Contents

Notation and useful inequalities

I Approximation algorithms

1 **Greedy algorithms**
 1.1 Minimum set cover

2 **Approximation schemes**
 2.1 Knapsack
 2.2 Bin packing
 2.3 Minimum makespan scheduling

3 **Randomized approximation schemes**
 3.1 DNF counting
 3.2 Counting graph colorings

4 **Rounding ILPs**
 4.1 Minimum set cover
 4.2 Minimizing congestion in multi-commodity routing

5 **Probabilistic tree embedding**
 5.1 A tight probabilistic tree embedding construction
 5.2 Application: Buy-at-bulk network design
 5.3 Extra: Ball carving with $O(\log n)$ stretch factor

II Streaming and sketching algorithms

6 **Warm up**
 6.1 Typical tricks
 6.2 Majority element
7 Estimating the moments of a stream

- 7.1 Estimating the first moment of a stream
- 7.2 Estimating the zeroth moment of a stream
- 7.3 Estimating the k^{th} moment of a stream

8 Graph sketching

- 8.1 Warm up: Finding the single cut
- 8.2 Warm up 2: Finding one out of $k > 1$ cut edges
- 8.3 Maximal forest with $O(n \log^4 n)$ memory

III Graph sparsification

9 Preserving distances

- 9.1 α-multiplicative spanners
- 9.2 β-additive spanners

10 Preserving cuts

- 10.1 Warm up: $G = K_n$
- 10.2 Uniform edge sampling
- 10.3 Non-uniform edge sampling

IV Online algorithms and competitive analysis

11 Warm up: Ski rental

12 Linear search

- 12.1 Amortized analysis
- 12.2 Move-to-Front

13 Paging

- 13.1 Types of adversaries
- 13.2 Random Marking Algorithm (RMA)

14 Yao’s Minimax Principle

- 14.1 Application to the paging problem

15 The k-server problem

- 15.1 Special case: Points on a line
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Multiplicative Weights Update (MWU)</td>
<td>143</td>
</tr>
<tr>
<td>16.1 Warm up: Perfect expert exists</td>
<td>144</td>
</tr>
<tr>
<td>16.2 A deterministic MWU algorithm</td>
<td>144</td>
</tr>
<tr>
<td>16.3 A randomized MWU algorithm</td>
<td>145</td>
</tr>
<tr>
<td>16.4 Generalization</td>
<td>147</td>
</tr>
<tr>
<td>16.5 Application: Online routing of virtual circuits</td>
<td>147</td>
</tr>
</tbody>
</table>
Notation and useful inequalities

Commonly used notation

- \mathcal{P}: class of decision problems that can be solved on a deterministic sequential machine in polynomial time with respect to input size

- \mathcal{NP}: class of decision problems that can be solved non-deterministically in polynomial time with respect to input size. That is, decision problems for which “yes” instances have a proof that can be verified in polynomial time.

- \mathcal{A}: usually denotes the algorithm we are discussing about

- \mathcal{I}: usually denotes a problem instance

- ind.: independent / independently

- w.p.: with probability

- w.h.p: with high probability
 We say event X holds with high probability (w.h.p.) if

 \[\Pr[X] \geq 1 - \frac{1}{\text{poly}(n)} \]

 say, $\Pr[X] \geq 1 - \frac{1}{n^c}$ for some constant $c \geq 2$.

- L.o.E.: linearity of expectation

- u.a.r.: uniformly at random

- Integer range $[n] = \{1, \ldots, n\}$

- $e \approx 2.718281828459$: the base of the natural logarithm
Useful distributions

Bernoulli Coin flip w.p. p. Useful for indicators

\[
\Pr[X = 1] = p \\
\mathbb{E}[X] = p \\
\text{Var}(X) = p(1 - p)
\]

Binomial Number of successes out of n trials, each succeeding w.p. p; Sample with replacement out of n items, p of which are successes

\[
\Pr[X = k] = \binom{n}{k} p^k (1 - p)^{n-k} \\
\mathbb{E}[X] = np \\
\text{Var}(X) = np(1 - p) \leq np
\]

Geometric Number of Bernoulli trials until one success

\[
\Pr[X = k] = (1 - p)^{k-1} p \\
\mathbb{E}[X] = \frac{1}{p} \\
\text{Var}(X) = \frac{1 - p}{p^2}
\]

Hypergeometric r successes in n draws without replacement when there are K successful items in total

\[
\Pr[X = k] = \binom{K}{r} \binom{n-k}{r-k} \binom{n}{r} \\
\mathbb{E}[X] = r \cdot \frac{k}{n} \\
\text{Var}(X) = r \cdot \frac{k}{n} \cdot \frac{n - k}{n} \cdot \frac{n - r}{n - 1}
\]

Exponential Parameter: λ; Written as $X \sim \text{Exp}(\lambda)$

\[
\Pr[X = x] = \begin{cases}
\lambda e^{-\lambda x} & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases} \\
\mathbb{E}[X] = \frac{1}{\lambda} \\
\text{Var}(X) = \frac{1}{\lambda^2}
\]
Remark If $x_1 \sim \text{Exp}(\lambda_1), \ldots, x_n \sim \text{Exp}(\lambda_n)$, then

- $\min\{x_1, \ldots, x_n\} \sim \text{Exp}(\lambda_1 + \cdots + \lambda_n)$
- $\Pr[k \mid x_k = \min\{x_1, \ldots, x_n\}] = \frac{\lambda_k}{\lambda_1 + \cdots + \lambda_n}$

Useful inequalities

- $\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k}\right)^k$
- $\binom{n}{k} \leq n^k$
- $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = e^{-1}$
- $\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$
- $(1 - x) \leq e^{-x}$, for any x
- $(1 + 2x) \geq e^x$, for $x \in [0, 1]$
- $(1 + \frac{x}{2}) \geq e^x$, for $x \in [-1, 0]$
- $(1 - x) \geq e^{-x-x^2}$, for $x \in (0, \frac{1}{2})$
- $\frac{1}{1-x^2} \leq 1 + 2x$ for $x \leq \frac{1}{2}$

Theorem (Linearity of Expectation).

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i)$$

Theorem (Variance).

$$\text{V}(X) = E(X^2) - E(X)^2$$

Theorem (Variance of a Sum of Random Variables).

$$\text{V}(aX + bY) = a^2\text{V}(X) + b^2\text{V}(Y) + 2ab\text{Cov}(X,Y)$$

Theorem (AM-GM inequality). Given n numbers x_1, \ldots, x_n,

$$\frac{x_1 + \cdots + x_n}{n} \geq (x_1 \ast \cdots \ast x_n)^{1/n}$$

The equality holds if and only if $x_1 = \cdots = x_n$.
Theorem (Markov’s inequality). If X is a nonnegative random variable and $a > 0$, then

$$\Pr[X \geq a] \leq \frac{\mathbb{E}(X)}{a}$$

Theorem (Chebyshev’s inequality). If X is a random variable (with finite expected value μ and non-zero variance σ^2), then for any $k > 0$,

$$\Pr[|X - \mu| \geq k\sigma] \leq \frac{1}{k^2}$$

Theorem (Bernoulli’s inequality). For every integer $r \geq 0$ and every real number $x \geq -1$,

$$(1 + x)^r \geq 1 + rx$$

Theorem (Chernoff bound). For independent Bernoulli variables X_1, \ldots, X_n, let $X = \sum_{i=1}^{n} X_i$. Then,

$$\Pr[X \geq (1 + \epsilon) \cdot \mathbb{E}(X)] \leq \exp\left(-\frac{\epsilon^2 \mathbb{E}(X)}{3}\right) \quad \text{for } 0 < \epsilon$$

$$\Pr[X \leq (1 - \epsilon) \cdot \mathbb{E}(X)] \leq \exp\left(-\frac{\epsilon^2 \mathbb{E}(X)}{2}\right) \quad \text{for } 0 < \epsilon < 1$$

By union bound, for $0 < \epsilon < 1$, we have

$$\Pr[|X - \mathbb{E}(X)| \geq \epsilon \cdot \mathbb{E}(X)] \leq 2 \exp\left(-\frac{\epsilon^2 \mathbb{E}(X)}{3}\right)$$

Remark 1 There is actually a tighter form of Chernoff bounds:

$$\forall \epsilon > 0, \Pr[X \geq (1 + \epsilon) \mathbb{E}(X)] \leq \left(\frac{e^\epsilon}{(1 + \epsilon)^{1+\epsilon}}\right)^{\mathbb{E}(X)}$$

Remark 2 We usually apply Chernoff bound to show that the probability of bad approximation is low by picking parameters such that $2 \exp\left(-\frac{\epsilon^2 \mathbb{E}(X)}{3}\right) \leq \delta$, then negate to get $\Pr[|X - \mathbb{E}(X)| \leq \epsilon \cdot \mathbb{E}(X)] \geq 1 - \delta$.

Theorem (Probabilistic Method). Let (Ω, \mathcal{A}, P) be a probability space,

$$\Pr[\omega] > 0 \iff \exists \omega \in \Omega$$
Combinatorics taking \(k \) elements out of \(n \):

- no repetition, no ordering: \(\binom{n}{k} \)
- no repetition, ordering: \(\frac{n!}{(n-k)!} \)
- repetition, no ordering: \(\binom{n+k-1}{k-1} \)
- repetition, ordering: \(n^k \)
Part I

Approximation algorithms
Chapter 1

Greedy algorithms

Unless \(P = NP \), we do not expect efficient algorithms for \(NP \)-hard problems. However, we are often able to design efficient algorithms that give solutions that are provably close/approximate to the optimum.

Definition 1.1 (\(\alpha \)-approximation). An algorithm \(A \) is an \(\alpha \)-approximation algorithm for a minimization problem with respect to cost metric \(c \) if for any problem instance \(I \) and for some optimum solution \(OPT \),

\[
c(A(I)) \leq \alpha \cdot c(OPT(I))
\]

Maximization problems are defined similarly with \(c(OPT(I)) \leq \alpha \cdot c(A(I)) \).

1.1 Minimum set cover

Consider a universe \(U = \{e_1, \ldots, e_n\} \) of \(n \) elements, a collection of subsets \(S = \{S_1, \ldots, S_m\} \) of \(m \) subsets of \(U \) such that \(U = \bigcup_{i=1}^{m} S_i \), and a non-negative\(^1\) cost function \(c : S \rightarrow \mathbb{R}^+ \). If \(S_i = \{e_1, e_2, e_3\} \), then we say \(S_i \) covers elements \(e_1, e_2, \) and \(e_3 \). For any subset \(T \subseteq S \), define the cost of \(T \) as the cost of all subsets in \(T \). That is,

\[
c(T) = \sum_{S_i \in T} c(S_i)
\]

Definition 1.2 (Minimum set cover problem). Given a universe of elements \(U \), a collection of subsets \(S \), and a non-negative cost function \(c : S \rightarrow \mathbb{R}^+ \), find a subset \(S^* \subseteq S \) such that:

(i) \(S^* \) is a set cover: \(\bigcup_{S_i \in S^*} S_i = U \)

(ii) \(c(S^*) \), the cost of \(S^* \), is minimized

\(^1\)If a set costs 0, then we can just remove all the elements covered by it for free.
Example

Suppose there are 5 elements e_1, e_2, e_3, e_4, e_5, 4 subsets S_1, S_2, S_3, S_4, and the cost function is defined as $c(S_i) = i^2$. Even though $S_3 \cup S_4$ covers all vertices, this costs $c(S_3 \cup S_4) = c(S_3) + c(S_4) = 9 + 16 = 25$. One can verify that the minimum set cover is $S^* = \{S_1, S_2, S_3\}$ with a cost of $c(S^*) = 14$. Notice that we want a minimum cover with respect to c and not the number of subsets chosen from S (unless c is uniform cost).

1.1.1 A greedy minimum set cover algorithm

Since finding the minimum set cover is \mathcal{NP}-complete, we are interested in algorithms that give a good approximation for the optimum. [Joh74] describes a greedy algorithm \textsc{GreedySetCover} and proved that it gives an H_n-approximation. The intuition is as follows: Spread the cost $c(S_i)$ amongst the vertices that are newly covered by S_i. Denoting the price-per-item by $ppi(S_i)$, we greedily select the set that has the lowest ppi at each step until we have found a set cover.

\begin{algorithm}
\caption{\textsc{GreedySetCover}(\mathcal{U}, S, c)}

\begin{align*}
T & \leftarrow \emptyset \quad \text{\Comment{Selected subset of } S} \\
C & \leftarrow \emptyset \quad \text{\Comment{Covered vertices}} \\
\text{while } C \neq \mathcal{U} \text{ do} \\
& \quad S_i \leftarrow \arg \min_{S_i \in S \setminus T} \frac{c(S_i)}{|S_i \setminus C|} \quad \text{\Comment{Pick set with lowest price-per-item}} \\
& \quad T \leftarrow T \cup \{S_i\} \quad \text{\Comment{Add } S_i \text{ to selection}} \\
& \quad C \leftarrow C \cup S_i \quad \text{\Comment{Update covered vertices}} \\
\text{end while} \\
\text{return } T
\end{align*}
\end{algorithm}

$H_n = \sum_{i=1}^{n} \frac{1}{i} = \ln(n) + \gamma \leq \ln(n) + 0.6 \in \Theta(\log(n))$, where γ is the Euler-Mascheroni constant. See \url{https://en.wikipedia.org/wiki/Euler-Mascheroni_constant}.

\footnote{$H_n = \sum_{i=1}^{n} \frac{1}{i} = \ln(n) + \gamma \leq \ln(n) + 0.6 \in \Theta(\log(n))$, where γ is the Euler-Mascheroni constant. See \url{https://en.wikipedia.org/wiki/Euler-Mascheroni_constant}.}
1.1. MINIMUM SET COVER

Consider a run of GreedySetCover on the earlier example. In the first iteration, \(ppi(S_1) = 1/3, ppi(S_2) = 4, ppi(S_3) = 9/2, ppi(S_4) = 16/3 \). So, \(S_1 \) is chosen. In the second iteration, \(ppi(S_2) = 4, ppi(S_3) = 9, ppi(S_4) = 16 \). So, \(S_2 \) was chosen. In the third iteration, \(ppi(S_3) = 9, ppi(S_4) = \infty \). So, \(S_3 \) was chosen. Since all vertices are now covered, the algorithm terminates (coincidentally to the minimum set cover). Notice that \(ppi \) for the unchosen sets change according to which vertices remain uncovered. Furthermore, once one can simply ignore \(S_4 \) when it no longer covers any uncovered vertices.

Theorem 1.3. GreedySetCover is an \(H_n \)-approximation algorithm.

Proof. By construction, GreedySetCover terminates with a valid set cover \(T \). It remains to show that \(c(T) \leq H_n \cdot c(OPT) \) for any minimum set cover \(OPT \). Upon relabelling, let \(e_1, \ldots, e_n \) be the elements in the order they are covered by GreedySetCover. Define \(\text{price}(e_i) \) as the price-per-item associated with \(e_i \) at the time \(e_i \) was purchased during the run of the algorithm. Consider the moment in the algorithm where elements \(C_{k-1} = \{e_1, \ldots, e_{k-1}\} \) are already covered by some sets \(T_k \subset T \). \(T_k \) covers no elements in \(\{e_k, \ldots, e_n\} \). Since there is a cover\(^3\) of cost at most \(c(OPT) \) for the remaining \(n - k + 1 \) elements, there must be an element \(e^* \in \{e_k, \ldots, e_n\} \) whose price \(\text{price}(e^*) \) is at most \(\frac{c(OPT)}{n-k+1} \).

We formalize this intuition with the argument below. Since \(OPT \) is a set cover, there exists a subset \(OPT_k \subseteq OPT \) that covers \(e_k \ldots e_n \). Sup-

\(^3OPT \) is a valid cover (though probably not minimum) for the remaining elements.
pose $OPT_k = \{O_1, \ldots, O_p\}$ where $O_i \in S \forall i \in [p]$. We make the following observations:

1. Since no element in $\{e_k, \ldots, e_n\}$ is covered by T_k, $O_1, \ldots, O_p \in S \setminus T_k$.

2. Because some elements may be covered more than once,

$$n - k + 1 = |U \setminus C_{k-1}| \\
\leq |O_1 \cap (U \setminus C_{k-1})| + \cdots + |O_p \cap (U \setminus C_{k-1})| \\
= \sum_{j=1}^{p} |O_j \cap (U \setminus C_{k-1})|$$

3. By definition, for each $j \in \{1, \ldots, p\}$, $\text{ppi}(O_j) = \frac{c(O_j)}{|O_j \cap (U \setminus C_{k-1})|}$.

Since the greedy algorithm will pick a set in $S \setminus T$ with the lowest price-per-item, $\text{price}(e_k) \leq \text{ppi}(O_j)$ for all $j \in \{1, \ldots, p\}$. Substituting this expression into the last equation and rearranging the terms we get:

$$c(O_j) \geq \text{price}(e_k) \cdot |O_j \cap (U \setminus C_{k-1})| , \forall j \in \{1, \ldots, p\} \quad (1.1)$$

Summing over all p sets, we have

$$c(OPT) \geq c(OPT_k)$$

Since $OPT_k \subseteq OPT$

$$= \sum_{j=1}^{p} c(O_j)$$

Definition of $c(OPT_k)$

$$\geq \text{price}(e_k) \cdot \sum_{j=1}^{p} |O_j \cap (U \setminus C_{k-1})|$$

By Equation (1.1)

$$\geq \text{price}(e_k) \cdot |U \setminus C_{k-1}|$$

By observation 2

$$= \text{price}(e_k) \cdot (n - k + 1)$$

Rearranging, $\text{price}(e_k) \leq \frac{c(OPT)}{n-k+1}$. Summing over all elements, we have:

$$c(T) = \sum_{S \subseteq T} c(S) = \sum_{k=1}^{n} \text{price}(e_k) \leq \sum_{k=1}^{n} \frac{c(OPT)}{n-k+1} = c(OPT) \cdot \sum_{k=1}^{n} \frac{1}{k} = H_n \cdot c(OPT) $$

Remark: By construction, $\text{price}(e_1) \leq \cdots \leq \text{price}(e_n)$.

Next we provide an example to show this bound is indeed tight.
1.1. MINIMUM SET COVER

Tight bound example for GreedySetCover Consider $n = 2 \cdot (2^k - 1)$ elements, for some $k \in \mathbb{N} \setminus \{0\}$. Partition the elements into groups of size $2 \cdot 2^0, 2 \cdot 2^1, 2 \cdot 2^2, \ldots, 2 \cdot 2^{k-1}$. Let $S = \{S_1, \ldots, S_k, S_{k+1}, S_{k+2}\}$. For $1 \leq i \leq k$, let S_i cover the group of size $2 \cdot 2^{i-1} = 2^i$. Let S_{k+1} and S_{k+2} cover half of each group (i.e. $2^k - 1$ elements each) such that $S_{k+1} \cap S_{k+2} = \emptyset$.

\[
\begin{array}{cccc}
2 \text{ elts} & 4 \text{ elts} & 8 = 2 \cdot 2^2 \text{ elements} & 2 \cdot 2^{k-1} \text{ elements} \\
S_1 & S_2 & S_3 & S_{k+1} \\
S_{k+2}
\end{array}
\]

Suppose $c(S_i) = 1, \forall i \in \{1, \ldots, k + 2\}$. The greedy algorithm will pick S_k, then S_{k-1}, \ldots, and finally S_1. This is because $2 \cdot 2^{k-1} > n/2$ and $2 \cdot 2^i > (n - \sum_{j=i+1}^{k} 2 \cdot 2^j)/2$, for $1 \leq i \leq k - 1$. This greedy set cover costs $k = \mathcal{O}(\log(n))$. Meanwhile, the minimum set cover is $S^* = \{S_{k+1}, S_{k+2}\}$ with a cost of 2.

A series of works by Lund and Yannakakis [LY94], Feige [Fei98], and Dinur [DS14, Corollary 1.5] showed that it is \textbf{NP}-hard to always approximate set cover to within $(1 - \epsilon) \cdot \ln |\mathcal{U}|$, for any constant $\epsilon > 0$.

