1. If b is
chosen in place of cAk to be orthogonalized with respect to cQ1, . . . , cQk−1,
then in general cancellation will be much smaller and the new resulting vector
will be orthogonal to the cQi unless it is linearly dependent of them.

An algorithm due to Rutishauser which incorporates this reorthogonaliza-
tion has been given in [5]. In the listing below we have framed the changes
from the modified Gram Schmidt variant of Schwarz-Rutishauser.

for k := 1 to n do
begin

t := 0; tt := 0;
for j := 1 to m do t := t + a2

jk

 compute square of
length of cAk

orth: for i := 1 to k − 1 do
begin s := 0;

for j := 1 to m do s := s + aji ∗ ajk;

if tt = 0 then rik := s;
Don’t change rik

when reorthogonalizing

for j := 1 to m do ajk := ajk − s ∗ aji;
end i;
tt := 0;
for j := 1 to m do tt := tt + a2

jk; Length of b squared

8

if tt < t/100 then
begin t := tt; goto orth end;
rkk := sqrt(tt) ;
for j := 1 to m do ajk = ajk/rkk;

end k

This algorithm works well if A is not rank deficient (see Example 3). If the
matrix A turns out to be numerically rank deficient, however, this algorithm
does not work. An algorithm reliable even in the presence of rank deficiency
of A is given by Rutishauser as a subprogram in his algorithm for simulta-
neous iteration (ritzit) [6]. As a further modification, the length of cAk

is not computed explicitly but by means of the Pythagorean theorem in this
algorithm. If

b = cAk −
k−1∑
i+1

rikcQi (25)

then

||cAk||2 = ||b||2 +
k−1∑
i=1

r2
ik (26)

since b and the cQi are orthogonal. We list this algorithm in a form which is
consistent with the notation introduced earlier:

for k := 1 to n do
begin

orig := true ;
repeat: t := 0;

for i := 1 to k − 1 do
begin

s := 0
for j := 1 to m do s := s + aji ∗ ajk;

if orig then rik := s;
t := t + s ∗ s;
for j := 1 to m do ajk := ajk − s ∗ aji;

end i;
s := 0
for j := 1 to m do s := s + a2

jk;
t := t + s;
if (s ≤ t/100) ∨ (t ∗mc = 0) then
begin

orig := false ;
if s ∗mc = 0 then s := 0 else goto repeat

end if;
rkk := s := sqrt(s);
if s 6= 0 then s := 1/s;
for j := 1 to m do ajk := s ∗ ajk;

end for k

9

Here mc is the smallest positive number in the machine such that 1 + mc 6= 1.
If a column vector turns out to be numerically linear dependent then the
corresponding column in Q becomes the zero vector.

Of course the numerical rank of A is not identical with the true rank of
A. Therefore in general rounding errors will cause every matrix A to have full
rank. One indication for numerical rank deficiency are very small elements in
the diagonal of R.

[We admit that e.g. for the Hilbert matrix (with full rank) it is not easy to
decide what is “small”, (see Example 4)]. We should also mention a remark
of Wilkinson [8] that though Q now is orthogonal and A is represented well
by the product QR, it is by no means certain that the Q and R computed
numerically are close to the exact Q and R.

We see from Example 4 that with this algorithm we obtain a nice orthogo-
nal matrix Q and a fairly well representation of A = QR. We can improve the
latter representation by including corrections in R when reorthogonalizing.

6 Reorthogonalization with update of R

Assume for a moment that the matrix B has k columns where the first k − 1
columns are orthogonal. The QR decomposition of B is then given by

B = [cQ1, . . . , cQk−1, b] = [cQ1, . . . , cQk−1,u] ·R1 =: QR1 (27)

where

R1 =



1 0 · · · · · · 0 d1

1 0 · · · 0 d2

.
...

...
. . . 0

...
1 dk−1

dk


(28)

The di are given by di = bTcQi, i = 1, . . . , k − 1 and

dk =

∥∥∥∥∥b−
k−1∑
i=1

dicQi

∥∥∥∥∥ .