\textbf{Theorem 1.4} ([DS14, Corollary 1.5]). It is \textbf{NP}-hard to always approximate set cover to within $(1 - \epsilon) \cdot \ln |\mathcal{U}|$, for any constant $\epsilon > 0$.

\textit{Proof.} See [DS14, Corollary 1.5] \hfill \square

1.1.2 Special cases

In this section, we show that one may improve the approximation factor from H_n if we have further assumptions on the set cover instance. Viewing a set cover instance as a bipartite graph between sets and elements, let $\Delta = \max_{i \in \{1, \ldots, m\}} \text{degree}(S_i)$ and $f = \max_{i \in \{1, \ldots, m\}} \text{degree}(e_i)$ represent the maximum degree of the sets and elements respectively. Consider the following two special cases of set cover instances:

1. All sets are small. That is, Δ is small.

2. Every element is covered by few sets. That is, f is small.
Special case: Small Δ

Theorem 1.5. GreedySetCover is a H_Δ-approximation algorithm.

Proof. Suppose $OPT = \{O_1, \ldots, O_p\}$, where $O_i \in S \forall i \in [p]$. Consider a set $O_i = \{e_{i,1}, \ldots, e_{i,d}\}$ with degree(O_i) = $d \leq \Delta$. Without loss of generality, suppose that the greedy algorithm covers $e_{i,1}$, then $e_{i,2}$, and so on. For $1 \leq k \leq d$, when $e_{i,k}$ is covered, price($e_{i,k}$) $\leq \frac{c(O_i)}{d-k+1}$ (It is an equality if the greedy algorithm also chose O_i to first cover $e_{i,k}, \ldots, e_{i,d}$). Hence, the greedy cost of covering elements in O_i (i.e. $e_{i,1}, \ldots, e_{i,d}$) is at most

$$\sum_{k=1}^{d} \frac{c(O_i)}{d-k+1} = c(O_i) \sum_{k=1}^{d} \frac{1}{k} = c(O_i) \cdot H_d \leq c(O_i) \cdot H_\Delta$$

Summing over all p sets to cover all n elements, we have $c(T) \leq H_\Delta \cdot c(OPT)$.

Remark We apply the same greedy algorithm for small Δ but analyzed in a more localized manner. Crucially, in this analysis, we always work with the exact degree d and only use the fact $d \leq \Delta$ after summation. Observe that $\Delta \leq n$ and the approximation factor equals that of Theorem 1.3 when $\Delta = n$.

Special case: Small f

We first look at the case when $f = 2$, show that it is related to another graph problem, then generalize the approach for general f.

Vertex cover as a special case of set cover

Definition 1.6 (Minimum vertex cover problem). Given a graph $G = (V,E)$, find a subset $S \subseteq V$ such that:

(i) S is a vertex cover: $\forall e = \{u,v\} \in E, u \in S$ or $v \in S$

(ii) $|S|$, the size of S, is minimized

When $f = 2$ and $c(S_i) = 1, \forall S_i \in S$, we can reduce minimum vertex cover to minimum set cover. Given an instance I of minimum vertex cover $I = \langle G = (V,E) \rangle$ we build an instance $I^* = \langle U^*, S^* \rangle$ of set cover as follows:

- Each edge $e_i \in E$ in G becomes an element e'_i in U^*
• Each vertex \(v_j \in V \) in \(G \) becomes an element \(S_j \) in \(\mathcal{S}^* \) and \(e'_i \in S_j \iff e_i \) is adjacent to \(v_j \in I \).

Notice that every element \(e_i \in \mathcal{U} \) will be in exactly 2 elements of \(\mathcal{S} \), for every edge is adjacent to exactly two vertices. Hence, \(I^* \) has \(f = 2 \). One way to obtain a 2-approximation to minimum vertex cover (and hence 2-approximation for this special case of set cover) is to use a maximal matching.

Definition 1.7 (Maximal matching problem). Given a graph \(G = (V, E) \), find a subset \(M \subseteq E \) such that:

(i) \(M \) is a matching: Distinct edges \(e_i, e_j \in M \) do not share an endpoint

(ii) \(M \) is maximal: \(\forall e_k \not\in M, M \cup \{e_k\} \) is not a matching

A related concept to maximal matching is maximum matching, where one tries to maximize the set of \(M \). By definition, any maximum matching is also a maximal matching, but the converse is not necessarily true. Consider a path of 6 vertices and 5 edges. Both the set of blue edges \(\{\{a, b\}, \{c, d\}, \{e, f\}\} \) and the set of red edges \(\{\{b, c\}, \{d, e\}\} \) are valid maximal matchings, where the maximum matching is the former.

Remark Any maximal matching is a 2-approximation of maximum matching.

Algorithm 2 GreedyMaximalMatching\((V, E)\)

\[
\begin{align*}
M & \leftarrow \emptyset & \triangleright \text{Selected edges} \\
C & \leftarrow \emptyset & \triangleright \text{Set of incident vertices} \\
\text{while } E \neq \emptyset \text{ do} \\
\quad e_i = \{u, v\} & \leftarrow \text{Pick any edge from } E \\
\quad M & \leftarrow M \cup \{e_i\} & \triangleright \text{Add } e_i \text{ to the matching} \\
\quad C & \leftarrow C \cup \{u, v\} & \triangleright \text{Add endpoints to incident vertices} \\
\quad \text{Remove all edges in } E \text{ that are incident to } u \text{ or } v \\
\text{end while} \\
\text{return } M
\end{align*}
\]

\texttt{GreedyMaximalMatching} is a greedy maximal matching algorithm. The algorithm greedily adds any available edge \(e_i \) that is not yet incident to \(M \), then excludes all edges that are adjacent to \(e_i \).
Theorem 1.8. The set of incident vertices C at the end of GreedyMaximalMatching is a 2-approximation for minimum vertex cover.

Maximal matching M

Vertex cover C, where $|C| = 2 \cdot |M|

Proof. Suppose, for a contradiction, that GreedyMaximalMatching terminated with a set C that is not a vertex cover. Then, there exists an edge $e = \{u, v\}$ such that $u \notin C$ and $v \notin C$. If such an edge exists, $e = \{u, v\} \in E$ then $M' = M \cup \{e\}$ would have been a matching with $|M'| > |M|$ and GreedyMaximalMatching would not have terminated. This is a contradiction, hence C is a vertex cover.

Consider the matching M. Any vertex cover has to include at least one endpoint for each edge in M, hence the minimum vertex cover OPT has at least $|M|$ vertices (i.e. $|OPT| \geq |M|$). By picking C as our vertex cover, $|C| = 2 \cdot |M| \leq 2 \cdot |OPT|$. Therefore, C is a 2-approximation.

We now generalize beyond $f = 2$ by considering hypergraphs. Hypergraphs are a generalization of graphs in which an edge can join any number of vertices. Formally, a hypergraph $H = (X, E)$ consists of a set X of vertices/elements and a set E of hyperedges where each hyperedge is an element of $\mathcal{P}(X) \setminus \emptyset$ (where \mathcal{P} is the powerset of X). The minimum vertex cover problem and maximal matching problem are defined similarly on a hypergraph.

Remark A hypergraph $H = (X, E)$ can be viewed as a bipartite graph with partitions X and E, with an edge between element $x \in X$ and hyperedge $e \in E$ if $x \in e$ in H.

Example Suppose $H = (X, E)$ where $X = \{a, b, c, d, e\}$ and $E = \{\{a, b, c\}, \{b, c\}, \{a, d, e\}\}$. A minimum vertex cover of size 2 would be $\{a, c\}$ (there are multiple vertex covers of size 2). Maximal matchings would be $\{\{a, b, c\}\}$ and $\{\{b, c\}, \{a, d, e\}\}$, where the latter is the maximum matching.

Claim 1.9. Generalizing GreedyMaximalMatching to compute a maximal matching in the hypergraph by greedily picking hyperedges yields an f-approximation algorithm for minimum vertex cover.

Sketch of Proof Let C be the set of all vertices involved in the greedily selected hyperedges. In a similar manner as the proof in Theorem 1.8, C can be showed to be an f-approximation.
Chapter 2

Approximation schemes

In the last chapter, we described simple greedy algorithms that approximate the optimum for minimum set cover, maximal matching and minimum vertex cover within a constant factor of the optimum solution. We now want to devise algorithms, which come arbitrarily close to the optimum solution. For that purpose we formalize the notion of efficient \((1 + \varepsilon)\)-approximation algorithms for minimization problems, à la [Vaz13].

Let \(I\) be an instance from the problem of interest (e.g. minimum set cover). Denote \(|I|\) as the size of the problem instance in bits, and \(|I_u|\) as the size of the problem instance in unary. For example, if the input is a number \(x\) of at most \(n\) bits, then \(|I| = \log_2(x) = \mathcal{O}(n)\) while \(|I_u| = \mathcal{O}(2^n)\). This distinction of “size of input” will be important when we discuss the knapsack problem later.

Definition 2.1 (Polynomial time approximation scheme (PTAS)). For a given cost metric \(c\), an optimal algorithm \(OPT\) and a parameter \(\varepsilon\), an algorithm \(A_{\varepsilon}\) is a PTAS for a minimization problem if

- \(c(A_{\varepsilon}(I)) \leq (1 + \varepsilon) \cdot c(OPT(I))\)
- \(A_{\varepsilon}\) runs in \(\text{poly}(|I|)\) time

Note that \(\varepsilon\) is a parameter of the algorithm, and is not considered as input. Thus the runtime for PTAS may depend arbitrarily on \(\varepsilon\). If we define \(\varepsilon\) as an input parameter for the algorithm, we can obtain a stricter definition, namely that of fully polynomial time approximation schemes (FPTAS). Assuming \(\mathcal{P} \neq \mathcal{NP}\), FPTAS is the best one can hope for on \(\mathcal{NP}\)-hard problems.

Definition 2.2 (Fully polynomial time approximation scheme (FPTAS)). For a given cost metric \(c\), an optimal algorithm \(OPT\) and input parameter \(\varepsilon\), an algorithm \(A\) is an FPTAS for a minimization problem if
• For any $\epsilon > 0$, $c(A(I)) \leq (1 + \epsilon) \cdot c(OPT(I))$
• A runs in $\text{poly}(|I|, \frac{1}{\epsilon})$ time

As before, one can define $(1 - \epsilon)$-approximations, PTAS, and FPTAS for maximization problems similarly.

2.1 Knapsack

Definition 2.3 (Knapsack problem). Consider a set S with n items. Each item i has size $\text{size}(i) \in \mathbb{Z}^+$ and profit $\text{profit}(i) \in \mathbb{Z}^+$. Given a budget B, find a subset $S^* \subseteq S$ such that:

(i) Selection S^* fits budget: $\sum_{i \in S^*} \text{size}(i) \leq B$

(ii) Selection S^* has maximum value: $\sum_{i \in S^*} \text{profit}(i)$ is maximized

Let us denote the item with the highest profit by $p_{\text{max}} = \max_{i \in \{1, \ldots, n\}} \text{profit}(i)$. Now let’s consider items i with $\text{size}(i) > B$. Clearly these items cannot be chosen due to the size constraint. Therefore we can remove them and relabel the remaining items, in $O(n)$ time. Thus without loss of generality we assume $\text{size}(i) \leq B, \forall i \in \{1, \ldots, n\}$.

Observe that $p_{\text{max}} \leq \text{profit}(OPT(I))$ because we can always pick at least one item, namely the highest valued one.

Example Denote the i-th item by $i : \langle \text{size}(i), \text{profit}(i) \rangle$. Consider an instance with $S = \{1 : \langle 10, 130 \rangle, 2 : \langle 7, 103 \rangle, 3 : \langle 6, 91 \rangle, 4 : \langle 4, 40 \rangle, 5 : \langle 3, 38 \rangle\}$ and budget $B = 10$. Then, the best subset $S^* = \{2 : \langle 7, 103 \rangle, 5 : \langle 3, 38 \rangle\} \subseteq S$ yields a total profit of $103 + 38 = 141$.

2.1.1 An exact algorithm via dynamic programming

The maximum achievable profit is at most np_{max}, as we can have at most n items, each having profit at most p_{max}. Define the size of a subset as the sum of the size of the sets involved. Using dynamic programming (DP), we can form an n-by-(np_{max}) matrix M where $M[i, p]$ is the smallest size of a subset chosen from $\{1, \ldots, i\}$ such that the total profit equals p. Trivially, set $M[1, \text{profit}(1)] = \text{size}(1)$ and $M[1, p] = \infty$ for $p \neq \text{profit}(1)$. To handle boundaries, define $M[i, j] = \infty$ for $j \leq 0$. Then, for $M[i + 1, p]$,

- If $\text{profit}(i + 1) > p$, then we cannot pick item $i + 1$.

So, $M[i + 1, p] = M[i, p]$.
2.1. KNAPSACK

- If \(\text{profit}(i+1) \leq p \), then we may pick item \(i+1 \).

 So, \(M[i+1, p] = \min\{M[i, p], \text{size}(i+1) + M[i, p - \text{profit}(i+1)]\} \).

Since each cell can be computed in \(O(1) \) using DP via the above recurrence, matrix \(M \) can be filled in \(O(n^2 p_{\text{max}}) \) and \(S^* \) may be extracted by back-tracing from \(M[n, np_{\text{max}}] \).

Remark This dynamic programming algorithm is not a PTAS because \(O(n^2 p_{\text{max}}) \) can be exponential in input problem size \(|I| \). Namely the number \(p_{\text{max}} \) which appears in the runtime is encoded by \(\log_2(p_{\text{max}}) \) bits in the input, thus is of order at most \(O(n) \). However the actual value can be of exponential size. As such, we call this DP algorithm a pseudo-polynomial time algorithm.

2.1.2 FPTAS via profit rounding

Algorithm 3 FPTAS-KNAPSACK\((S, B, \epsilon)\)

\[
\begin{align*}
&k \leftarrow \max\{1, \lfloor \frac{\epsilon}{p_{\text{max}} n} \rfloor\} & \triangleright \text{Choice of } k \text{ to be justified later} \\
&\text{for } i \in \{1, \ldots, n\} \text{ do} \\
&\quad \text{profit}'(i) = \lfloor \frac{\text{profit}(i)}{k} \rfloor & \triangleright \text{Round and scale the profits} \\
&\text{end for} \\
&\text{Run DP in Section 2.1.1 with } B, \text{ size}(i), \text{ and re-scaled } \text{profit}'(i). \\
&\text{return Items selected by DP}
\end{align*}
\]

FPTAS-KNAPSACK pre-processes the problem input by rounding down to the nearest multiple of \(k \) and then, since every value is now a multiple of \(k \), scaling down by a factor of \(k \). FPTAS-KNAPSACK then calls the DP algorithm described in Section 2.1.1. Since we scaled down the profits, the new maximum profit is \(k p_{\text{max}} \), hence the DP now runs in \(O(n^2 p_{\text{max}}) \).

To obtain a FPTAS, we pick \(k = \max\{1, \lfloor \frac{p_{\text{max}}}{n} \rfloor\} \) so that FPTAS-KNAPSACK is a \((1 - \epsilon)\)-approximation algorithm and runs in \(\text{poly}(n, \frac{1}{\epsilon}) \).

Theorem 2.4. FPTAS-KNAPSACK is a FPTAS for the knapsack problem.

Proof. Suppose we are given a knapsack instance \(I = (S, B) \). Let \(\text{loss}(i) \) denote the decrease in value by using rounded \(\text{profit}'(i) \) for item \(i \). By the profit rounding definition, for each item \(i \),

\[
\text{loss}(i) = \text{profit}(i) - k \cdot \lfloor \frac{\text{profit}(i)}{k} \rfloor \leq k
\]

Then, over all \(n \) items,
\begin{align*}
\sum_{i=1}^{n} \text{loss}(i) &\leq nk \\
\text{loss}(i) &\leq k \text{ for any item } i \\
&< \epsilon \cdot p_{max} \\
&\leq \epsilon \cdot \text{profit}(OPT(I)) \quad \text{Since } p_{max} \leq \text{profit}(OPT(I))
\end{align*}

Thus, \(\text{profit}(\text{FPTAS-Knapsack}(I)) \geq (1 - \epsilon) \cdot \text{profit}(OPT(I)) \).
Furthermore, \(\text{FPTAS-Knapsack} \) runs in \(O(n^2 p_{max} k) = O(n^3) \in \text{poly}(n, \frac{1}{\epsilon}) \).

Remark \(k = 1 \) when \(p_{max} \leq \frac{n}{\epsilon} \). In that case, no rounding occurs and the DP finds the exact solution in \(O(n^2 p_{max}) \in O(n^3) \in \text{poly}(n, \frac{1}{\epsilon}) \) time.

Example Recall the earlier example where budget \(B = 10 \) and \(S = \{ 1 : \langle 10, 130 \rangle, 2 : \langle 7, 103 \rangle, 3 : \langle 6, 91 \rangle, 4 : \langle 4, 40 \rangle, 5 : \langle 3, 38 \rangle \} \). For \(\epsilon = \frac{1}{2} \), one would set \(k = \max \{ 1, \lceil \frac{p_{max}}{n} \rceil \} = \max \{ 1, \lceil \frac{130}{5} \rceil \} = 13 \). After rounding, we have \(S' = \{ 1 : \langle 10, 10 \rangle, 2 : \langle 7, 7 \rangle, 3 : \langle 6, 7 \rangle, 4 : \langle 4, 3 \rangle, 5 : \langle 3, 2 \rangle \} \). The optimum subset from \(S' \) is \(\{ 3 : \langle 6, 7 \rangle, 4 : \langle 4, 3 \rangle \} \) which translates to a total profit of \(91 + 40 = 131 \) in the original problem. As expected, \(131 = \text{profit}(\text{FPTAS-Knapsack}(S)) \geq (1 - \frac{1}{2}) \cdot \text{profit}(OPT(I)) = 70.5 \).

2.2 Bin packing

Definition 2.5 (Bin packing problem). Given a set \(S \) with \(n \) items where each item \(i \) has \(\text{size}(i) \in (0, 1] \), find the minimum number of unit-sized bins (i.e. bins of size 1) that can hold all \(n \) items.

For any problem instance \(I \), let \(OPT(I) \) be an optimal bin assignment and \(|OPT(I)| \) be the corresponding minimum number of bins required. One can see that \(\sum_{i=1}^{n} \text{size}(i) \leq |OPT(I)|. \)

Example Consider \(S = \{ 0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4 \} \), where \(|S| = n = 9 \). Since \(\sum_{i=1}^{n} \text{size}(i) = 3 \), at least 3 bins are needed. One can verify that 3 bins suffice: \(b_1 = b_2 = b_3 = \{ 0.5, 0.4, 0.1 \} \). Hence, \(|OPT(S)| = 3 \).
2.2. BIN PACKING

2.2.1 First-fit: A 2-approximation algorithm

FirstFit processes items one-by-one, creating new bins if an item cannot fit into one of the existing bins. For a unit-sized bin b, we use $\text{size}(b)$ to denote the sum of the size of items that are put into b, and define $\text{free}(b) = 1 - \text{size}(b)$.

Algorithm 4 FirstFit(S)

$B \rightarrow \emptyset$ \hfill \triangleright Collection of bins

for $i \in \{1, \ldots, n\}$ do

if $\text{size}(i) \leq \text{free}(b)$ for some bin $b \in B$. then

Pick the smallest such b.

$\text{free}(b) \leftarrow \text{free}(b) - \text{size}(i)$ \hfill \triangleright Put item i into existing bin b

else

$B \leftarrow B \cup \{b'\}$ \hfill \triangleright Put item i into a fresh bin b'

$\text{free}(b') = 1 - \text{size}(i)$

end if

end for

return B

Lemma 2.6. Using FirstFit, at most one bin is less than half-full. That is, $|\{b \in B : \text{size}(b) \leq \frac{1}{2}\}| \leq 1$, where B is the output of FirstFit.

Proof. Suppose, for contradiction, that there are two bins b_i and b_j such that $i < j$, $\text{size}(b_i) \leq \frac{1}{2}$ and $\text{size}(b_j) \leq \frac{1}{2}$. Then, FirstFit could have put all items in b_j into b_i, and would not have created b_j. This is a contradiction. \(\square\)

Theorem 2.7. FirstFit is a 2-approximation algorithm for bin packing.

Proof. Suppose FirstFit terminates with $|B| = m$ bins. By Lemma 2.6, $\sum_{i=1}^{n} \text{size}(i) > \frac{m-1}{2}$, as $m-1$ bins are at least half-full. Since $\sum_{i=1}^{n} \text{size}(i) \leq$
CHAPTER 2. APPROXIMATION SCHEMES

\(|OPT(I)|\), we have

\[m - 1 < 2 \cdot \sum_{i=1}^{n} \text{size}(i) \leq 2 \cdot |OPT(I)| \]

That is, \(m \leq 2 \cdot |OPT(I)| \) since both \(m \) and \(|OPT(I)| \) are integers.

Recall example with \(S = \{0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4\} \). First-Fit will use 4 bins: \(b_1 = \{0.5, 0.1, 0.1, 0.1\}, b_2 = b_3 = \{0.5, 0.4\}, b_4 = \{0.4\} \). As expected, \(4 = |\text{FirstFit}(S)| \leq 2 \cdot |OPT(S)| = 6 \).

\[
\begin{array}{cccc}
0.1 & 0.4 & 0.4 & \\
0.1 & & & \\
0.1 & & & \\
0.5 & 0.5 & 0.5 & 0.4 \\
\end{array}
\]

\(b_1 \quad b_2 \quad b_3 \quad b_4 \)

Remark If we first sort the item weights in non-increasing order, then one can show that running First-Fit on the sorted item weights will yield a \(\frac{3}{2} \)-approximation algorithm for bin packing. See footnote for details\(^1\).

It is natural to wonder whether we can do better than a \(\frac{3}{2} \)-approximation. Unfortunately, unless \(P = NP \), we cannot do so efficiently. To prove this, we show that if we can efficiently derive a \((\frac{3}{2} - \epsilon) \)-approximation for bin packing, then the partition problem (which is \(NP \)-hard) can be solved efficiently.

Definition 2.8 (Partition problem). Given a multiset \(S \) of (possibly repeated) positive integers \(x_1, \ldots, x_n \), is there a way to partition \(S \) into \(S_1 \) and \(S_2 \) such that \(\sum_{x \in S_1} x = \sum_{x \in S_2} x ? \)

Theorem 2.9. It is \(NP \)-hard to solve bin packing with an approximation factor better than \(\frac{3}{2} \).

\(^1\)Curious readers can read the following lecture notes for proof on First-Fit-Decreasing: http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin Packing.pdf

https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%
20Combinatorial%20Optimization/12-BinPacking.pdf
2.2. BIN PACKING

Proof. Suppose some polytime algorithm A solves bin packing with a $(\frac{3}{2} - \epsilon)$-approximation for $\epsilon > 0$. Given an instance of the partition problem with $S = \{x_1, \ldots, x_n\}$, let $X = \sum_{i=1}^{n} x_i$. Define a bin packing instance $S' = \left\{ \frac{2x_1}{X}, \ldots, \frac{2x_n}{X} \right\}$. Since $\sum_{x \in S'} x = 2$, at least two bins are required. By construction, one can bipartition S if and only if only two bins are required to pack S'. Since A gives a $(\frac{3}{2} - \epsilon)$-approximation, if OPT on S' returns 2 bins, then A on S' will return also $\lfloor 2 \cdot (\frac{3}{2} - \epsilon) \rfloor = 2$ bins. Therefore, as A solves bin-packing with a $(\frac{3}{2} - \epsilon)$-approximation in polytime, we would get an algorithm for solving the partition problem in polytime. Contradiction.

In the following sections, we work towards a PTAS for bin packing whose runtime will be exponential in $\frac{1}{\epsilon}$. To do this, we first consider two simplifying assumptions and design algorithms for them. Then, we adapt the algorithm to a PTAS by removing the assumptions one at a time.

2.2.2 Special case 1: Exact solving with A_{ϵ}

In this section, we make the following two assumptions:

Assumption (1) All items have at least size ϵ, for some $\epsilon > 0$.

Assumption (2) There are only k different possible sizes (k is a constant).

Define $M = \lceil \frac{1}{\epsilon} \rceil$. By assumption 1, there are at most M items in a bin. In addition, define $R = \binom{M+k}{M}$. By assumption 2, there are at most R items arrangements in one bin. Since at most n bins are needed, the total number of bin configurations is at most $\binom{n+R}{R} \leq (n+R)^R = O(n^R)$. Since k and ϵ are constant, R is also constant and one can enumerate over all possible bin configurations (denote this algorithm as A_ϵ) to exactly solve bin packing, in this special case, in $O(n^R) \in \text{poly}(n)$ time.

Remark 1 The number of configurations are computed by solving combinatorics problems of the following form: If x_i defines the number of items of the i^{th} possible size, how many non-negative integer solutions are there to $x_1 + \cdots + x_n \leq k$? This type of problem can be solved by counting how many ways there are to put n indistinguishable balls into k distinguishable bins and is generally known under stars and bars.\(^2\)

Remark 2 The number of bin configurations is computed out of n bins (i.e., 1 bin for each item). One may use less than n bins, but this upper bound suffices for our purposes.

2.2.3 Special case 2: PTAS

In this section, we remove the second assumption and require only:

Assumption (1) All items have at least size ϵ, for some $\epsilon > 0$.

Our goal is to reuse the exact algorithm A_ϵ on a slightly modified problem instance J that satisfies both assumptions. For this, we partition the items into k non-overlapping groups of $Q \leq \lfloor ne^2 \rfloor$ elements each. To obtain a constant number of different sizes, we round the sizes of all items in a group to the largest size of that group, resulting in at most k different item sizes. We can now call A_ϵ on J to solve the modified instance exactly in polynomial time. Since J only rounds up sizes, $A_\epsilon(J)$ will yield a satisfying bin assignment for instance I, with possibly “spare slack”. The entire procedure is described in PTAS-BinPacking.

Algorithm 5 PTAS-BinPacking

\[
\begin{align*}
k &\leftarrow \left\lfloor \frac{1}{\epsilon^2} \right\rfloor \\
Q &\leftarrow \lfloor ne^2 \rfloor \\
&\text{Partition } n \text{ items into } k \text{ non-overlapping groups, each with } \leq Q \text{ items} \\
&\text{for } i \in \{1, \ldots, k\} \text{ do} \\
&\quad i_{\text{max}} \leftarrow \max_{\text{item } j \text{ in group } i} \text{size}(j) \\
&\quad \text{for item } j \text{ in group } i \text{ do} \\
&\quad\quad \text{size}(j) \leftarrow i_{\text{max}} \\
&\quad \text{end for} \\
&\text{end for} \\
&\text{Denote the modified instance as } J \\
&\text{return } A_\epsilon(J)
\end{align*}
\]

It remains to show that the solution to the modified instance $OPT(J)$ yields a $(1+\epsilon)$-approximation of $OPT(I)$. For this, consider another modified instance J' that is defined analogously to J only with rounded down item sizes. Thus, since we rounded down item sizes in J', we have $|OPT(J')| \leq |OPT(I)|$.

Lemma 2.10. $|OPT(J)| \leq |OPT(J')| + Q$
2.2. BIN PACKING

![Partition items into k groups, each with \(\leq Q \) items; Label groups in ascending sizes; \(J \) rounds up item sizes, \(J' \) rounds down item sizes.]

Proof. Label the \(k \) groups in \(J \) by \(J_1, \ldots, J_k \) where the items in \(J_i \) have smaller sizes than the items in \(J_{i+1} \). Label the \(k \) groups in \(J' \) similarly. See Figure 2.1. For \(i = \{1, \ldots, k-1\} \), since the smallest item in \(J'_{i+1} \) has size at least as large as the largest item in \(J_i \), any valid packing for \(J'_{i+1} \) serves as a valid packing for the \(J_{i+1} \). For \(J_k \) (the largest \(\leq Q \) items of \(J \)), we use separate bins for each of its items (hence the additive \(Q \) term).

Lemma 2.11. \(|OPT(J)| \leq |OPT(I)| + Q \)

Proof. By Lemma 2.10 and the fact that \(|OPT(J')| \leq |OPT(I)| \).

Theorem 2.12. PTAS-BinPacking is an \((1 + \epsilon)\)-approximation algorithm for bin packing with assumption (1).

Proof. By Assumption (1), all item sizes are at least \(\epsilon \), so \(|OPT(I)| \geq n \epsilon \). Then, \(Q = \lfloor n \epsilon^2 \rfloor \leq \epsilon \cdot |OPT(I)| \). Apply Lemma 2.11.

2.2.4 General case: PTAS

We now consider the general case where we do not make any assumptions on the problem instance \(I \). First, we lower bound the minimum item size by putting aside all items with size smaller than \(\min\{\frac{1}{2}, \frac{\epsilon}{2}\} \), thus allowing us to use PTAS-BinPacking. Then, we add back the small items in a greedy manner with FirstFit to complete the packing.

Theorem 2.13. Full-PTAS-BinPacking uses \((1 + \epsilon)|OPT(I)| + 1 \) bins

Proof. If FirstFit does not open a new bin, the theorem trivially holds. Suppose FirstFit opens a new bin (using \(m \) bins in total), then we know that at least \((m-1) \) bins are strictly more than \((1 - \epsilon')\)-full.
Algorithm 6 Full-PTAS-BinPacking($I = S, \epsilon$)
\[
\begin{align*}
\epsilon' & \leftarrow \min\{\frac{1}{2}, \frac{\epsilon}{2}\} \quad \triangleright \text{See analysis why we chose such an } \epsilon' \\
X & \leftarrow \text{Items with size } < \epsilon' \quad \triangleright \text{Ignore small items} \\
P & \leftarrow \text{PTAS-BinPacking}(S \setminus X, \epsilon') \quad \triangleright \text{By Theorem 2.12,} \\
P' & \leftarrow \text{Using FIRST Fit, add items in } X \text{ to } P \quad \triangleright \text{Handle small items} \\
\text{return Resultant packing } P'
\end{align*}
\]

\[
|OPT(I)| \geq \sum_{i=1}^{n} \text{size}(i) \quad \text{Lower bound on } |OPT(I)| \\
\quad > (m - 1)(1 - \epsilon') \quad \text{From above observation}
\]

Hence,
\[
\begin{align*}
m & < \frac{|OPT(I)|}{1 - \epsilon'} + 1 \quad \text{Rearranging} \\
& < |OPT(I)| \cdot (1 + 2\epsilon') + 1 \quad \text{Since } \frac{1}{1 - \epsilon'} \leq 1 + 2\epsilon', \text{ for } \epsilon' \leq \frac{1}{2} \\
& \leq (1 + \epsilon) \cdot |OPT(I)| + 1 \quad \text{By choice of } \epsilon' = \min\{\frac{1}{2}, \frac{\epsilon}{2}\}
\end{align*}
\]

\[
\square
\]

2.3 Minimum makespan scheduling

Definition 2.14 (Minimum makespan scheduling problem). Given n jobs, let $I = \{p_1, \ldots, p_n\}$ be the set of processing times, where job i takes p_i units of time to complete. Find an assignment for the n jobs to m identical machines such that the completion time (i.e. makespan) is minimized.

For any problem instance I, let $OPT(I)$ be an optimal job assignment and $|OPT(I)|$ be the corresponding makespan. One can see that:

- $p_{\text{max}} = \max_{i \in \{1, \ldots, n\}} p_i \leq |OPT(I)|$
- $\frac{1}{m} \sum_{i=1}^{n} p_i \leq |OPT(I)|$

Denote $L(I) = \max\{p_{\text{max}}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$ as the larger lower bound. Then, $L(I) \leq |OPT(I)|$.

2.3. MINIMUM MAKESPAN SCHEDULING

Remark To prove approximation factors, it is often useful to relate to lower bounds of $|OPT(I)|$.

Example Suppose we have 7 jobs with processing times $I = \{p_1 = 3, p_2 = 4, p_3 = 5, p_4 = 6, p_5 = 4, p_6 = 5, p_7 = 6\}$ and $m = 3$ machines. Then, the lower bound on the makespan is $L(I) = \max\{6, 11\} = 11$. This is achievable by allocating $M_1 = \{p_1, p_3, p_5\}$, $M_2 = \{p_3, p_4\}$, $M_3 = \{p_6, p_7\}$.

Graham [Gra66] is a 2-approximation greedy algorithm for the minimum makespan scheduling problem. With slight modifications, we improve it to ModifiedGraham, a $\frac{4}{3}$-approximation algorithm. Finally, we end off the section with a PTAS for minimum makespan scheduling.

2.3.1 Greedy approximation algorithms

Algorithm 7 \textsc{Graham}(I = \{p_1, \ldots, p_n\}, m)

$M_1, \ldots, M_m \leftarrow \emptyset$ \hfill \triangleright All machines are initially free

\begin{itemize}
 \item for $i \in \{1, \ldots, n\}$ do
 \begin{itemize}
 \item $j \leftarrow \arg\min_{j \in \{1, \ldots, m\}} \sum_{p \in M_j} p$ \hfill \triangleright Pick the least loaded machine
 \item $M_j \leftarrow M_j \cup \{p_i\}$ \hfill \triangleright Add job i to this machine
 \end{itemize}
 \end{itemize}

end for

return M_1, \ldots, M_m

Theorem 2.15. \textsc{Graham} is a 2-approximation algorithm.

Proof. Suppose the last job that finishes (which takes p_{last} time) running was assigned to machine M_j. Define $t = (\sum_{p \in M_j} p) - p_{\text{last}}$ as the makespan of machine M_j before the last job was assigned to it. That is,

$$|\textsc{Graham}(I)| = t + p_{\text{last}}$$
As Graham assigns greedily to the least loaded machine, all machines take at least \(t \) time, hence

\[
t \leq \frac{1}{m} \sum_{i=1}^{n} p_i \leq |OPT(I)|.
\]

as \(\frac{1}{m} \sum_{i=1}^{n} p_i \) is the average of work done on each machine. Since \(p_{\text{last}} \leq p_{\text{max}} \leq |OPT(I)| \), we have \(|\text{GRAHAM}(I)| = t + p_{\text{last}} \leq 2 \cdot |OPT(I)| \).

Corollary 2.16. \(|OPT(I)| \leq 2 \cdot L(I) \), where \(L(I) = \max \{ p_{\text{max}}, \frac{1}{m} \sum_{i=1}^{n} p_i \} \).

Proof. From the proof of Theorem 2.15, we have \(|\text{GRAHAM}(I)| = t + p_{\text{last}} \) and \(t \leq \frac{1}{m} \sum_{i=1}^{n} p_i \). Since \(|OPT(I)| \leq |\text{GRAHAM}(I)| \) and \(p_{\text{last}} \leq p_{\text{max}} \), we have

\[
|OPT(I)| \leq \frac{1}{m} \sum_{i=1}^{n} p_i + p_{\text{max}} \leq 2 \cdot L(I).
\]

Recall the example with \(I = \{ p_1 = 3, p_2 = 4, p_3 = 5, p_4 = 6, p_5 = 4, p_6 = 5, p_7 = 6 \} \) and \(m = 3 \). Graham will schedule \(M_1 = \{ p_1, p_4 \} \), \(M_2 = \{ p_2, p_5, p_7 \} \), \(M_3 = \{ p_3, p_6 \} \), yielding a makespan of 14. As expected, \(14 = |\text{GRAHAM}(I)| \leq 2 \cdot |OPT(I)| = 22 \).

Remark The approximation for Graham is loose because we have no guarantees on \(p_{\text{last}} \) beyond \(p_{\text{last}} \leq p_{\text{max}} \). This motivates us to order the job timings in descending order (see ModifiedGraham).

Algorithm 8

\[
\text{ModifiedGraham}(I = \{ p_1, \ldots, p_n \}, m)
\]

\[
I' \leftarrow I \text{ in descending order}
\]

\[
\text{return} \ \text{Graham}(I', m)
\]

Let \(p_{\text{last}} \) be the last job that finishes running. We consider the two cases \(p_{\text{last}} > \frac{1}{3} \cdot |OPT(I)| \) and \(p_{\text{last}} \leq \frac{1}{3} \cdot |OPT(I)| \) separately for the analysis.
Lemma 2.17. If \(p_{\text{last}} > \frac{1}{3} \cdot |OPT(I)| \), then \(|\text{ModifiedGraham}(I)| = |OPT(I)|\).

Proof. For \(m \geq n \), \(|\text{ModifiedGraham}(I)| = |OPT(I)|\) by trivially putting one job on each machine. For \(m < n \), without loss of generality\(^3\), we can assume that every machine has a job.

Suppose, for a contradiction, that \(|\text{ModifiedGraham}(I)| > |OPT(I)|\). Then, there exists a sequence of jobs with descending sizes \(I = \{p_1, \ldots, p_n\} \) such that the last, smallest job \(p_n \) causes ModifiedGraham to have a makespan larger than \(OPT(I) \). That is, \(|\text{ModifiedGraham}(I \setminus \{p_n\})| \leq |OPT(I)|\) and \(p_{\text{last}} = p_n \). Let \(C \) be the configuration of machines after ModifiedGraham assigned \(\{p_1, \ldots, p_{n-1}\} \).

Observation 1 In \(C \), each machine has either 1 or 2 jobs.

If there exists machine \(M_i \) with \(\geq 3 \) jobs, \(M_i \) will take \(> |OPT(I)| \) time because all jobs take \(> \frac{1}{3} \cdot |OPT(I)| \) time. This contradicts the assumption \(|\text{ModifiedGraham}(I \setminus \{p_n\})| \leq |OPT(I)|\).

Let us denote the jobs that are alone in \(C \) as heavy jobs, and the machines they are on as heavy machines.

Observation 2 In \(OPT(I) \), all heavy jobs are alone.

By assumption on \(p_n \), we know that assigning \(p_n \) to any machine (in particular, the heavy machines) in \(C \) causes the makespan to exceed \(OPT(I) \). Since \(p_n \) is the smallest job, no other job can be assigned to the heavy machines otherwise \(|OPT(I)| \) cannot be attained by \(OPT(I) \).

Suppose there are \(k \) heavy jobs occupying a machine each in \(OPT(I) \). Then, there are \(2(m - k) + 1 \) jobs (two non-heavy jobs per machine in \(C \), and \(p_n \)) to be distributed across \(m - k \) machines. By the pigeonhole principle, at least one machine \(M^* \) will get \(\geq 3 \) jobs in \(OPT(I) \). However, since the smallest job \(p_n \) takes \(> \frac{1}{3} \cdot |OPT(I)| \) time, \(M^* \) will spend \(> |OPT(I)| \) time. This is a contradiction. \(\square \)

Theorem 2.18. ModifiedGraham is a \(\frac{4}{3} \)-approximation algorithm.

Proof. By similar arguments as per Theorem 2.15, \(|\text{ModifiedGraham}(I)| = t + p_{\text{last}} \leq \frac{4}{3} \cdot |OPT(I)| \) when \(p_{\text{last}} \leq \frac{1}{3} \cdot |OPT(I)| \). Meanwhile, when \(p_{\text{last}} > \frac{4}{3} \cdot |OPT(I)| \), \(|\text{ModifiedGraham}(I)| = |OPT(I)|\) by Lemma 2.17. \(\square \)

\(^3\) Suppose there is a machine \(M_i \) without a job, then there must be another machine \(M_j \) with more than 1 job (by pigeonhole principle). Shifting one of the jobs from \(M_j \) to \(M_i \) will not increase the makespan.