Now suppose that A = [cA1, . . . , cAk] has been decomposed as A = BR2 and
we wish to reorthogonalize the last column of B, i.e. to compute B = QR1 as
above. Then there follows

A = BR2 = QR1R2 = QR with R = R1R2. (29)

The corrected matrix R is a product of two upper triangular matrices and
thus again upper triangular and since

R1 = I + deT
k (30)

we can compute the product R1R2 simply by

R = R1R2 = (I + deT
k)R2 = R2 + r

(2)
kk deT

k . (31)

10

Equation (31) means that we have to add to the last column of R2 the vector
d multiplied by the factor r

(2)
kk . The vector d contains the corrections of the

reorthogonalization. A further simplification is obtained if we don’t normalize
the vector b before reorthogonalizing. This has the effect that r

(2)
kk , the last

diagonal element of the matrix R2, is 1 and therefore the corrections consist
simply in adding rik := r

(2)
ik + di for i = 1, ..., k − 1.

Formally the last algorithm presented in §4 has to be changed very little.
Instead of the framed line

if orig then rik := s;

we now just have to put the line

if orig then rik := s else rik := rik + s;

To add the corrections we thus require only k − 1 more additions in the k-th
step. If we look at Example 5 we see that the product QR now represents A
even better.

7 QR Decomposition

with Householder-Transformations

To be complete and to compare the results obtained with Gram Schmidt or-
thogonalization we list an algorithm from [3] that computes the QR decompo-
sition using elementary orthogonal Householder matrices. Here we decompose

PnPn−1...P1A ==

(
R

0

)
(32)

where
Pi = I −wiw

T
i (33)

with

wi =



0
...
0
x
x
...
x


← i and ||wi|| =

√
2. (34)

The matrix Q is not given explicitly but we have

QT = PnPn−1 · · ·P1.

11

The following algorithm computes the vectors wi and the matrix R, overwrit-
ing A as follows:

A = w1 w2 w3 · · · wn

R

We store only the nonzero part of wi. The diagonal of R is stored in the
vector d.

for j := 1 to n do
begin

s := 0;
for i := j to m do s := s + a2

ij ;
s := sqrt(s); dj := if ajj > 0 then −s else s;
fak := sqrt(s ∗ (s + abs(ajj)));
ajj := ajj − dj ;
for k := j to m do akj := akj/fak;
for i := j + 1 to n do
begin

s := 0;
for k := j to m do s := s + akj ∗ aki;
for k := j to m do aki := aki − akj ∗ s;

end for i;
end for j;

No measures have been taken to stop the computation if a column turns out
to be numerically linearly dependent (fak would become zero in this case).
After this decomposition we can compute y := QT y using the vectors wi as
follows:

for j := 1 to n do (35)
begin s := 0;

for k := j to m do s := s + akj ∗ yk;
for k := j to m do yk := yk + akj ∗ s;

end ;

If we wish to compute y := Qy the only change we have to make is to turn
the loop for j in (35):

for j := n downto 1 do (36)

12

This is explained by

QT = PnPn−1 · · ·P1

Q = (Pn · · ·P1)T = P T
1 P T

2 · · ·P T
n

= P1P2 · · ·Pn since the Pi are symmetric.

To obtain Q explicitly we have to use the algorithm (35) for y = ek and thus
we compute rQk = QT ek. The result is shown in Example 6. We see that we
have good matching QR = A and nice orthogonality.

8 Final remarks

We are aware that reorthogonalization doubles the computing effort and that
for this reason the method of Householder is usually preferred. The situation
is not quite as bad for Gram Schmidt if we do actually need the matrix Q
explicitly. Gram Schmidt has the advantage that we can make a vector as well
orthogonal as we wish. We refer the reader to the process of “superorthogo-
nalization” discussed and implemented in [2].