\(^4\) If adding \(p_j \) for some \(j < n \) already causes \(|\text{ModifiedGraham}(\{p_1, \ldots , p_j\})| > |OPT(I)|\), we can truncate \(I \) to \(\{p_1, \ldots , p_j\} \) so that \(p_{\text{last}} = p_j \). Since \(p_j \geq p_n > \frac{1}{3} \cdot |OPT(I)| \), the antecedent still holds.
CHAPTER 2. APPROXIMATION SCHEMES

Recall the example with $I = \{p_1 = 3, p_2 = 4, p_3 = 5, p_4 = 6, p_5 = 4, p_6 = 5, p_7 = 6\}$ and $m = 3$. Putting I in decreasing sizes, $I' = \{p_4 = 6, p_7 = 6, p_3 = 5, p_6 = 5, p_2 = 4, p_5 = 4, p_1 = 3\}$ and ModifiedGraham will schedule $M_1 = \{p_4, p_2, p_1\}$, $M_2 = \{p_7, p_5\}$, $M_3 = \{p_3, p_6\}$, yielding a makespan of 13. As expected, $13 = |\text{ModifiedGraham}(I)| \leq \frac{4}{3} \cdot |\text{OPT}(I)| = 14.666\ldots$

2.3.2 PTAS for minimum makespan scheduling

Recall that any makespan scheduling instance (I, m) has a lower bound $L(I) = \max\{p_{\max}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$. From Corollary 2.16, we know that $|\text{OPT}(I)| \in [L(I), 2L(I)]$. Let $\text{Bin}(I, t)$ be the minimum number of bins of size t that can hold all jobs. By associating job processing times with item sizes, and scaling bin sizes up by a factor of t, we can relate $\text{Bin}(I, t)$ to the bin packing problem. One can see that $\text{Bin}(I, t)$ is monotonically decreasing in t and $|\text{OPT}(I)|$ is the minimum t such that $\text{Bin}(I, t) = m$. Hence, to get a $(1 + \epsilon)$-approximate schedule, it suffices to find a $t \leq (1 + \epsilon) \cdot |\text{OPT}(I)|$ such that $\text{Bin}(I, t) \leq m$.

Given t, PTAS-Makespan transforms a makespan scheduling instance into a bin packing instance, then solves for an approximate bin packing to yield an approximate scheduling. By ignoring small jobs (jobs of size $\leq \epsilon t$) and rounding job sizes down to the closest power of $(1 + \epsilon) : t \epsilon \cdot \{1, (1 + \epsilon), \ldots, (1 + \epsilon)^h = \epsilon^{-1}\}$, exact bin packing A_c with size t bins is used yielding a packing P. To get a bin packing for the original job sizes, PTAS-Makespan follows P’s bin packing but uses bins of size $t(1+\epsilon)$ to account for the rounded down job sizes. Suppose jobs 1 and 2 with sizes p_1 and p_2 were rounded down to p'_1 and p'_2, and P assigns them to a same bin (i.e., $p'_1 + p'_2 \leq t$). Then, due to the rounding process, their original sizes should also fit into a size $t(1+\epsilon)$ bin since $p_1 + p_2 \leq p'_1(1+\epsilon) + p'_2(1+\epsilon) \leq t(1+\epsilon)$. Finally, small jobs are handled using FirstFit. Let $\alpha(I, t, \epsilon)$ be the final bin configuration produced by PTAS-Makespan on parameter t and $|\alpha(I, t, \epsilon)|$ be the number of bins used. Since $|\text{OPT}(I)| \in [L, 2L]$, there will be a $t \in \{L, L + \epsilon L, L + 2\epsilon L, \ldots, 2L\}$ such that $|\alpha(I, t, \epsilon)| \leq \text{Bin}(I, t) \leq m$ bins (see Lemma 2.19 for the first
Algorithm 9 PTAS-Makespan($I = \{p_1, \ldots, p_n\}, m$)

$L = \max\{p_{\max}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$

for $t \in \{L, L + \epsilon L, L + 2\epsilon L, L + 3\epsilon L, \ldots, 2L\}$ do
 $I' \leftarrow I \setminus \{\text{Jobs with sizes } \leq \epsilon t\} := I \setminus X$ \text{\triangleright} Ignore small jobs
 $h \leftarrow \lceil \log_{1+\epsilon}(\frac{1}{t}) \rceil$ \text{\triangleright} To partition $(\epsilon t, t]$ into powers of $(1 + \epsilon)$
 for $p_i \in I'$ do
 $k \leftarrow \text{Largest } j \in \{0, \ldots, h\}$ such that $p_i \geq t(1 + \epsilon)^j$
 $p_i \leftarrow t(1 + \epsilon)^k$ \text{\triangleright} Round down job size
 end for
 $P \leftarrow A_\ell(I')$ \text{\triangleright} Use A_ℓ from Section 2.2.2 with size t bins
 $\alpha(I, t, \epsilon) \leftarrow \text{Use bins of size } t(1 + \epsilon) \text{ to emulate } P \text{ on original sizes}$
 $\alpha(I, t, \epsilon) \leftarrow \text{Using FirstFit, add items in } X \text{ to } \alpha(I, t, \epsilon)$
 if $\alpha(I, t, \epsilon) \text{ uses } \leq m \text{ bins}$ then
 return Assign jobs to machines according to $\alpha(I, t, \epsilon)$
 end if
end for

Lemma 2.19. For any $t > 0$, $|\alpha(I, t, \epsilon)| \leq \text{Bin}(I, t)$.

Proof. If FirstFit does not open a new bin, then $|\alpha(I, t, \epsilon)| \leq \text{Bin}(I, t)$ since $\alpha(I, t, \epsilon)$ uses an additional $(1 + \epsilon)$ buffer on each bin. If FirstFit opens a new bin (say, totalling b bins), then there are at least $(b - 1)$ produced bins from A_ℓ (exact solving on rounded down items of size $\geq \epsilon t$) that are more than $(t(1 + \epsilon) - \epsilon t) = t$-full. Hence, any bin packing algorithm must use strictly more than $\frac{(b-1)t}{t} = b - 1 \text{ bins.}$ In particular, $\text{Bin}(I, t) \geq b = |\alpha(I, t, \epsilon)|$. \hfill \square

Theorem 2.20. PTAS-Makespan is a $(1 + \epsilon)$-approximation for the minimum makespan scheduling problem.

Proof. Let $t^* = |\text{OPT}(I)|$ and t_α be the minimum $t \in \{L, L + \epsilon L, L + 2\epsilon L, \ldots, 2L\}$ such that $|\alpha(I, t, \epsilon)| \leq m$. It follows that $t_\alpha \leq t^* + \epsilon L$. Since $L \leq |\text{OPT}(I)|$ and since we consider bins of final size $t_\alpha(1 + \epsilon)$ to accommodate for the original sizes, we have $|\text{PTAS-Makespan}(I)| = t_\alpha(1 + \epsilon) \leq (t^* + \epsilon L)(1 + \epsilon) \leq (1 + \epsilon)^2 \cdot |\text{OPT}(I)|$. For $\epsilon \in [0, 1]$ we have $(1 + \epsilon)^2 \leq (1 + 3\epsilon)$ and thus the statement follows. \hfill \square

Theorem 2.21. PTAS-Makespan runs in $\text{poly}(|I|, m)$ time.

Proof. There are at most $\max\{p_{\max}, \frac{1}{m} \sum_{i=1}^{n} p_i\} \in \mathcal{O}(\frac{1}{\epsilon})$ values of t to try. Filtering small jobs and rounding remaining jobs takes $\mathcal{O}(n)$. From the previous lecture, A_ℓ runs in $\mathcal{O}(\frac{1}{\epsilon} \cdot n \frac{h+1}{h-1})$ and FirstFit runs in $\mathcal{O}(nm)$. \hfill \square
Chapter 3

Randomized approximation schemes

In this chapter, we study the class of algorithms which extends FPTAS by allowing randomization.

Definition 3.1 (Fully polynomial randomized approximation scheme (FPRAS)). For cost metric c, an algorithm A is a FPRAS if

- For any $\epsilon > 0$, $\Pr[|c(A(I)) - c(OPT(I))| \leq \epsilon \cdot c(OPT(I))] \geq \frac{3}{4}$
- A runs in $\text{poly}(|I|, \frac{1}{\epsilon})$

Intuition An FPRAS computes, with a high enough probability, a solution which is not too far from the optimal one in a reasonable time.

Remark The probability $\frac{3}{4}$ above is somewhat arbitrary. Finding an algorithm that produce computes a good enough solution with any probability $\frac{1}{2} + \alpha$ for $\alpha > 0$ suffices. For any $\delta > 0$, one can invoke $O(\frac{1}{\delta})$ independent copies of $A(I)$ then return the median. Then, the median is a correct estimation with probability greater than $1 - \delta$. This is known as probability amplification (see section 6.1).

3.1 DNF counting

Definition 3.2 (Disjunctive Normal Form (DNF)). A formula F on n Boolean variables x_1, \ldots, x_n is said to be in DNF if

- $F = C_1 \lor \cdots \lor C_m$ is a disjunction of clauses
• ∀i ∈ [m], a clause \(C_i = l_{i,1} \land \cdots \land l_{i,|C_i|} \) is a conjunction of literals

• ∀i ∈ [n], a literal \(l_i \in \{x_i, \neg x_i\} \) is either the variable \(x_i \) or its negation.

Let \(\alpha : [n] \rightarrow \{0, 1\} \) be a truth assignment on the \(n \) variables. Formula \(F \) is said to be satisfiable if there exists a satisfying assignment \(\alpha \) such that \(F[\alpha] = 1 \).

Any clause with both \(x_i \) and \(\neg x_i \) is trivially false. As they can be removed in a single scan of \(F \), assume that \(F \) does not contain such trivial clauses.

Example Let \(F = (x_1 \land \neg x_2 \land \neg x_4) \lor (x_2 \land x_3) \lor (\neg x_3 \land \neg x_4) \) be a Boolean formula on 4 variables, where \(C_1 = x_1 \land \neg x_2 \land \neg x_4 \), \(C_2 = x_2 \land x_3 \) and \(C_3 = \neg x_3 \land \neg x_4 \). Drawing the truth table, one sees that there are 9 satisfying assignments to \(F \), one of which is \(\alpha(1) = 1, \alpha(2) = \alpha(3) = \alpha(4) = 0 \).

Remark Another common normal form for representing Boolean formulas is the **Conjunctive Normal Form** (CNF). Formulas in CNF are conjunctions of disjunctions (as compared to disjunctions of conjunctions in DNF). In particular, one can determine in polynomial time whether a DNF formula is satisfiable but it is \(\mathcal{NP} \)-complete to determine if a CNF formula is satisfiable.

Suppose \(F \) is a Boolean formula in DNF. Let \(f(F) = |\{\alpha : F[\alpha] = 1\}| \) be the number of satisfying assignments to \(F \). If we let \(S_i = \{\alpha : C_i[\alpha] = 1\} \) be the set of satisfying assignments to clause \(C_i \), then we see that \(f(F) = |\bigcup_{i=1}^m S_i| \). In the above example, \(|S_1| = 2, |S_2| = 4, |S_3| = 4, \) and \(f(F) = 9 \).

In the following, we present two failed attempts to compute \(f(F) \) and then present DNF-COUNT, a FPRAS for DNF counting via sampling.

3.1.1 Failed attempt 1: Principle of Inclusion-Exclusion

By definition of \(f(F) = |\bigcup_{i=1}^m S_i| \), one may be tempted to apply the Principle of Inclusion-Exclusion to expand:

\[
|\bigcup_{i=1}^m S_i| = \sum_{i=1}^m |S_i| - \sum_{i<j} |S_i \cap S_j| + \ldots
\]

However, there are exponentially many terms and there exist instances where truncating the sum yields arbitrarily bad approximation.
3.1. DNF COUNTING

3.1.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick \(k \) assignments uniformly at random (u.a.r.). Let \(X_i \) be the indicator variable whether the \(i \)-th assignment satisfies \(F \), and \(X = \sum_{i=1}^{k} X_i \) be the total number of satisfying assignments out of the \(k \) sampled assignments. A u.a.r. assignment is satisfying with probability \(\frac{f(F)}{2^n} \). By linearity of expectation, \(\mathbb{E}(X) = k \cdot \frac{f(F)}{2^n} \). Unfortunately, since we only sample \(k \in \text{poly}(n, \frac{1}{\epsilon}) \) assignments, \(\frac{k}{2^n} \) can be exponentially small. This means that we need exponentially many samples for \(\mathbb{E}(X) \) to be a good estimate of \(f(F) \). Thus, this approach will not yield a FPRAS for DNF counting.

3.1.3 An FPRAS for DNF counting via sampling

Consider an \(m \)-by-\(f(F) \) boolean matrix \(M \) where

\[
M[i,j] = \begin{cases}
1 & \text{if assignment } \alpha_j \text{ satisfies clause } C_i \\
0 & \text{otherwise}
\end{cases}
\]

Remark We are trying to estimate \(f(F) \) and thus will never be able to build the matrix \(M \). It is used here as an explanation of why this attempt works.

<table>
<thead>
<tr>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>...</th>
<th>(\alpha_{f(F)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>(C_2)</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>(C_3)</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>(C_m)</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.1: Visual representation of the matrix \(M \). Red 1’s indicate the topmost clause \(C_i \) satisfied for each assignment \(\alpha_j \)

Let \(|M| \) denote the total number of 1’s in \(M \); it is the sum of the number of clauses satisfied by each assignment that satisfies \(F \). Recall that \(S_i \) is the set of assignments that satisfy \(C_i \). Since \(|S_i| = 2^{n-|C_i|} \), \(|M| = \sum_{i=1}^{m} |S_i| = \sum_{i=1}^{m} 2^{n-|C_i|} \).

We are now interested in the number of “topmost” 1’s in the matrix, where “topmost” is defined column-wise. As every column represents a satisfying assignment, at least one clause must be satisfied for each assignment and this
proves that there are exactly $f(F)$ “topmost” 1’s in the matrix M (i.e. one by column).

DNF-Count estimates the fraction of “topmost” 1’s in M, then returns this fraction times $|M|$ as an estimate of $f(F)$.

To estimate the fraction of “topmost” 1’s:

- Pick a clause according to its length: shorter clauses are more likely.
- Uniformly select a satisfying assignment for the picked clause by flipping coins for variables not in the clause.
- Check if the assignment satisfies any clauses with a smaller index.

Algorithm 10 DNF-Count(F, ϵ)

\[
\begin{align*}
X & \leftarrow 0 & \triangleright \text{Empirical number of “topmost” 1’s sampled} \\
\text{for } k = \frac{9m}{\epsilon^2} \text{ times do} \\
& C_i \leftarrow \text{Sample one of } m \text{ clauses, where } \Pr[C_i \text{ chosen}] = \frac{2^{n-|C_i|}}{|M|} \\
& \alpha_j \leftarrow \text{Sample one of } 2^{n-|C_i|} \text{ satisfying assignments of } C_i \\
& \text{IsTopmost} \leftarrow \text{True} \\
& \text{for } l \in \{1, \ldots, i - 1\} \text{ do} \\
& \quad \text{if } C_l[\alpha] = 1 \text{ then} \\
& \quad \quad \text{IsTopmost} \leftarrow \text{False} \\
& \quad \text{end if} \\
& \text{end for} \\
& \quad \text{if } \text{IsTopmost} \text{ then} \\
& \quad \quad X \leftarrow X + 1 \\
& \text{end if} \\
\text{end for} \\
\text{return } \frac{|M| \cdot X}{k}
\end{align*}
\]

Lemma 3.3. DNF-Count samples a ‘1’ in the matrix M uniformly at random at each step.

Proof. Recall that the total number of 1’s in M is $|M| = \sum_{i=1}^{m} |S_i| = \sum_{i=1}^{m} 2^{n-|C_i|}$.
3.1. DNF COUNTING

Pr[C_i and α_j are chosen] = Pr[C_i is chosen] · Pr[α_j is chosen|C_i is chosen]
= \frac{2^{n-|C_i|}}{\sum_{i=1}^{m} 2^{n-|C_i|}} \cdot \frac{1}{2^{n-|C_i|}}
= \frac{1}{\sum_{i=1}^{m} 2^{n-|C_i|}}
= \frac{1}{|M|}

\textbf{Lemma 3.4.} In DNF-Count, \Pr \left[\left\lvert \frac{|M| \cdot X}{k} - f(F) \right\rvert \leq \epsilon \cdot f(F) \right] \geq \frac{3}{4}.

\textit{Proof.} Let X_i be the indicator variable whether the i-th sampled assignment is “topmost”, where $p = \Pr[X_i = 1]$. By Lemma 3.3, $p = \Pr[X_i = 1] = \frac{f(F)}{|M|}$.

Let $X = \sum_{i=1}^{k} X_i$ be the empirical number of “topmost” 1’s. Then, $\mathbb{E}(X) = kp$ by linearity of expectation. By picking $k = \frac{9m}{\epsilon^2}$,

\[
\Pr \left[\left\lvert \frac{|M| \cdot X}{k} - f(F) \right\rvert \geq \epsilon \cdot f(F) \right] = \Pr \left[\left\lvert X - \frac{k \cdot f(F)}{|M|} \right\rvert \geq \epsilon \cdot \frac{k}{|M|} \cdot f(F) \right] \leq 2 \exp \left(-\frac{\epsilon^2 kp}{3} \right)
\]

By Chernoff bound

Since $k = \frac{9m}{\epsilon^2}$ and $p = \frac{f(F)}{|M|}$, $|M| \leq m \cdot f(F)$

Negating, we get:

\[
\Pr \left[\left\lvert \frac{|M| \cdot X}{k} - f(F) \right\rvert \leq \epsilon \cdot f(F) \right] \geq 1 - \frac{1}{4} = \frac{3}{4}
\]

\textbf{Lemma 3.5.} DNF-Count runs in $\text{poly}(F, \frac{1}{\epsilon}) = \text{poly}(n, m, \frac{1}{\epsilon})$ time.
Proof. There are $k \in \mathcal{O}(\frac{m}{\epsilon^2})$ iterations. In each iteration, we spend $\mathcal{O}(m + n)$ sampling C_i and α_j, and $\mathcal{O}(nm)$ for checking if a sampled α_j is “topmost”. In total, DNF-COUNT runs in $\mathcal{O}(\frac{m^2n(m+n)}{\epsilon^2})$ time.

Theorem 3.6. DNF-COUNT is a FPRAS for DNF counting.

Proof. By Lemmas 3.4 and 3.5.

3.2 Counting graph colorings

Definition 3.7 (Graph coloring). Let $G = (V, E)$ be a graph on $|V| = n$ vertices and $|E| = m$ edges. Denote the maximum degree as Δ. A valid q-coloring of G is an assignment $c : V \rightarrow \{1, \ldots, q\}$ such that adjacent vertices have different colors. i.e., If u and v are adjacent in G, then $c(u) \neq c(v)$.

Example (3-coloring of the Petersen graph)

For $q \geq \Delta + 1$, one can obtain a valid q-coloring by sequentially coloring a vertex with available colors greedily. In this section, we show a FPRAS for counting $f(G)$, the number of graph coloring of a given graph G, under the assumption that we have $q \geq 2\Delta + 1$ colors.

3.2.1 Sampling a coloring uniformly

When $q \geq 2\Delta + 1$, the Markov chain approach in SAMPLECOLOR allows us to sample a random coloring in $\mathcal{O}(n \log \frac{2}{\epsilon})$ steps.

Claim 3.8. For $q \geq 2\Delta + 1$, the distribution of colorings returned by SAMPLECOLOR is ϵ-close to a uniform distribution on all valid colorings.

Proof. Beyond the scope of this course.
Algorithm 11 SampleColor\((G = (V, E), \epsilon)\)

Greedyly color the graph

for \(k = \mathcal{O}(n \log \frac{n}{\epsilon}) \) times do
 Pick a random vertex \(v \) uniformly at random from \(V \)
 Pick u.a.r. an available color \(\triangledown \) Different from the colours in \(N(v) \)
 Color \(v \) with new color \(\triangledown \) May end up with same color

end for

return Coloring

3.2.2 FPRAS for \(q \geq 2\Delta + 1 \) and \(\Delta \geq 2 \)

Fix an arbitrary ordering of edges in \(E \). For \(i = \{1, \ldots, m\} \), let \(G_i = (V, E_i) \) be a graph such that \(E_i = \{e_1, \ldots, e_i\} \) is the set of the first \(i \) edges. Define \(\Omega_i = \{c : c \text{ is a valid coloring for } G_i\} \) as the set of all valid colorings of \(G_i \), and denote \(r_i = \frac{\lvert \Omega_i \rvert}{\lvert \Omega_{i-1} \rvert} \).

We will estimate the number of graph coloring as

\[
 f(G) = \lvert \Omega_m \rvert = \lvert \Omega_0 \rvert \cdot \frac{\lvert \Omega_1 \rvert}{\lvert \Omega_0 \rvert} \cdot \ldots \cdot \frac{\lvert \Omega_m \rvert}{\lvert \Omega_{m-1} \rvert} = \lvert \Omega_0 \rvert \cdot \Pi_{i=1}^{m} r_i = q^n \cdot \Pi_{i=1}^{m} r_i
\]

One can see that \(\Omega_i \subseteq \Omega_{i-1} \) as removal of \(e_i \) in \(G_{i-1} \) can only increase the number of valid colorings. Furthermore, suppose \(e_i = \{u, v\} \), then \(\Omega_{i-1} \setminus \Omega_i = \{c : c(u) = c(v)\} \). Fix the coloring of, say the lower-indexed vertex, \(u \). Then, there are \(\geq q - \Delta \geq 2\Delta + 1 - \Delta = \Delta + 1 \) possible recolorings of \(v \) in \(G_i \).

Hence,

\[
\frac{\lvert \Omega_i \rvert}{\lvert \Omega_{i-1} \rvert} \geq (\Delta + 1) \cdot \frac{\lvert \Omega_{i-1} \setminus \Omega_i \rvert}{\lvert \Omega_i \rvert} \\
\geq (\Delta + 1) \cdot (\lvert \Omega_{i-1} \setminus \Omega_i \rvert - \lvert \Omega_i \rvert) \\
\geq (\Delta + 1) \cdot \lvert \Omega_i \rvert \\
\geq (\Delta + 2) \cdot \lvert \Omega_i \rvert \\
\geq \frac{\Delta + 1}{\Delta + 2}
\]

This implies that \(r_i = \frac{\lvert \Omega_i \rvert}{\lvert \Omega_{i-1} \rvert} \geq \frac{\Delta + 1}{\Delta + 2} \geq \frac{3}{2} \) since \(\Delta \geq 2 \).

Since \(f(G) = \lvert \Omega_m \rvert = \lvert \Omega_0 \rvert \cdot \frac{\lvert \Omega_1 \rvert}{\lvert \Omega_0 \rvert} \cdot \ldots \cdot \frac{\lvert \Omega_m \rvert}{\lvert \Omega_{m-1} \rvert} = \lvert \Omega_0 \rvert \cdot \Pi_{i=1}^{m} r_i = q^n \cdot \Pi_{i=1}^{m} r_i \), if we can find a good estimate of \(r_i \) for each \(r_i \) with high probability, then we have a FPRAS for counting the number of valid graph colorings for \(G \).

We now define Color-Count\((G, \epsilon)\) (algorithm 12) as an algorithm that estimates the number of valid coloring of graph \(G \) using \(q \geq 2\Delta + 1 \) colors.
Algorithm 12 Color-Count(G, ϵ)

\[
\hat{r}_1, \ldots, \hat{r}_m \leftarrow 0 \quad \triangleright \text{Estimates for } r_i
\]

for $i = 1, \ldots, m$

\[
\text{for } k = \frac{128m^3}{\epsilon^2} \text{ times do}
\]

\[
c \leftarrow \text{Sample coloring of } G_{i-1} \quad \triangleright \text{Using SampleColor}
\]

if c is a valid coloring for G_i then

\[
\hat{r}_i \leftarrow \hat{r}_i + \frac{1}{k} \quad \triangleright \text{Update empirical count of } r_i = \frac{|\Omega_i|}{|\Omega_{i-1}|}
\]

end if

end for

end for

return $q^n \Pi_{i=1}^m \hat{r}_i$

Lemma 3.9. For all $i \in \{1, \ldots, m\}$, \(\Pr[|\hat{r}_i - r_i| \leq \frac{\epsilon}{2m} \cdot r_i] \geq \frac{3}{4m} \).

Proof. Let X_j be the indicator variable whether the j-th sampled coloring for Ω_{i-1} is a valid coloring for Ω_i, where $p = \Pr[X_j = 1]$. From above, we know that $p = \Pr[X_j = 1] = \frac{|\Omega_i|}{|\Omega_{i-1}|} \geq \frac{3}{4}$. Let $X = \sum_{j=1}^k X_j$ be the empirical number of colorings that is valid for both Ω_{i-1} and Ω_i, captured by $k \cdot \hat{r}_i$. Then, $E(X) = kp$ by linearity of expectation. Picking $k = \frac{128m^3}{\epsilon^2}$,

\[
\Pr\left[|X - kp| \geq \frac{\epsilon}{2m} kp\right] \leq 2 \exp\left(-\frac{(\frac{\epsilon}{2m})^2 kp}{3}\right) \quad \text{By Chernoff bound}
\]

\[
= 2 \exp\left(-\frac{32mp}{3}\right) \quad \text{Since } k = \frac{128m^3}{\epsilon^2}
\]

\[
\leq 2 \exp(-8m) \quad \text{Since } p \geq \frac{3}{4}
\]

\[
\leq \frac{1}{4m} \quad \text{Since } \exp(-x) \leq \frac{1}{x} \text{ for } x > 0
\]

Dividing by k and negating, we have:

\[
\Pr\left[|\hat{r}_i - r_i| \leq \frac{\epsilon}{2m} \cdot r_i\right] = 1 - \Pr\left[|X - kp| \geq \frac{\epsilon}{2m} kp\right] \geq 1 - \frac{1}{4m} = \frac{3}{4m}
\]

Lemma 3.10. Color-Count runs in $\text{poly}(F, \frac{1}{\epsilon}) = \text{poly}(n, m, \frac{1}{\epsilon})$ time.

Proof. There are m r_i’s to estimate. Each estimation has $k \in \mathcal{O}(\frac{m^3}{\epsilon^2})$ iterations. In each iteration, we spend $\mathcal{O}(n \log \frac{n}{\epsilon})$ time to sample a coloring c of G_{i-1} and $\mathcal{O}(m)$ time to check if c is a valid coloring for G_i. In total, Color-Count runs in $\mathcal{O}(mk(n \log \frac{n}{\epsilon} + m)) = \text{poly}(n, m, \frac{1}{\epsilon})$ time. \(\square \)
3.2. COUNTING GRAPH COLORINGS

Theorem 3.11. **Color-Count** is a FPRAS for counting the number of valid graph colorings when $q \geq 2\Delta + 1$ and $\Delta \geq 2$.

Proof. By Lemma 3.10, **Color-Count** runs in $\text{poly}(n, m, \frac{1}{\epsilon})$ time. Since $1 + x \leq e^x$ for all real x, we have $(1 + \frac{x}{2m})^m \leq e^\frac{x}{2} \leq 1 + \epsilon$. The last inequality is because $e^x \leq 1 + 2x$ for $0 \leq x \leq 1.25643$. On the other hand, Bernoulli’s inequality tells us that $(1 - \frac{\epsilon}{2m})^m \geq 1 - \frac{\epsilon}{2} \geq 1 - \epsilon$. We know from the proof of Lemma 3.9, $\Pr[|\hat{r}_i - r_i| \leq \frac{\epsilon}{2m} \cdot r_i] \geq 1 - \frac{1}{4m}$ for any estimate r_i. Therefore,

$$
\Pr [\|q^n \Pi_{i=1}^m \hat{r}_i - f(G)\| \leq \epsilon f(G)] = \Pr [\|q^n \Pi_{i=1}^m \hat{r}_i - f(G)\| \leq \epsilon f(G)] \\
\geq \left(1 - \frac{1}{4m}\right)^m \\
\geq \frac{3}{4}
$$

\[\Box \]

Remark Recall from Claim 3.8 that **SampleColor** actually gives an approximate uniform coloring. A more careful analysis can absorb the approximation of **SampleColor** under **Color-Count**’s ϵ factor.

\[\text{See https://www.wolframalpha.com/input/?i=e%5Ex+%3C%3D+1%2B2x} \]
Chapter 4

Rounding ILPs

Linear programming (LP) and integer linear programming (ILP) are versatile models but with different solving complexities — LPs are solvable in polynomial time while ILPs are \mathcal{NP}-hard.

Definition 4.1 (Linear program (LP)). The canonical form of an LP is

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

where x is the vector of n variables (to be determined), b and c are vectors of (known) coefficients, and A is a (known) matrix of coefficients. $c^T x$ and $\text{obj}(x)$ are the objective function and objective value of the LP respectively. For an optimal variable assignment x^*, $\text{obj}(x^*)$ is the optimal value.

ILPs are defined similarly with the additional constraint that variables take on integer values. As we will be relaxing ILPs into LPs, to avoid confusion, we use y for ILP variables to contrast against the x variables in LPs.

Definition 4.2 (Integer linear program (ILP)). The canonical form of an ILP is

\[
\begin{align*}
\text{minimize} & \quad c^T y \\
\text{subject to} & \quad Ay \geq b \\
& \quad y \geq 0 \\
& \quad y \in \mathbb{Z}^n
\end{align*}
\]

where y is the vector of n variables (to be determined), b and c are vectors of (known) coefficients, and A is a (known) matrix of coefficients. $c^T y$ and $\text{obj}(y)$ are the objective function and objective value of the LP respectively. For an optimal variable assignment y^*, $\text{obj}(y^*)$ is the optimal value.

37
Remark We can define LPs and ILPs for maximization problems similarly. One can also solve maximization problems with a minimization LPs using the same constraints but negated objective function. The optimal value from the solved LP will then be the negation of the maximized optimal value.

In this chapter, we illustrate how one can model set cover and multi-commodity routing as ILPs, and how to perform rounding to yield approximations for these problems. As before, Chernoff bounds will be a useful inequality in our analysis toolbox.

4.1 Minimum set cover

Recall the minimum set cover problem and the example from Section 1.1.

Example

Suppose there are \(n = 5 \) vertices and \(m = 4 \) subsets \(S = \{S_1, S_2, S_3, S_4\} \), where the cost function is defined as \(c(S_i) = i^2 \). Then, the minimum set cover is \(S^* = \{S_1, S_2, S_3\} \) with a cost of \(c(S^*) = 14 \).

In Section 1.1, we saw that a greedy selection of sets that minimizes the price-per-item of remaining sets gave an \(H_n \)-approximation for set cover. Furthermore, in the special cases where \(\Delta = \max_{i \in [m]} \text{degree}(S_i) \) and \(f = \max_{i \in [n]} \text{degree}(x_i) \) are small, one can obtain \(H_{\Delta} \)-approximation and \(f \)-approximation respectively.

We now show how to formulate set cover as an ILP, reduce it into a LP, and how to round the solutions to yield an approximation to the original set cover instance. Consider the following ILP:
4.1. **Minimum Set Cover**

ILP\text{Set cover}

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m} y_i \cdot c(S_i) \quad \triangleright \text{Cost of chosen set cover} \\
\text{subject to} & \quad \sum_{i : e_j \in S_i} y_i \geq 1 \quad \forall j \in [n] \quad \triangleright \text{Every item } e_j \text{ is covered} \\
& \quad y_i \in \{0, 1\} \quad \forall i \in [m] \quad \triangleright \text{Indicator whether set } S_i \text{ is chosen}
\end{align*}
\]

Upon solving ILP\text{Set cover}, the set \(\{S_i : i \in [n] \land y_i^* = 1\} \) is the optimal solution for a given set cover instance. However, as solving ILPs is \(\mathcal{NP} \)-hard, we consider relaxing the integral constraint by replacing binary \(y_i \) variables by real-valued/fractional \(x_i \in [0, 1] \). Such a relaxation will yield the corresponding LP:

LP\text{Set cover}

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m} x_i \cdot c(S_i) \quad \triangleright \text{Cost of chosen fractional set cover} \\
\text{subject to} & \quad \sum_{i : e_j \in S_i} x_i \geq 1 \quad \forall j \in [n] \quad \triangleright \text{Every item } e_j \text{ is fractionally covered} \\
& \quad 0 \leq x_i \leq 1 \quad \forall i \in [m] \quad \triangleright \text{Relaxed indicator variables}
\end{align*}
\]

Since LPs can be solved in polynomial time, we can find the optimal fractional solution to LP\text{Set cover} in polynomial time.

Observation As the set of solutions of ILP\text{Set cover} is a subset of LP\text{Set cover}, \(\text{obj}(x^*) \leq \text{obj}(y^*) \).

Example The corresponding ILP for the example set cover instance is:

\[
\begin{align*}
\text{minimize} & \quad y_1 + 4y_2 + 9y_3 + 16y_4 \\
\text{subject to} & \quad y_1 + y_4 \geq 1 \quad \triangleright \text{Sets covering } e_1 \\
& \quad y_1 + y_3 \geq 1 \quad \triangleright \text{Sets covering } e_2 \\
& \quad y_3 \geq 1 \quad \triangleright \text{Sets covering } e_3 \\
& \quad y_2 + y_4 \geq 1 \quad \triangleright \text{Sets covering } e_4 \\
& \quad y_1 + y_4 \geq 1 \quad \triangleright \text{Sets covering } e_5 \\
& \quad \forall i \in \{1, \ldots, 4\}, y_i \in \{0, 1\}
\end{align*}
\]
CHAPTER 4. ROUNding ILPs

After relaxing:

\[
\begin{align*}
\text{minimize} & \quad x_1 + 4x_2 + 9x_3 + 16x_4 \\
\text{subject to} & \quad x_1 + x_4 \geq 1 \\
& \quad x_1 + x_3 \geq 1 \\
& \quad x_3 \geq 1 \\
& \quad x_2 + x_4 \geq 1 \\
& \quad x_1 + x_4 \geq 1 \\
\forall i \in \{1, \ldots, 4\}, 0 \leq x_i \leq 1 & \quad \text{< Relaxed indicator variables}
\end{align*}
\]

Solving it using a LP solver\(^1\) yields: \(x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 0\). Since the solved \(x^*\) are integral, \(x^*\) is also the optimal solution for the original ILP. In general, the solved \(x^*\) may be fractional, which does not immediately yield a set selection.

We now describe two ways to round the fractional assignments \(x^*\) into binary variables \(y\) so that we can interpret them as proper set selections.

4.1.1 (Deterministic) Rounding for small \(f\)

We round \(x^*\) as follows:

\[
\forall i \in [m], \text{ set } y_i = \begin{cases}
1 & \text{if } x^*_i \geq \frac{1}{f} \\
0 & \text{else}
\end{cases}
\]

Theorem 4.3. The rounded \(y\) is a feasible solution to ILP\(\text{Set cover}\).

Proof. Since \(x^*\) is a feasible (not to mention, optimal) solution for LP\(\text{Set cover}\), in each constraint, there is at least one \(x^*_i\) that is greater or equal to \(\frac{1}{f}\). Hence, every element is covered by some set \(y_i\) in the rounding. \(\square\)

Theorem 4.4. The rounded \(y\) is a \(f\)-approximation to ILP\(\text{Set cover}\).

Proof. By the rounding, \(y_i \leq f \cdot x^*_i, \forall i \in [m]\). Therefore,

\[
\text{obj}(y) \leq f \cdot \text{obj}(x^*) \leq f \cdot \text{obj}(y^*)
\]

\(\square\)

\(^1\)Using Microsoft Excel. See tutorial: http://faculty.sfasu.edu/fisherwarre/lp_solver.html

Or, use an online LP solver such as: http://online-optimizer.appspot.com/?model= builtin:default.mod
4.1. MINIMUM SET COVER

4.1.2 (Randomized) Rounding for general f

If f is large, having a f-approximation algorithm from the previous subsection may be unsatisfactory. By introducing randomness in the rounding process, we show that one can obtain a $\ln(n)$-approximation (in expectation) with arbitrarily high probability through probability amplification.

Consider the following rounding procedure:

1. Interpret each x^*_i as probability for picking S_i. That is, $\Pr[y_i = 1] = x^*_i$.
2. For each i, independently set y_i to 1 with probability x^*_i.

Theorem 4.5. $E(obj(y)) = obj(x^*)$

Proof.

$E(obj(y)) = E(\sum_{i=1}^{m} y_i \cdot c(S_i))$

$= \sum_{i=1}^{m} E(y_i) \cdot c(S_i)$ \hspace{1cm} By linearity of expectation

$= \sum_{i=1}^{m} \Pr(y_i = 1) \cdot c(S_i)$ \hspace{1cm} Since each y_i is an indicator variable

$= \sum_{i=1}^{m} x^*_i \cdot c(S_i)$ \hspace{1cm} Since $\Pr(y_i = 1) = x^*_i$

$= obj(x^*)$

\[\square\]

Although the rounded selection to yield an objective cost that is close to the optimum (in expectation) of the LP, we need to consider whether all constraints are satisfied.

Theorem 4.6. For any $j \in [n]$, item e_j is not covered w.p. $\leq e^{-1}$.

Proof. For any $j \in [n]$,

$\Pr[\text{Item } e_j \text{ not covered}] = \Pr[\sum_{i : e_j \in S_i} y_i = 0]$

$= \Pi_{i : e_j \in S_i} (1 - x^*_i)$ \hspace{1cm} Since the y_i are chosen independently

$\leq \Pi_{i : e_j \in S_i} e^{-x^*_i}$ \hspace{1cm} Since $(1 - x) \leq e^{-x}$

$= e^{-\sum_{i : e_j \in S_i} x^*_i}$

$\leq e^{-1}$
The last inequality holds because the optimal solution \mathbf{x}^* satisfies the jth constraint in the LP that $\sum_{i : e_j \in S_i} x_i^* \geq 1$.

Since $e^{-1} \approx 0.37$, we would expect the rounded \mathbf{y} not to cover several items. However, one can amplify the success probability by considering independent roundings and taking the union (See \textsc{ApxSetCoverILP}).

Algorithm 13 ApxSetCoverILP(\mathcal{U}, S, c)

ILP\textsubscript{Set cover} \leftarrow Construct ILP of problem instance
LP\textsubscript{Set cover} \leftarrow Relax integral constraints on indicator variables \mathbf{y} to \mathbf{x}
$\mathbf{x}^* \leftarrow$ Solve LP\textsubscript{Set cover}
$T \leftarrow \emptyset$ \hspace{1cm} ▷ Selected subset of S

for $k \cdot \ln(n)$ times (for any constant $k > 1$) do
 for $i \in [m]$ do
 $y_i \leftarrow$ Set to 1 with probability x_i^*
 if $y_i = 1$ then
 $T \leftarrow T \cup \{S_i\}$ \hspace{1cm} ▷ Add to selected sets T
 end if
 end for
end for
return T

Similar to Theorem 4.4, we can see that $\mathbb{E}(\text{obj}(T)) \leq (k \cdot \ln(n)) \cdot \text{obj}(\mathbf{y}^*)$. Furthermore, Markov’s inequality tells us that the probability of $\text{obj}(T)$ being z times larger than its expectation is at most $\frac{1}{z}$.

Theorem 4.7. \textsc{ApxSetCoverILP} gives a valid set cover w.p. $\geq 1 - n^{1-k}$.