References

[1] Björck, A., Solving Linear Least Squares Problems by Gram-Schmidt
Orthogonalization, BIT 7 (1967), 1-21.

[2] Gander, W., Molinari, L., Svecova, H., Numerische Proze-
duren aus Nachlass und Lehre von Prof. Heinz Rutishauser, ISNM 33,
Birkhäuser Verlag, 1977.

[3] Gander, W. in: Nicolet et al. Informatik für Ingenieure, Springer
Verlag, 1979.

[4] Businger, P., Golub, G.H. in: Wilkinson-Reinsch, Linear Algebra,
Springer Verlag, 1971.

[5] Rutishauser, H., Description of Algol 60, Springer, 1967.

[6] Rutishauser, H. in : Wilkinson-Reinsch, Linear Algebra, Springer
Verlag, 1971.

[7] Schwarz H. R., Rutishauser H., Stiefel E., Matrizen-Numerik,
Teubner Verlag, 1968.

[8] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Claredon Press
Oxford, 1965.

13

Appendix: Numerical Examples

The following examples were all computed on a HP 9825 desk computer with
12 decimal digits mantissa (thus mc = 0.5 ∗ 10−11). As matrix A we chose
the 15× 10 Hilbert matrix i.e. aij = 1/(i + j − 1). To save printing space we
have listed only 5 decimal digits of the elements of Q and R. To compare the
accuracy we have also computed the matrices

i) A−QR

ii) QT Q− I

iii) QT A−R

iv) AR−1 −Q.

Each of them should be the zero matrix. For simplicity we look only for
the absolute largest element and print it out. Except for classical Schmidt
the matrix iv) is not zero at all. This is because r10,10 ' 10−11 and the
matrix R is therefore numerically singular. The matrix ii) is a measure for the
orthogonality and one may e.g. see that Q is not orthogonal for the modified
Gram Schmidt algorithm. Notice that the largest element of matrix i) is 10
times smaller if we update R (see Example 4 and 5). The decomposition using
Householder-transformations is perfect in this example (see Example 6). If
we don’t use the criterion (24) but simply reorthogonalize each vector once
we get the values of Example 7. They are the best for this example.

14

15

16

17

18

19

20

21

9 Appendix 2: Recomputation using Mat-

lab

We have recomputed the experiments using Matlab and IEEE arithmetic.
Matlab allows vector operations, thus the listings of the algorithms became
shorter. We use the same example (15× 10 Hilbert matrix) though machine
precision is now 2.2204e−16 smaller than mc = 0.5∗10−11 used on the decimal
HP 9825 machine.

To test the algorithms we use the test-program

9.1 Classical Schmidt

In a first step we vectorize the scalar product and work with entire column
vectors. The algorithm becomes in Matlab:

function [Q,R] = clgs(A)
% CLGS classical Gram-Schmidt orthogonalization
[m,n] = size(A); R = zeros(n);
Q=A;
for k = 1:n,

for i = 1:k-1,
R(i,k) = Q(:,i)’*Q(:,k);

end % remove for
for i = 1:k-1, % modified-Gram-Schmidt

Q(:,k) = Q(:,k)-R(i,k)*Q(:,i);
end
R(k,k) = norm(Q(:,k)); Q(:,k) = Q(:,k)/R(k,k);

end

We obtain with

> A = hilb(15); A = A(:,1:10);
> [Q,R] = clgs(A); pruef(A,Q,R)

the results (we use |A| := maxi,j |aij |). Orthogonality of Q is lost completely,
however, QR represents A well to machine precision.

i) |A−QR| = 2.7756e−17
ii) |QT Q− I| = 9.9998e−01
iii) |QT A−R| = 1.6319e−05
iv) |AR−1 −Q| = 3.5936e−09

Notice that we can even more vectorize by replacing the inner loop

function [Q,R] = clgsa(A)
% CLGSA classical Gram-Schmidt orthogonalization
% vectorized version
[m,n] = size(A); R = zeros(n);
Q=A;
for k = 1:n,