Proof. For all $j \in [n],$

$$\Pr[\text{Item} \ e_j \text{ not covered by } T] = \Pr[\text{e} \text{ not covered by all } k \ln(n) \text{ roundings}]$$
$$\leq (e^{-1})^{k \ln(n)}$$
$$= n^{-k}$$

Taking union bound over all n items,

$$\Pr[T \text{ is not a valid set cover}] \leq \sum_{i=1}^{n} n^{-k} = n^{1-k}$$

So, T is a valid set cover with probability $\geq 1 - n^{1-k}$. \hfill \Box
4.2. MINIMIZING CONGESTION IN MULTI-COMMODITY ROUTING

Note that the success probability of $1 - n^{1-k}$ can be further amplified by taking several independent samples of APXSetCoverILP, then returning the lowest cost valid set cover sampled. With z samples, the probability that all repetitions fail is less than $n^{z(1-k)}$, so we succeed w.p. $\geq 1 - n^{z(1-k)}$.

4.2 Minimizing congestion in multi-commodity routing

A multi-commodity routing (MCR) problem involves routing multiple (s_i, t_i) flows across a network with the goal of minimizing congestion, where congestion is defined as the largest ratio of flow over capacity of any edge in the network. In this section, we discuss two variants of the multi-commodity routing problem. In the first variant (special case), we are given the set of possible paths P_i for each (s_i, t_i) source-target pairs. In the second variant (general case), we are given only the network. In both cases, [RT87] showed that one can obtain an approximation of $\mathcal{O}\left(\frac{\log(m)}{\log \log(m)}\right)$ with high probability.

Definition 4.8 (Multi-commodity routing problem). Consider a directed graph $G = (V, E)$ where $|E| = m$ and each edge $e = (u, v) \in E$ has a capacity $c(u, v)$. The in-set/out-set of a vertex v is denoted as $\text{in}(v) = \{(u, v) \in E : u \in V\}$ and $\text{out}(v) = \{(v, u) \in E : u \in V\}$ respectively. Given k triplets (s_i, t_i, d_i), where $s_i \in V$ is the source, $t_i \in V$ is the target, and $d_i \geq 0$ is the demand for the ith commodity respectively, denote $f(e, i) \in [0, 1]$ as the fraction of d_i that is flowing through edge e. The task is to minimize the congestion parameter λ by finding paths p_i for each $i \in [k]$, such that:

(i) **(Valid sources):** $\sum_{e \in \text{out}(s_i)} f(e, i) - \sum_{e \in \text{in}(s_i)} f(e, i) = 1, \forall i \in [k]$

(ii) **(Valid sinks):** $\sum_{e \in \text{in}(t_i)} f(e, i) - \sum_{e \in \text{out}(t_i)} f(e, i) = 1, \forall i \in [k]$

(iii) **(Flow conservation):** For each commodity $i \in [k]$,

$$\sum_{e \in \text{out}(v)} f(e, i) - \sum_{e \in \text{in}(v)} f(e, i) = 0, \quad \forall e \in E, \forall v \in V \setminus \{s_i \cup t_i\}$$

(iv) **(Single path):** All demand for commodity i passes through a single path p_i (no repeated vertices).

(v) **(Congestion factor):** $\forall e \in E, \sum_{i=1}^{k} d_i 1_{e \in p_i} \leq \lambda \cdot c(e)$, where indicator $1_{e \in p_i} = 1 \iff e \in p_i$.

(vi) **(Minimum congestion):** λ is minimized.
Example Consider the following flow network with $k = 3$ commodities with edge capacities as labelled:

For demands $d_1 = d_2 = d_3 = 10$, there exists a flow assignment such that the total demands flowing on each edge is below its capacity:
Although the assignment attains congestion $\lambda = 1$ (due to edge (s_3, a)), the path assignments for commodities 2 and 3 violate the property of “single path”. Forcing all demand of each commodity to flow through a single path, we have a minimum congestion of $\lambda = 1.25$ (due to edges (s_3, s_2) and (a, t_2)):
4.2.1 Special case: Given sets of $s_i - t_i$ paths \mathcal{P}_i

For each commodity $i \in [k]$, we are to select a path p_i from a given set of valid paths \mathcal{P}_i, where each edge in all paths in \mathcal{P}_i has capacities $\geq d_i$. Because we intend to pick a single path for each commodity to send all demands through, constraints (i)-(iii) of MCR are fulfilled trivially. Using $y_{i,p}$ as indicator variables whether path $p \in \mathcal{P}_i$ is chosen, we can model the following ILP:

\[\text{ILP}_{\text{MCR-Given-Paths}} \]

\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad \sum_{i=1}^{k} \left(d_i \cdot \sum_{p \in \mathcal{P}_i, e \in p} y_{i,p} \right) \leq \lambda \cdot c(e) & \forall e \in E \quad \triangleleft (2) \\
& \quad \sum_{p \in \mathcal{P}_i} y_{i,p} = 1 & \forall i \in [k] \quad \triangleleft (3) \\
& \quad y_{i,p} \in \{0, 1\} & \forall i \in [k], p \in \mathcal{P}_i \quad \triangleleft (4)
\end{align*}

\begin{itemize}
\item \(\triangleleft (1)\) Congestion parameter λ
\item \(\triangleleft (2)\) Congestion factor relative to selected paths
\item \(\triangleleft (3)\) Exactly one path chosen from each \mathcal{P}_i
\item \(\triangleleft (4)\) Indicator variable for path $p \in \mathcal{P}_i$
\end{itemize}

Relax the integral constraint on $y_{i,p}$ to $x_{i,p} \in [0, 1]$ and solve the corresponding LP. Define $\lambda^* = \text{obj}(\text{LP}_{\text{MCR-Given-Paths}})$ and denote x^* as a fractional path.
4.2. MINIMIZING CONGESTION IN MULTI-COMMODITY ROUTING

selection that achieves λ^*. To obtain a valid path selection, for each commodity $i \in [k]$, pick path $p \in \mathcal{P}_i$ with weighted probability $\frac{x_{i,p}^*}{\sum_{p \in \mathcal{P}_i} x_{i,p}^*} = x_{i,p}^*$. Note that by constraint (3), $\sum_{p \in \mathcal{P}_i} x_{i,p}^* = 1$.

Remark 1 For a fixed i, a path is selected exclusively (only one!) (cf. set cover’s roundings where we may pick multiple sets for an item).

Remark 2 The weighted sampling is independent across different commodities. That is, the choice of path amongst \mathcal{P}_i does not influence the choice of path amongst \mathcal{P}_j for $i \neq j$.

Theorem 4.9. $\Pr[\text{obj}(y) \geq \frac{2c \log m}{\log \log m} \max\{1, \lambda^*\}] \leq \frac{1}{m^c}$

Proof. Fix an arbitrary edge $e \in E$. For each commodity i, define an indicator variable $Y_{e,i}$ whether edge e is part of the chosen path for commodity i. By randomized rounding, $\Pr[Y_{e,i} = 1] = \sum_{p \in \mathcal{P}_i, e \in p} x_{i,p}^*$. Denoting $Y_e = \sum_{i=1}^k d_i \cdot Y_{e,i}$ as the total demand on edge e in all k chosen paths,

$$
\mathbb{E}(Y_e) = \mathbb{E}(\sum_{i=1}^k d_i \cdot Y_{e,i})
= \sum_{i=1}^k d_i \cdot \mathbb{E}(Y_{e,i}) \quad \text{By linearity of expectation}
= \sum_{i=1}^k d_i \sum_{p \in \mathcal{P}_i, e \in p} x_{i,p} \quad \text{Since } \Pr[Y_{e,i} = 1] = \sum_{p \in \mathcal{P}_i, e \in p} x_{i,p}
\leq \lambda^* \cdot c(e) \quad \text{By MCR constraint and optimality of the solved LP}
$$

For every edge $e \in E$, applying 2 the tight form of Chernoff bounds with $(1 + \epsilon) = \frac{2 \log n}{\log \log n}$ on variable $\frac{Y_e}{c(e)}$ gives

$$
\Pr[\frac{Y_e}{c(e)} \geq \frac{2c \log m}{\log \log m} \max\{1, \lambda^*\}] \leq \frac{1}{m^c}
$$

Finally, take union bound over all m edges.

4.2.2 General: Given only a network

In the general case, we may not be given path sets \mathcal{P}_i and there may be exponentially many $s_i - t_i$ paths in the network. However, we show that one can still formulate an ILP and round it (slightly differently) to yield the same approximation factor. Consider the following:

\[\text{ILP}_{\text{MCR-Given-Network}} \]

\[
\begin{align*}
\text{minimize} & \quad \lambda \\
\text{subject to} & \quad \sum_{e \in \text{out}(s_i)} f(e, i) - \sum_{e \in \text{in}(s_i)} f(e, i) = 1 \quad \forall i \in [k] \quad (1) \\
& \quad \sum_{e \in \text{in}(t_i)} f(e, i) - \sum_{e \in \text{out}(t_i)} f(e, i) = 1 \quad \forall i \in [k] \quad (2) \\
& \quad \sum_{e \in \text{out}(v)} f(e, 1) - \sum_{e \in \text{in}(v)} f(e, 1) = 0 \quad \forall e \in E, \quad (3) \\
& \quad \forall v \in V \setminus \{s_1 \cup t_1\} \\
& \quad \ldots \ldots \\
& \quad \forall v \in V \setminus \{s_k \cup t_k\} \\
& \quad \sum_{i=1}^{k} \left(d_i \cdot \sum_{p \in \mathcal{P}_i, e \in p} y_{i,p} \right) \leq \lambda \cdot c(e) \quad \forall e \in E \quad \text{As before} \\
& \quad \sum_{p \in \mathcal{P}_i} y_{i,p} = 1 \quad \forall i \in [k] \quad \text{As before} \\
& \quad y_{i,p} \in \{0, 1\} \quad \forall i \in [k], p \in \mathcal{P}_i \quad \text{As before}
\end{align*}
\]

\(\blacktriangleleft (1)\ \text{Congestion parameter } \lambda\)

\(\blacktriangleleft (2)\ \text{Valid sources}\)

\(\blacktriangleleft (3)\ \text{Valid sinks}\)

\(\blacktriangleleft (4)\ \text{Flow conservation}\)

Relax the integral constraint on $y_{i,p}$ to $x_{i,p} \in [0, 1]$ and solve the corresponding LP. To extract the path candidates \mathcal{P}_i for each commodity, perform flow decomposition\(^3\). For each extracted path p_i for commodity i, treat the minimum

\(^3\text{See } \url{https://www.youtube.com/watch?v=rgutzyA9JM4&t=1020s} \text{ (17:00 to 29:50) for a recap on flow decomposition.} \)
min_{e\in E_i} f(e, i) on the path as the selection probability (as per $x_{e,i}$ in the previous section). By selecting the path p_i with probability $\min_{e\in p_i} f(e, i)$, one can show by similar arguments as before that $\mathbb{E}(\text{obj}(y)) \leq \text{obj}(x^*) \leq \text{obj}(y^*)$.
Chapter 5

Probabilistic tree embedding

Trees are a special kind of graphs without cycles and some \(\mathcal{NP} \)-hard problems are known to admit exact polynomial time solutions on trees. Motivated by the existence of efficient algorithms on trees, one hopes to design the following framework for a general graph \(G = (V, E) \) with distance metric \(d_G(u, v) \) between vertices \(u, v \in V \):

1. Construct a tree \(T \)
2. Solve the problem on \(T \) efficiently
3. Map the solution back to \(G \)
4. Argue that the transformed solution from \(T \) is a good approximation for the exact solution on \(G \).

Ideally, we want to build a tree \(T \) such that \(d_G(u, v) \leq d_T(u, v) \) and \(d_T(u, v) \leq c \cdot d_G(u, v) \), where \(c \) is the stretch of the tree embedding. Unfortunately, such a construction is hopeless\(^1\).

Instead, we relax the hard constraint \(d_T(u, v) \leq c \cdot d_G(u, v) \) and consider a distribution over a collection of trees \(\mathcal{T} \), so that

- (Over-estimates cost): \(\forall u, v \in V, \forall T \in \mathcal{T}, d_G(u, v) \leq d_T(u, v) \)
- (Over-estimate by not too much): \(\forall u, v \in V, \mathbb{E}_{T \in \mathcal{T}}[d_T(u, v)] \leq c \cdot d_G(u, v) \)
- (\(\mathcal{T} \) is a probability space): \(\sum_{T \in \mathcal{T}} \Pr[T] = 1 \)

\(^1\)For a cycle \(G \) with \(n \) vertices, the excluded edge in a constructed tree will cause the stretch factor \(c \geq n - 1 \). Exercise 8.7 in [WS11]
CHAPTER 5. PROBABILISTIC TREE EMBEDDING

Bartal [Bar96] gave a construction\footnote{Theorem 8 in [Bar96]} for probabilistic tree embedding with poly-logarithmic stretch factor c, and proved\footnote{Theorem 9 in [Bar96]} that a stretch factor $c \in \Omega(\log n)$ is required for general graphs. A construction that yields $c \in \mathcal{O}(\log n)$, in expectation, was subsequently found by [FRT03].

5.1 A tight probabilistic tree embedding construction

In this section, we describe a probabilistic tree embedding construction due to [FRT03] with a stretch factor $c = \mathcal{O}(\log n)$. For a graph $G = (V, E)$, let the distance metric $d_G(u, v)$ be the distance between two vertices $u, v \in V$ and denote $\text{diam}(C) = \max_{u,v \in C} d_G(u, v)$ as the maximum distance between any two vertices $u, v \in C$ for any subset of vertices $C \subseteq V$. In particular, $\text{diam}(V)$ refers to the diameter of the whole graph. In the following, let $B(v, r) := \{u \in V : d_G(u, v) \leq r\}$ denote the ball of radius r around vertex v.

5.1.1 Idea: Ball carving

To sample an element of the collection \mathcal{T} we will recursively split our graph using a technique called ball carving.

Definition 5.1 (Ball carving). Given a graph $G = (V, E)$, a subset $C \subseteq V$ of vertices and upper bound D, where $\text{diam}(C) = \max_{u,v \in C} d_G(u, v) \leq D$, partition C into C_1, \ldots, C_l such that

(A) $\forall i \in \{1, \ldots, l\}, \max_{u,v \in C_i} d_G(u,v) \leq \frac{D}{2}$

(B) $\forall u, v \in V, \ Pr[u \text{ and } v \text{ not in same partition}] \leq \alpha \cdot \frac{d_G(u, v)}{D}$, for some α

Before using ball carving to construct a tree embedding with expected stretch α, we show that a reasonable value $\alpha \in \mathcal{O}(\log n)$ can be achieved.

5.1.2 Ball carving construction

The following algorithm concretely implements ball carving and thus gives a split of a given subset of the graph that satisfies properties (A) and (B) as defined.
Algorithm 14 BallCarving\((G = (V, E), C \subseteq V, D)\)

\[
\text{if } |C| = 1 \text{ then }
\]
\[
\quad \text{return } \text{The only vertex in } C
\]
\[
\text{else } \quad \triangleright \text{ Say there are } n \text{ vertices, where } n > 1
\]
\[
\quad \theta \leftarrow \text{Uniform random value from the range } [\frac{D}{8}, \frac{D}{4}]
\]
\[
\quad \text{Pick a random permutation } \pi \text{ on } C \triangleright \text{ Denote } \pi_i \text{ as the } i^{th} \text{ vertex in } \pi
\]
\[
\text{for } i \in [n] \text{ do}
\]
\[
\quad V_i \leftarrow B(\pi_i, \theta) \setminus \bigcup_{j=1}^{i-1} B(\pi_j, \theta) \quad \triangleright V_1, \ldots, V_n \text{ is a partition of } C
\]
\[
\text{end for}
\]
\[
\text{return } \text{Non-empty sets } V_1, \ldots, V_l \quad \triangleright V_i \text{ can be empty}
\]
\[
\text{end if}
\]
\[
\quad \triangleright \text{i.e. } V_i = \emptyset \iff \forall v \in B(\pi_i, \theta), [\exists j < i, v \in B(\pi_j, \theta)]
\]

Notation Let \(\pi : C \to \mathbb{N}\) be an ordering of the vertices \(C\). For vertex \(v \in C\), denote \(\pi(v)\) as \(v\)'s position in \(\pi\) and \(\pi_i\) as the \(i^{th}\) vertex. That is, \(v = \pi_{\pi(v)}\).

Example \(C = \{A, B, C, D, E, F\}\) and \(\pi(A) = 3, \pi(B) = 2, \pi(C) = 5, \pi(D) = 1, \pi(E) = 6, \pi(F) = 4\). Then \(\pi\) gives an ordering of these vertices as \((D, B, A, F, C, E)\) denoted as \(\pi\). \(E = \pi_6 = \pi_{\pi(E)}\).

Figure 5.1 illustrates the process of ball carving on a set of vertices \(C = \{N_1, N_2, \ldots, N_6\}\).

Claim 5.2. BallCarving\((G, C, D)\) returns partition \(V_1, \ldots, V_l\) such that

\[
\text{diam}(V_i) = \max_{u,v \in V_i} d_G(u,v) \leq \frac{D}{2}
\]

for all \(i \in \{1, \ldots, l\}\).

Proof. Since \(\theta \in [\frac{D}{8}, \frac{D}{4}]\), all constructed balls have diameters \(\leq \frac{D}{4} \cdot 2 = \frac{D}{2}\). \(\square\)

Definition 5.3 (Ball cut). A ball \(B(u, r)\) is cut if BallCarving puts the vertices in \(B(u, r)\) in at least two different partitions. We say \(V_i\) cuts \(B(u, r)\) if there exist \(w, y \in B(u, r)\) such that \(w \in V_i\) and \(y \notin V_i\).

Lemma 5.4. For any vertex \(u \in C\) and radius \(r \in \mathbb{R}^+\),

\[
\Pr[B(u, r) \text{ is cut in BallCarving}(G, C, D)] \leq O(\log n) \cdot \frac{r}{D}
\]

Proof. Let \(\theta\) be the randomly chosen ball radius and \(\pi\) be the random permutation on \(C\) in BallCarving. We give another ordering of vertices according to the increasing order of their distances from \(u\):

\(v_1, v_2, \ldots, v_n\), such that \(d_G(u, v_1) \leq d_G(u, v_2) \leq \cdots \leq d_G(u, v_n)\).
Figure 5.1: Ball carving on a set of vertices $C = \{N_1, N_2, \cdots, N_8\}$. The ordering of nodes is given by a random permutation π. In $Ball(N_1)$ there are vertices N_1, N_2, N_3. So $V_1 = \{N_1, N_2, N_3\}$. In $Ball(N_2)$ there is only N_3 not been carved by the former balls. So $V_2 = \{N_3\}$. All of vertices in $Ball(N_3)$ have been carved. So $V_3 = \phi$. In $Ball(N_4)$, only N_4 has not been carved. $V_4 = \{N_4\}$. In $Ball(N_5)$ all of vertices have been carved. $V_5 = \phi$. $Ball(N_6)$ carves N_6, N_7, N_8, so $V_6 = \{N_6, N_7, N_8\}$. Similar to $N_3, N_5, V_7 = \phi$ and $V_8 = \phi$. Thus C is partitioned into sets $\{N_1, N_2, N_5\}$, $\{N_3\}$, $\{N_4\}$ and $\{N_6, N_7, N_8\}$.
5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION

Observation 5.5. If V_i is the first partition that cuts $B(u, r)$, a necessary condition is that in π, v_i appears before any v_j with $j < i$. (i.e. $\pi(v_i) < \pi(v_j), \forall 1 \leq j < i$).

Proof. Consider the largest $1 \leq j < i$ such that $\pi(v_j) < \pi(v_i)$:

- If $B(u, r) \cap B(v_j, \theta) = \emptyset$, then $B(u, r) \cap B(v_i, r) = \emptyset$. Since $B(u, r) \cap B(v_j, \theta) = \emptyset \iff \forall u' \in B(u, r), u' \notin B(v_j, \theta) \iff \forall u' \in B(u, r), d_G(u', v_j) > \theta \iff d_G(B(u, r), v_j) > \theta$. Also, we know $d_G(B(u, r), v_i) \geq d_G(B(u, r), v_i) > \theta$. None of $B(u, r)$’s vertices will be in $B(v_i, \theta)$, neither in V_i.

- If $B(u, r) \subseteq B(v_j, \theta)$, then vertices in $B(u, r)$ would have been removed before v_i is considered.

- If $B(u, r) \cap B(v_j, \theta) \neq \emptyset$ and $B(u, r) \not\subseteq B(v_j, \theta)$, then V_i is not the first partition that cuts $B(u, r)$ since V_j (or possibly an earlier partition) has already cut $B(u, r)$.

In any case, if there is a $1 \leq j < i$ such that $\pi(v_j) < \pi(v_i), V_i$ does not cut $B(u, r)$.

Observation 5.6. $\Pr[V_i \text{ cuts } B(u, r)] \leq \frac{2r}{D/8}$

Proof. We ignore all the other partitions, only considering the sufficient condition for a partition to cut a ball. V_i cuts $B(u, r)$ means $\exists u_1 \in B(u, r), s.t. u_1 \in B(v_i, \theta) \cap \exists u_2 \in B(u, r), s.t. u_2 \notin B(v_i, \theta)$.

- $\exists u_1 \in B(u, r), S.t. u_1 \in B(v_i, \theta) \Rightarrow d_G(u, v_i) - r \leq d_G(u, v_i) \leq \theta$.

- $\exists u_2 \in B(u, r), s.t. u_2 \notin B(v_i, \theta) \Rightarrow d_G(u, v_i) + r \geq d_G(u, v_i) \geq \theta$.

We get the bounds of $\theta : \theta \in [d_G(u, v_i) - r, d_G(u, v_i) + r]$. Since θ is uniformly chosen from $[\frac{D}{8}, \frac{D}{4}]$,

$$\Pr[\theta \in [d_G(u, v_i) - r, d_G(u, v_i) + r]] \leq \frac{(d_G(u, v_i) + r) - (d_G(u, v_i) - r)}{D/4 - D/8} = \frac{2r}{D/8}$$

Therefore, $\Pr[V_i \text{ cuts } B(u, r)] \leq \Pr[\theta \in [d_G(u, v_i) - r, d_G(u, v_i) + r]] \leq \frac{2r}{D/8}$. \qed
Thus,

\[\Pr[B(u, r) \text{ is cut}] = \Pr[\bigcup_{i=1}^{n} \text{Event that } V_i \text{ first cuts } B(u, r)] \]

\[\leq \sum_{i=1}^{n} \Pr[V_i \text{ first cuts } B(u, r)] \quad \text{Union bound} \]

\[= \sum_{i=1}^{n} \Pr[\pi(v_i) = \min_{j<i} \pi(v_j)] \Pr[V_i \text{ cuts } B(u, r)] \quad \text{Require } v_i \text{ to appear first} \]

\[= \sum_{i=1}^{n} \frac{1}{i} \cdot \Pr[V_i \text{ cuts } B(u, r)] \text{ By random permutation } \pi \]

\[\leq \sum_{i=1}^{n} \frac{1}{i} \cdot \frac{2r}{D/8} \quad \text{diam}(B(u, r)) \leq 2r, \theta \in \left[\frac{D}{8}, \frac{D}{4} \right] \]

\[= 16 \frac{r}{D} H_n \quad H_n = \sum_{i=1}^{n} \frac{1}{i} \]

\[\in \mathcal{O}(\log(n)) \cdot \frac{r}{D} \]

\[\square \]

Claim 5.7. **BALLCARVING(G) returns partition** \(V_1, \ldots, V_l \) **such that**

\[\forall u, v \in V, \Pr[u \text{ and } v \text{ not in same partition}] \leq \alpha \cdot \frac{d_G(u, v)}{D} \]

Proof. Let \(r = d_G(u, v) \), then \(v \) is on the boundary of \(B(u, r) \).

\[\Pr[u \text{ and } v \text{ not in same partition}] \leq \Pr[B(u, r) \text{ is cut in BALLCARVING}] \leq \mathcal{O}(\log n) \cdot \frac{r}{D} \quad \text{By Lemma 5.4} \]

\[= \mathcal{O}(\log n) \cdot \frac{d_G(u, v)}{D} \quad \text{Since } r = d_G(u, v) \]

Note: \(\alpha = \mathcal{O}(\log n) \) as previously claimed. \(\square \)

5.1.3 Construction of \(T \)

Using ball carving, \(\text{CONSTRUCTT} \) recursively partitions the vertices of a given graph until there is only one vertex remaining. At each step, the upper
5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION

bound D indicates the maximum distance between the vertices of C. The
first call of $\text{CONSTRUCT}T$ starts with $C = V$ and $D = \text{diam}(V)$. Figure 5.2
illustrates the process of building a tree T from a given graph G.

\textbf{Algorithm 15 $\text{CONSTRUCT}T(G = (V,E), C \subseteq V, D)$}

\begin{algorithmic}
 \If{$|C| = 1$}
 \State Return The only vertex in C \Comment Return an actual vertex from $V(G)$
 \Else
 \State $V_1, \ldots, V_l \leftarrow \text{BALLCARVING}(G, C, D)$ \Comment $\max_{u,v \in V_i} d_G(u,v) \leq \frac{D}{2}$
 \State Create auxiliary vertex r \Comment r is root of current subtree
 \For{$i \in \{1, \ldots, l\}$}
 \State $r_i \leftarrow \text{CONSTRUCT}T(G, V_i, \frac{D}{2})$
 \State Add edge $\{r, r_i\}$ with weight D
 \EndFor
 \State Return Root of subtree r \Comment Return an auxiliary vertex r
 \EndIf
\end{algorithmic}

\textbf{Lemma 5.8.} For any two vertices $u, v \in V$ and $i \in \mathbb{N}$, if T separates u and
v at level i, then $\frac{2D}{2^i} \leq d_T(u, v) \leq \frac{4D}{2^i}$, where $D = \text{diam}(V)$.

\textit{Proof.} If T splits u and v at level i, then the path from u to v in T has to
include two edges of length $\frac{D}{2^i}$, hence $d_T(u,v) \geq \frac{2D}{2^i}$. To be precise,
\[
\frac{2D}{2^i} \leq d_T(u,v) = 2 \cdot \left(\frac{D}{2^i} + \frac{D}{2^{i+1}} + \cdots \right) \leq \frac{4D}{2^i}
\]
See picture — r is the auxiliary node at level i which splits nodes u and v.

\[\Rightarrow \]

\[\begin{array}{c}
 u \in V_u \quad \cdots \quad v \in V_v \\
 \frac{D}{2^i} \\
 \frac{D}{2^i} \\
\end{array} \] \hspace{2cm} \[\begin{array}{c}
 u \in V_u \quad \cdots \quad v \in V_v \\
 \frac{D}{2^{i+1}} \\
 \frac{D}{2^{i+1}} \\
\end{array} \]
CHAPTER 5. PROBABILISTIC TREE EMBEDDING

Figure 5.2: Recursive ball carving with \(\lceil \log_2(D) \rceil\) levels. Red vertices are auxiliary nodes that are not in the original graph \(G\). Denoting the root as the 0th level, edges from level \(i\) to level \(i + 1\) have weight \(\frac{D}{2^i}\).

Remark If \(u, v \in V\) separate before level \(i\), then \(d_T(u, v)\) must still include the two edges of length \(\frac{D}{2^i}\), hence \(d_T(u, v) \geq 2 \cdot \frac{D}{2^i}\).

Claim 5.9. Construct \(T(G, C = V, D = diam(V))\) returns a tree \(T\) such that

\[d_G(u, v) \leq d_T(u, v) \]

Proof. Consider \(u, v \in V\). Say \(\frac{D}{2^i} \leq d_G(u, v) \leq \frac{D}{2^{i-1}}\) for some \(i \in \mathbb{N}\). By property (A) of ball carving, \(T\) will separate them at, or before, level \(i\). By Lemma 5.8, \(d_T(u, v) \geq \frac{2D}{2^i} = \frac{D}{2^{i-1}} \geq d_G(u, v)\).

Claim 5.10. Construct \(T(G, C = V, D = diam(V))\) returns a tree \(T\) such that

\[E[d_T(u, v)] \leq 4\alpha \log(D) \cdot d_G(u, v) \]

Proof. Consider \(u, v \in V\). Define \(\mathcal{E}_i\) as the event that “vertices \(u\) and \(v\) get separated at the \(i^{th}\) level”, for \(i \in \mathbb{N}\). By recursive nature of Construct \(T\), the subset at the \(i^{th}\) level has distance at most \(\frac{D}{2^i}\). So, property (B) of ball carving tells us that \(\Pr[\mathcal{E}_i] \leq \alpha \cdot \frac{d_G(u, v)}{D/2^i}\). Then,
5.1. A TIGHT PROBABILISTIC TREE EMBEDDING CONSTRUCTION

\[\mathbb{E}[d_T(u, v)] = \sum_{i=0}^{\log(D)-1} \Pr[E_i] \cdot [d_T(u, v), \text{ given } E_i] \]
Definition of expectation

\[\leq \sum_{i=0}^{\log(D)-1} \Pr[E_i] \cdot \frac{4D}{2^i} \]
By Lemma 5.8

\[\leq \sum_{i=0}^{\log(D)-1} \left(\alpha \cdot \frac{d_G(u, v)}{D/2^i}\right) \cdot \frac{4D}{2^i} \]
Property (B) of ball carving

\[= 4\alpha \log(D) \cdot d_G(u, v) \]
Simplifying

If we apply Claim 5.7 with Claim 5.10, we get

\[\mathbb{E}[d_T(u, v)] \leq O(\log(n) \log(D)) \cdot d_G(u, v) \]

To remove the \(\log(D) \) factor, so that stretch factor \(c = O(\log n) \), a tighter analysis is needed by only considering vertices that may cut \(B(u, d_G(u, v)) \) instead of all \(n \) vertices. For details, see Theorem 5.18 in Section 5.3.

5.1.4 Contraction of \(T \)

Note in Figure 5.2 that we introduce auxiliary vertices in our tree construction and wonder if we can build a \(T \) without additional vertices (i.e. \(V(T) = V(G) \)). In this section, we look at CONTRACT which performs tree contractions to remove the auxiliary vertices. It remains to show that the produced tree still preserves desirable properties of a tree embedding.

Algorithm 16 Contract\((T)\)

\begin{algorithmic}
\WHILE{T has an edge \((u, w)\) such that \(u \in V\) and \(w\) is an auxiliary node}
\STATE Contract edge \((u, w)\) by merging subtree rooted at \(u\) into \(w\)
\STATE Identify the new node as \(u\)
\ENDWHILE
\STATE Multiply weight of every edge by 4
\RETURN Modified \(T'\)
\end{algorithmic}

Claim 5.11. CONTRACT returns a tree \(T'\) such that

\[d_T(u, v) \leq d_{T'}(u, v) \leq 4 \cdot d_T(u, v) \]
Proof. Suppose auxiliary node \(w \), at level \(i \), is the closest common ancestor for two arbitrary vertices \(u, v \in V \) in the original tree \(T \). Then,

\[
d_T(u, v) = d_T(u, w) + d_T(w, v) = 2 \cdot \left(\sum_{j=i}^{\log D} \frac{D}{2^j} \right) \leq 4 \cdot \frac{D}{2^i}
\]

Since we do not contract actual vertices, at least one of the \((u, w)\) or \((v, w)\) edges of weight \(\frac{D}{2^i} \) will remain. Multiplying the weights of all remaining edges by 4, we get \(d_T(u, v) \leq 4 \cdot d_T(u, v) \).

Suppose we only multiply the weights of \(d_T(u, v) \) by 4, then \(d_T'(u, v) = 4 \cdot d_T(u, v) \).

Since we contract edges, \(d_T'(u, v) \) can only decrease, so \(d_T'(u, v) \leq 4 \cdot d_T(u, v) \).

\(\square\)

Remark Claim 5.11 tells us that one can construct a tree \(T' \) without auxiliary variables by incurring an additional constant factor overhead.

5.2 Application: Buy-at-bulk network design

Definition 5.12 (Buy-at-bulk network design problem). Consider a graph \(G = (V, E) \) with edge lengths \(l_e \) for \(e \in E \). Let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) be a sub-additive cost function. That is, \(f(x + y) \leq f(x) + f(y) \). Given \(k \) commodity triplets \((s_i, t_i, d_i)\), where \(s_i \in V \) is the source, \(t_i \in V \) is the target, and \(d_i \geq 0 \) is the demand for the \(i \)th commodity, find a capacity assignment on edges \(c_e \) (for all edges) such that

- \(\sum_{e \in E} f(c_e) \cdot l_e \) is minimized
- \(\forall e \in E, c_e \geq \) Total flow passing through it
- Flow conservation is satisfied and every commodity’s demand is met

Remark If \(f \) is linear (e.g. \(f(x + y) = f(x) + f(y) \)), one can obtain an optimum solution by finding the shortest path \(s_i \to t_i \) for each commodity \(i \), then summing up the required capacities for each edge.

Let us denote \(I = (G, f, \{s_i, t_i, d_i\}_{i=1}^k) \) as the given instance. Let \(OPT(I, G) \) be the optimal solution on \(G \). The general idea of our algorithm \textsc{NetworkDesign} is first transforming the original graph \(G \) into a tree \(T \) by probabilistic tree embedding method, contracting the tree as \(T' \), then finding an optimal solution on \(T' \) and map it back to graph \(G \). Let \(A(I, G) \) be the solution produced by our algorithm on graph \(G \). Denote the costs as \(|OPT(I, G)|\) and \(|A(I, T)|\) respectively.
5.3. EXTRA: BALL CARVING WITH $O(\log N)$ STRETCH FACTOR

Algorithm 17 NETWORKDESIGN($G = (V, E)$)

```plaintext
\(c_e = 0, \forall e \in E\)  \hspace{1cm} \triangleright \text{Initialize capacities}
\(T \leftarrow \text{CONSTRUCT}(G)\) \hspace{1cm} \triangleright \text{Build probabilistic tree embedding } T \text{ of } G
\(T \leftarrow \text{CONTRACT}(T)\) \hspace{1cm} \triangleright V(T) = V(G) \text{ after contraction}

\text{for } i \in \{1, \ldots, k\} \text{ do}
\hspace{1cm} P_{s_i, t_i}^T \leftarrow \text{Find shortest } s_i - t_i \text{ path in } T \quad \triangleright \text{Solve problem on } T
\hspace{1cm} \text{for Edge } \{u, v\} \text{ of } P_{s_i, t_i}^T \text{ in } T \text{ do}
\hspace{2cm} P_{u, v}^G \leftarrow \text{Find shortest } u - v \text{ path in } G
\hspace{2cm} c_e \leftarrow c_e + d_i, \text{ for each edge } e \in P_{u, v}^G
\hspace{1cm} \text{end for}
\hspace{1cm} \text{end for}
\text{return } \{e \in E : c_e\}
```

We now compare the solutions $OPT(I, G)$ and $A(I, T)$ by comparing edge costs $(u, v) \in E$ in G and tree embedding T.

Claim 5.13. $|A(I, G)|$ using edges in $G \leq |A(I, T)|$ using edges in T.

Proof. (Sketch) For any pair of vertices $u, v \in V$, $d_G(u, v) \leq d_T(u, v)$. \hfill \Box

Claim 5.14. $|A(I, T)|$ using edges in $T \leq |OPT(I, T)|$ using edges in T.

Proof. (Sketch) Since shortest path in a tree is unique, $A(I, T)$ is optimum for T. So, any other flow assignment has to incur higher edge capacities. \hfill \Box

Claim 5.15. $\mathbb{E}[|OPT(I, T)|$ using edges in $T] \leq O(\log n) \cdot |OPT(I, G)|$

Proof. (Sketch) T stretches edges by at most a factor of $O(\log n)$. \hfill \Box

By the three claims above, NETWORKDESIGN gives a $O(\log n)$-approximation to the buy-at-bulk network design problem, in expectation. For details, refer to Section 8.6 in [WS11].

5.3 Extra: Ball carvings with $O(\log n)$ stretch factor

If we apply Claim 5.7 with Claim 5.10, we get $\mathbb{E}[d_T(u, v)] \leq O(\log(n) \log(D)) \cdot d_G(u, v)$. To remove the $\log(D)$ factor, so that stretch factor $c = O(\log n)$, a tighter analysis is needed by only considering vertices that may cut $B(u, d_G(u, v))$ instead of all n vertices.
5.3.1 Tighter analysis of ball carving

Fix arbitrary vertices u and v. Let $r = d_G(u, v)$. Recall that θ is chosen uniformly at random from the range $\left[\frac{D}{8}, \frac{D}{4}\right]$. A ball $B(v_i, \theta)$ can cut $B(u, r)$ only when $d_G(u, v_i) - r \leq \theta \leq d_G(u, v_i) + r$. In other words, one only needs to consider vertices v_i such that $\frac{D}{8} - r \leq \theta - r \leq d_G(u, v_i) \leq \theta + r \leq \frac{D}{4} + r$.

Lemma 5.16. For $i \in \mathbb{N}$, if $r > \frac{D}{16}$, then $\Pr[B(u, r) \text{ is cut}] \leq \frac{16r}{D}$

Proof. If $r > \frac{D}{16}$, then $\frac{16r}{D} > 1$. As $\Pr[B(u, r) \text{ is cut at level } i]$ is a probability ≤ 1, the claim holds.

Remark Although lemma 5.16 is not a very useful inequality (since any probability ≤ 1), we use it to partition the value range of r so that we can say something stronger in the next lemma.

Lemma 5.17. For $i \in \mathbb{N}$, if $r \leq \frac{D}{16}$, then

$$\Pr[B(u, r) \text{ is cut}] \leq \frac{r}{D} O\left(\log\left(\frac{|B(u, D/2)|}{|B(u, D/16)|}\right)\right)$$

Proof. V_i cuts $B(u, r)$ only if $\frac{D}{8} - r \leq d_G(u, v_i) \leq \frac{D}{4} + r$, we have $d_G(u, v_i) \in \left[\frac{D}{16}, \frac{5D}{16}\right] \subseteq \left[\frac{D}{16}, \frac{D}{2}\right]$.

Suppose we arrange the vertices in ascending order of distance from u: $u = v_1, v_2, \ldots, v_n$. Denote:

- $j - 1 = |B(u, \frac{D}{16})|$ as the number of nodes that have distance $\leq \frac{D}{16}$ from u
- $k = |B(u, \frac{D}{2})|$ as the number of nodes that have distance $\leq \frac{D}{2}$ from u
5.3. EXTRA: BALL CARVING WITH \(\Theta(\log N) \) STRETCH FACTOR

We see that only vertices \(v_j, v_{j+1}, \ldots, v_k \) have distances from \(u \) in the range \([\frac{D}{16}, \frac{D}{2}] \). Pictorially, only vertices in the shaded region could possibly cut \(B(u, r) \). As before, let \(\pi(v) \) be the ordering in which vertex \(v \) appears in random permutation \(\pi \). Then,

\[
\Pr[B(u, r) \text{ is cut}]
= \Pr \left(\bigcup_{i=j}^{k} \text{Event that } V_i \text{ cuts } B(u, r) \right)
\leq \sum_{i=j}^{k} \Pr[\pi(v_i) < \min_{z < i} \{\pi(v_z)\}] \cdot \Pr[V_i \text{ cuts } B(u, r)]
\leq \sum_{i=j}^{k} \frac{1}{i} \cdot \Pr[V_i \text{ cuts } B(u, r)]
\leq \sum_{i=j}^{k} \frac{1}{i} \cdot \frac{2r}{D/8}
\leq \frac{r}{D} (H_k - H_j)
\leq \frac{r}{D} \Theta(\log(\frac{|B(u, D/2)|}{|B(u, D/16)|}))
\leq \frac{r}{D} \Theta(\log(k))
\]

5.3.2 Plugging into ConstructT

Recall that ConstructT is a recursive algorithm which handles graphs of diameter \(\leq \frac{D}{2} \) at level \(i \). For a given pair of vertices \(u \) and \(v \), there exists \(i^* \in \mathbb{N} \) such that \(\frac{D}{2^i} \leq r = d_G(u, v) \leq \frac{D}{2^{i+1}} \). In other words, \(\frac{D}{2^{i+1}} \leq r \leq \frac{D}{2^i} \frac{1}{16} \). So, lemma 5.17 applies for levels \(i \in [0, i^* - 5] \) and lemma 5.16 applies for levels \(i \in [i^* - 4, \log(D) - 1] \).