R(1:k-1,k) = Q(:,1:k-1)’*Q(:,k);

22

Q(:,k) = Q(:,k)- Q(:,1:k-1)*R(1:k-1,k);
R(k,k) = norm(Q(:,k)); Q(:,k) = Q(:,k)/R(k,k);

end

Now we get with

> A = hilb(15); A = A(:,1:10);
> [Q,R] = clgsa(A); pruef(A,Q,R)

i) |A−QR| = 2.7755e−17
ii) |QT Q− I| = 9.9998e−01
iii) |QT A−R| = 1.6052e−05
iv) |AR−1 −Q| = 1.1089e−09

9.2 Modified Gram-Schmidt

Both versions, modified Gram-Schmidt and the variant of Schwarz-Rutishauser
should give the same results. However, the processors in use today compute
with 80-bit registers and store 64-bit floating point numbers according to the
IEEE standard. Therefore using Matlab vector operations or programming
with for- loops yield different results.

With the variant of modified Gram-Schmidt according to Schwarz-Rutishauser

function [Q,R] = modgs(A)
% MODGS modified Gram-Schmidt orthogonalization
% Schwarz-Rutishauser
[m,n] = size(A); R = zeros(n);
Q=A;
for k = 1:n,

for i = 1:k-1,
R(i,k) = Q(:,i)’*Q(:,k);
Q(:,k) = Q(:,k)-R(i,k)*Q(:,i);

end
R(k,k) = norm(Q(:,k)); Q(:,k) = Q(:,k)/R(k,k);

end

we get with

> A = hilb(15); A = A(:,1:10);
> [Q,R] = modgs(A); pruef(A,Q,R)

the results
i) |A−QR| = 2.7756e−17
ii) |QT Q− I| = 1.0072e−05
iii) |QT A−R| = 1.2663e−05
iv) |AR−1 −Q| = 1.1676e−04.

With the second variant of modified Gram Schmidt

function [Q,R] = modgs2(A)
% MODGS2 modified Gram-Schmidt orthogonalization
[m,n] = size(A); R = zeros(n);
for k = 1:n,

23

R(k,k) = norm(A(:,k));
Q(:,k) = A(:,k)/R(k,k);
if k<n

R(k,k+1:n) = Q(:,k)’*A(:,k+1:n);
A(:,k+1:n) = A(:,k+1:n)- Q(:,k)*R(k,k+1:n);

end
end

we obtain as expected about the same results as before. Q is orthogonal to
about 6 decimal digits. iv) is worse than with classical Schmidt.

i) |A−QR| = 5.5511e−17
ii) |QT Q− I| = 1.6957e−05
iii) |QT A−R| = 2.1317e−05
iv) |AR−1 −Q| = 2.1364e−04.

9.3 Modified Gram-Schmidt with Reorthogonaliza-
tion

The first variant with reorthogonalization will not work for a rank deficient
matrix.

function [Q,R] = reorthgs1(A)
% REORTHGS1 modified Gram-Schmidt orthogonalization with
% reorthogonalization
[m,n] = size(A); R = zeros(n);
Q=A;
for k=1:n
tt = 0;
t = norm(Q(:,k));
reorth = 1;
while reorth,
% orth:
for i=1:k-1

s = Q(:,i)’*Q(:,k);
if tt==0, R(i,k) = s; end;
Q(:,k) = Q(:,k)-s*Q(:,i);

end
tt = norm(Q(:,k));
reorth=0;
if tt<t/10, t=tt; reorth=1;end

end
R(k,k) = tt;
Q(:,k) = Q(:,k)/R(k,k);

end

24

We obtain for our example a perfect orthogonality of Q, also identity iii) is
very well fulfilled while iv) is rather poor due to the ill-conditioning of R.

i) |A−QR| = 1.6653e−16
ii) |QT Q− I| = 1.3999e−15
iii) |QT A−R| = 1.7243e−15
iv) |AR−1 −Q| = 1.5238e−04

9.4 Second version of modified Gram-Schmidt with
reorthogonalization

This version from ritzit will work also for possibly rank deficient matrices.

function [Q,R,z] = gramschmidt(Q)
% GRAMSCHMIDT computes the QR decomposition using
% modified Gram-Schmidt with reorthogonalization
% z is a vector that counts the reorthogonalization
% steps per column (source Ritzit)
z =[]; [m,n] = size(Q); R = zeros(n);
for k = 1:n,

t = norm(Q(:,k));
nach =1;
u=0; % count variable
while nach,

u=u+1;
for i = 1:k-1,

s = Q(:,i)’*Q(:,k);
R(i,k) = R(i,k) + s;
Q(:,k) = Q(:,k)- s*Q(:,i);

end
tt = norm(Q(:,k));
if tt>10*eps*t & tt<t/10, % if short length

nach =1; t=tt; % reorthogonalize
else

nach = 0;
if tt<10*eps*t, tt=0; % linear dependent
end

end
end
z =[z u];
R(k,k) = tt;
if tt*eps~=0, tt =1/tt; else tt=0; end
Q(:,k) = Q(:,k)*tt;

end

i) |A−QR| = 5.5511e−17
ii) |QT Q− I| = 1.2750e−15
iii) |QT A−R| = 1.6358e−15
iv) |AR−1 −Q| = 5.1228e−05

The strength of this variant is for rank deficient matrices. Take as example

25

H = magic(10);
[Q,R] = gramschmidt(H)

We get a matrix Q with 3 zero columns and also R has 3 zero rows. So the
rank 7 is well detected.

9.5 Matlab QR

Th standard Matlab function qr with

> A = hilb(15); A = A(:,1:10);
> [Q,R] = qr(A,0); pruef(A,Q,R)

gives the best results:

i) |A−QR| = 5.5511e−16
ii) |QT Q− I| = 5.5511e−16
iii) |QT A−R| = 2.220e−16
iv) |AR−1 −Q| = 2.8113e−04

9.6 Implicit Householder Decomposition

The decomposition with implicit Householder transformations

function [A,d] = qrhous(A);
% QRHOUS computes the QR decomposition A = QR
% using Householder transformations.
% The output matrix A contains the Householder
% vectors u and the upper triangle of R. The
% diagonal of R is stored in vector d.

[m,n]=size(A);
for j = 1:n,
s = norm(A(j:m,j));
if s == 0 , error(’rank(A) < n’), end
if A(j,j) >= 0 , d(j)=-s; else d(j)=s; end
fak = sqrt(s*(s+abs(A(j,j))));
A(j,j) = A(j,j)-d(j);
A(j:m,j) = A(j:m,j)/fak;

% transformation of the rest of
% the matrix G := G - u*(u’*G)

if j<n,
A(j:m,j+1:n) = A(j:m,j+1:n) - ...

A(j:m,j)*(A(j:m,j)’*A(j:m,j+1:n));
end

end

together with

function z = qyhous(A,y);
% QYHOUS: computes z = Q y if before Q has
% been computed implicitly by A= qrhous(A)

26

[m,n]=size(A); z=y;
for j = n:-1:1,
z(j:m) = z(j:m)-A(j:m,j)*(A(j:m,j)’*z(j:m));

end;

yields with the main program

[m,n] = size(A);
[a d] = qrhous(A);
I = eye(m,n);
Q=[];
for i= I,

z=qyhous(a,i);
Q=[Q z];
end
R = triu(a(1:n,:),1) + diag(d);
Q = Q(:,1:n);
R = R(1:n,1:n);
pruef(A,Q,R)

the results:
i) |A−QR| = 9.4369e−16
ii) |QT Q− I| = 1.5543e−15
iii) |QT A−R| = 1.3323e−15
iv) |AR−1 −Q| = 2.8256e−04

27