Theorem 5.18. \(\mathbb{E}[d_T(u, v)] \in \Theta(\log n) \cdot d_G(u, v) \)

Proof. As before, let \(\mathcal{E}_i \) be the event that “vertices \(u \) and \(v \) get separated at the \(i \)th level. For \(\mathcal{E}_i \) to happen, the ball \(B(u, r) = B(u, d_G(u, v)) \) must be cut at level \(i \), so \(\Pr[\mathcal{E}_i] \leq \Pr[B(u, r) \text{ is cut at level } i] \).
\[\mathbb{E}[d_T(u, v)] \]
\[= \sum_{i=0}^{\log(D)-1} \Pr[E_i] \cdot \Pr[d_T(u, v), \text{ given } E_i] \tag{1} \]
\[\leq \sum_{i=0}^{\log(D)-1} \Pr[E_i] \cdot \frac{4D}{2^i} \tag{2} \]
\[= \sum_{i=0}^{i^*-5} \Pr[E_i] \cdot \frac{4D}{2^i} + \sum_{i=i^*-4}^{\log(D)-1} \Pr[E_i] \cdot \frac{4D}{2^i} \tag{3} \]
\[\leq \sum_{i=0}^{i^*-5} \frac{r}{D/2^i} \mathcal{O}(\log\left(\frac{|B(u, D/2^{i+1})|}{|B(u, D/2^{i+4})|}\right)) \cdot \frac{4D}{2^i} + \sum_{i=i^*-4}^{\log(D)-1} \Pr[E_i] \cdot \frac{4D}{2^i} \tag{4} \]
\[\leq \sum_{i=0}^{i^*-5} \frac{r}{D/2^i} \mathcal{O}(\log\left(\frac{|B(u, D/2^{i+1})|}{|B(u, D/2^{i+4})|}\right)) \cdot \frac{4D}{2^i} + \sum_{i=i^*-4}^{\log(D)-1} \frac{16r}{D/2^{i^*-4}} \cdot \frac{4D}{2^i} \tag{5} \]
\[= 4r \cdot \sum_{i=0}^{i^*-5} \mathcal{O}(\log\left(\frac{|B(u, D/2^{i+1})|}{|B(u, D/2^{i+4})|}\right)) + \sum_{i=i^*-4}^{\log(D)-1} 4 \cdot 2^{i^*-i} \cdot r \tag{6} \]
\[\leq 4r \cdot \sum_{i=0}^{i^*-5} \mathcal{O}(\log\left(\frac{|B(u, D/2^{i+1})|}{|B(u, D/2^{i+4})|}\right)) + 2^7 r \tag{7} \]
\[= 4r \cdot \mathcal{O}(\log(n)) + 2^7 r \tag{8} \]
\[\in \mathcal{O}(\log n) \cdot r \]

(1) Definition of expectation
(2) By Lemma 5.8
(3) Split into cases: \(\frac{D}{2^{i^*-4}} \cdot \frac{1}{16} \leq r \leq \frac{D}{2^{i^*-4}} \cdot \frac{1}{16} \)
(4) By Lemma 5.17
(5) By Lemma 5.16 with respect to \(D/2^{i^*-4} \)
(6) Simplifying
(7) Since \(\sum_{i=i^*-4}^{\log(D)-1} 2^{i^*-i} \leq 2^5 \)
(8) \(\log\left(\frac{x}{y}\right) = \log(x) - \log(y) \) and \(|B(u, \infty)| \leq n \)
Part II

Streaming and sketching algorithms
Chapter 6

Warm up

Thus far, we have been ensuring that our algorithms run fast. What if our system does not have sufficient memory to store all data to post-process it? For example, a router has relatively small amount of memory while tremendous amount of routing data flows through it. In a memory constrained setting, can one compute something meaningful, possible approximately, with limited amount of memory?

More formally, we now look at a slightly different class of algorithms where data elements from $[n] = \{1, \ldots, n\}$ arrive in one at a time, in a stream $S = a_1, \ldots, a_m$, where $a_i \in [n]$ arrives in the i^{th} time step. At each step, our algorithm performs some computation\(^1\) and discards the item a_i. At the end of the stream\(^2\), the algorithm should give us a value that approximates some value of interest.

6.1 Typical tricks

Before we begin, let us first describe two typical tricks used to amplify success probabilities of randomized algorithms. Suppose we have a randomized algorithm A that returns an unbiased estimate of a quantity of interest X on a problem instance I, with success probability $p > 0.5$.

Trick 1: Reduce variance Run j independent copies of A on I, and return the mean $\frac{1}{j} \sum_{i=1}^{j} A(I)$. The expected outcome $\mathbb{E}(\frac{1}{j} \sum_{i=1}^{j} A(I))$ will still be X while the variance drops by a factor of j.

Trick 2: Improve success Run k independent copies of A on I, and return the median. As each copy of A succeeds (independently) with

\(^1\) Usually this is constant time so we ignore the runtime.

\(^2\) In general, the length of the stream, m, may not be known.
probability $p > 0.5$, the probability that more than half of them fails
(and hence the median fails) drops exponential with respect to k.

Let $\epsilon > 0$ and $\delta > 0$ denote the precision factor and failure probability
respectively. ROBUST combines the above-mentioned two tricks to yield a
$(1 \pm \epsilon)$-approximation to X that succeeds with probability $> 1 - \delta$.

\begin{algorithm}
\caption{ROBUST(A, I, ϵ, δ)}
\begin{algorithmic}
\STATE $C \leftarrow \emptyset$ \COMMENT{Initialize candidate outputs}
\FOR{$k = \mathcal{O}(\log \frac{1}{\delta})$ times}
\STATE \textcolor{red}{sum} $\leftarrow 0$
\FOR{$j = \mathcal{O}(\frac{1}{\epsilon^2})$ times}
\STATE \textcolor{red}{sum} \leftarrow \textcolor{red}{sum} $+$ $A(I)$
\ENDFOR
\STATE Add $\frac{\text{sum}}{j}$ to candidates C \COMMENT{Include new sample of mean}
\ENDFOR
\RETURN Median of C \COMMENT{Return median}
\end{algorithmic}
\end{algorithm}

\section{Majority element}

\begin{definition} ("Majority in a stream" problem). Given a stream $S = \{a_1, \ldots, a_m\}$ of items from $[n] = \{1, \ldots, n\}$, with an element $j \in [n]$ that appears strictly more than $\frac{m}{2}$ times in S, find j.
\end{definition}

\begin{algorithm}
\caption{MAJORITYSTREAM($S = \{a_1, \ldots, a_m\}$)}
\begin{algorithmic}
\STATE $\text{guess} \leftarrow 0$
\STATE $\text{count} \leftarrow 0$
\FOR{$a_i \in S$} \COMMENT{Items arrive in streaming fashion}
\IF{$a_i = \text{guess}$}
\STATE $\text{count} \leftarrow \text{count} + 1$
\ELSIF{$\text{count} > 1$}
\STATE $\text{count} \leftarrow \text{count} - 1$
\ELSE
\STATE $\text{guess} \leftarrow a_i$
\ENDIF
\ENDFOR
\RETURN guess
\end{algorithmic}
\end{algorithm}
Example Consider a stream $S = \{1, 3, 3, 7, 5, 3, 2, 3\}$. The table below shows how guess and count are updated as each element arrives.

<table>
<thead>
<tr>
<th>Stream elements</th>
<th>1 3 3 7 5 3 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess</td>
<td>1 3 3 3 5 3 2 3</td>
</tr>
<tr>
<td>Count</td>
<td>1 1 2 1 1 1 1 1</td>
</tr>
</tbody>
</table>

One can verify that MajorityStream uses $\mathcal{O}(\log n + \log m)$ bits to store guess and counter.

Claim 6.2. MajorityStream correctly finds element $j \in [n]$ which appears $> \frac{m}{2}$ times in $S = \{a_1, \ldots, a_m\}$.

Proof. (Sketch) Match each other element in S with a distinct instance of j. Since j appears $> \frac{m}{2}$ times, at least one j is unmatched. As each matching cancels out count, only j could be the final guess.

Remark If no element appears $> \frac{m}{2}$ times, then MajorityStream is not guaranteed to return the most frequent element. For example, for $S = \{1, 3, 4, 3, 2\}$, $\text{MajorityStream}(S)$ returns 2 instead of 3.
Chapter 7

Estimating the moments of a stream

One class of interesting problems is computing moments of a given stream S. For items $j \in [n]$, define f_j as the number of times j appears in a stream S. Then, the k^{th} moment of a stream S is defined as $\sum_{j=1}^{n} (f_j)^k$. When $k = 1$, the first moment $\sum_{j=1}^{n} f_j = m$ is simply the number of elements in the stream S. When $k = 0$, by associating $0^0 = 0$, the zeroth moment $\sum_{j=1}^{n} (f_j)^0$ is the number of distinct elements in the stream S.

7.1 Estimating the first moment of a stream

A trivial exact solution would be to use $\mathcal{O}(\log m)$ bits to maintain a counter, incrementing for each element observed. For some upper bound M, consider the sequence $(1 + \epsilon), (1 + \epsilon)^2, \ldots, (1 + \epsilon)^{\log_1 M}$. For any stream length m, there exists $i \in \mathbb{N}$ such that $(1 + \epsilon)^i \leq m \leq (1 + \epsilon)^{i+1}$. Thus, to obtain a $(1 + \epsilon)$-approximation, it suffices to track the exponent i to estimate the length of m. For $\epsilon \in \Theta(1)$, this can be done in $\mathcal{O}(\log \log m)$ bits.

Algorithm 20 MORRIS($S = \{a_1, \ldots, a_m\}$)

$x \leftarrow 0$

for $a_i \in S$ do
 $r \leftarrow$ Random probability from $[0, 1]$
 if $r \leq 2^{-x}$ then
 $x \leftarrow x + 1$
 end if
end for

return $2^x - 1$
The intuition behind MORRIS [Mor78] is to increase the counter (and hence double the estimate) when we expect to observe 2^x new items. For analysis, denote X_m as the value of counter x after exactly m items arrive.

Theorem 7.1. $\mathbb{E}[2^{X_m} - 1] = m$. That is, MORRIS is an unbiased estimator for the length of the stream.

Proof. Equivalently, let us prove $\mathbb{E}[2^{X_m}] = m + 1$, by induction on $m \in \mathbb{N}^+$. On the first element ($m = 1$), x increments with probability 1, so $\mathbb{E}[2^{X_1}] = 2^1 = m + 1$. Suppose it holds for some $m \in \mathbb{N}$, then

$$
\mathbb{E}[2^{X_{m+1}}] = \sum_{j=1}^{m} \mathbb{E}[2^{X_{m+1}} | X_m = j] \Pr[X_m = j]
$$

Condition on X_m

$$
= \sum_{j=1}^{m} (2^{j+1} \cdot 2^{-j} + 2^j \cdot (1 - 2^{-j})) \Pr[X_m = j]
$$

Increment x w.p. 2^{-j}

$$
= \sum_{j=1}^{m} (2^j + 1) \Pr[X_m = j]
$$

Simplifying

$$
= \sum_{j=1}^{m} 2^j \Pr[X_m = j] + \sum_{j=1}^{m} \Pr[X_m = j]
$$

Splitting the sum

$$
= \mathbb{E}[2^{X_m}] + \sum_{j=1}^{m} \Pr[X_m = j]
$$

Definition of $\mathbb{E}[2^{X_m}]$

$$
= \mathbb{E}[2^{X_m}] + 1
$$

Induction hypothesis

$$
= (m + 1) + 1
$$

Note that we sum up to m because $x \in [1, m]$ after m items.

Claim 7.2. $\mathbb{E}[2^{2X_m}] = \frac{3}{2} m^2 + \frac{3}{2} m + 1$

Proof. Exercise.

Claim 7.3. $\text{Var}(2^{X_m} - 1) = \mathbb{E}[(2^{X_m} - 1 - m)^2] \leq \frac{m^2}{2}$

Proof. Exercise. Use the Claim 7.2.

Theorem 7.4. For $\epsilon > 0$, $\Pr[|2^{X_m} - 1 - m| > \epsilon m] \leq \frac{1}{2\epsilon^2}$
7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM

Proof.

\[\Pr[|2^{X_m} - 1 - m| > \epsilon m] \leq \frac{\text{Var}(2^{X_m} - 1)}{(\epsilon m)^2} \leq \frac{m^2/2}{\epsilon^2 m^2} = \frac{1}{2\epsilon^2} \]

Chebyshev’s inequality

By Claim 7.3

Remark Using the discussion in Section 6.1, we can run Morris multiple times to obtain a \((1 \pm \epsilon)\)-approximation of the first moment of a stream that succeeds with probability \(> 1 - \delta\). For instance, repeating Morris \(\frac{10}{\epsilon^2}\) times and reporting the mean \(\hat{m}\), \(\Pr[|\hat{m} - m| > \epsilon m] \leq \frac{1}{20}\) because the variance is reduced by \(\epsilon^2\).

7.2 Estimating the zeroth moment of a stream

Trivial exact solutions could either use \(O(n)\) bits to track if element exists, or use \(O(m \log n)\) bits to remember the whole stream. Suppose there are \(D\) distinct items in the whole stream. In this section, we show that one can in fact make do with only \(O(\log n)\) bits to obtain an approximation of \(D\).

7.2.1 An idealized algorithm

Consider the following algorithm sketch:

1. Take a uniformly random hash function \(h: \{1, \ldots, m\} \rightarrow [0, 1]\)

2. As items \(a_i \in S\) arrive, track \(z = \min\{h(a_i)\}\)

3. In the end, output \(\frac{1}{z} - 1\)

Since we are randomly hashing elements into the range \([0, 1]\), we expect the minimum hash output to be \(\frac{1}{D+1}\), so \(E[\frac{1}{z} - 1] = D\). Unfortunately, storing a uniformly random hash function that maps to the interval \([0, 1]\) is infeasible. As storing real numbers is memory intensive, one possible fix is to discretize the interval \([0, 1]\), using \(O(\log n)\) bits per hash output. However, storing this hash function would still require \(O(n \log n)\) space.

\(^{1}\text{See https://en.wikipedia.org/wiki/Order_statistic}\)
7.2.2 An actual algorithm

Instead of a uniformly random hash function, we select a random hash from a family of pairwise independent hash functions.

Definition 7.5 (Family of pairwise independent hash functions). $\mathcal{H}_{n,m}$ is a family of pairwise independent hash functions if

- (Hash definition): $\forall h \in \mathcal{H}_{n,m}, h : \{1, \ldots, n\} \to \{1, \ldots, m\}$
- (Uniform hashing): $\forall x \in \{1, \ldots, n\}, \Pr_{h \in \mathcal{H}_{n,m}}[h(x) = i] = \frac{1}{m}$
- (Pairwise independent) $\forall x, y \in \{1, \ldots, n\}, x \neq y, \Pr_{h \in \mathcal{H}_{n,m}}[h(x) = i \land h(y) = j] = \frac{1}{m^2}$

Remark For now, we care only about $m = n$, and write $\mathcal{H}_{n,n}$ as \mathcal{H}_n.

Claim 7.6. Let n be a prime number. Then,

$$\mathcal{H}_n = \{h_{a,b} : h(x) = ax + b \mod n, \forall a, b \in \mathbb{Z}_n\}$$

is a family of pairwise independent hash functions.

Proof. (Sketch) For any given $x \neq y$,

- There is a unique value of $h(x) \mod n$, out of n possibilities.
- The system $\{ax + b = i \mod n, ay + b = j \mod n\}$ has a unique solution for (a, b) (note that $\begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \in \mathbb{Z}_n^{2 \times 2}$ is non-singular), out of n^2 possibilities.

Remark If n is not a prime, we know there exists a prime p such that $n \leq p \leq 2n$, so we round n up to p. Storing a random hash from \mathcal{H}_n is then storing the numbers a and b in $\mathcal{O}(\log n)$ bits.

We now present an algorithm [FM85] which estimates the zeroth moment of a stream and defer the analysis to the next lecture. In FM, zeros refer to the number of trailing zeroes in the binary representation of $h(a_i)$. For example, if $h(a_i) = 20 = (\ldots10100)_2$, then $\text{ZEROS}(h(a_i)) = 2$.

Recall that the k^{th} moment of a stream S is defined as $\sum_{j=1}^{n} (f_j)^k$. Since the hash h is deterministic after picking a random hash from $\mathcal{H}_{n,n}$, $h(a_i) = h(a_j), \forall a_i = a_j \in [n]$. We first prove a useful lemma.
Algorithm 21 FM($S = \{a_1, \ldots, a_m\}$)

\begin{algorithm}
\begin{algorithmic}
\State $h \leftarrow$ Random hash from $H_{n,n}$
\State $Z \leftarrow 0$
\For {$a_i \in S$} \Comment{Items arrive in streaming fashion}
\State $Z = \max\{Z, \text{zeros}(h(a_i))\}$ \Comment{$\text{zeros}(h(a_i)) = \#$ leading zeroes in binary representation of $h(a_i)$}
\EndFor
\State \textbf{return} $2^{Z} \cdot \sqrt{2}$ \Comment{Estimate of D}
\end{algorithmic}
\end{algorithm}

Lemma 7.7. If X_1, \ldots, X_n are pairwise independent indicator random variables and $X = \sum_{i=1}^{n} X_i$, then $\text{Var}(X) \leq \mathbb{E}[X]$.

Proof.

\begin{align*}
\text{Var}(X) &= \sum_{i=1}^{n} \text{Var}(X_i) \quad \text{The X_i’s are pairwise independent} \\
&= \sum_{i=1}^{n} (\mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2) \quad \text{Definition of variance} \\
&\leq \sum_{i=1}^{n} \mathbb{E}[X_i^2] \quad \text{Ignore negative part} \\
&= \sum_{i=1}^{n} \mathbb{E}[X_i] \quad \text{$X_i^2 = X_i$ since X_i’s are indicator random variables} \\
&= \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \quad \text{Linearity of expectation} \\
&= \mathbb{E}[X] \quad \text{Definition of expectation}
\end{align*}

\[\square\]

Theorem 7.8. There exists a constant $C > 0$ such that

\[\Pr\left[\frac{D}{3} \leq 2^{Z} \cdot \sqrt{2} \leq 3D\right] > C\]

Proof. We will prove $\Pr\left[\left(\frac{D}{3} > 2^{Z} \cdot \sqrt{2}\right) \text{ or } (2^{Z} \cdot \sqrt{2} > 3D)\right] \leq 1 - C$ by separately analyzing $\Pr\left[\frac{D}{3} \geq 2^{Z} \cdot \sqrt{2}\right]$ and $\Pr\left[2^{Z} \cdot \sqrt{2} \geq 3D\right]$, then applying union bound. Define indicator variables

\[X_{i,r} = \begin{cases}
1 & \text{if Zeros}(h(a_i)) \geq r \\
0 & \text{otherwise}
\end{cases}\]
and $X_r = \sum_{i=1}^m X_{i,r} = |\{a_i \in S : \text{zeros}(h(a_i)) \geq r\}|$. Notice that $X_n \leq X_{n-1} \leq \cdots \leq X_1$ since $\text{zeros}(h(a_i)) \geq r + 1 \Rightarrow \text{zeros}(h(a_i)) \geq r$. Now,

$$E[X_r] = E[\sum_{i=1}^m X_{i,r}] \quad \text{Since } X_r = \sum_{i=1}^m X_{i,r}$$

$$= \sum_{i=1}^m E[X_{i,r}] \quad \text{By linearity of expectation}$$

$$= \sum_{i=1}^m \Pr[X_{i,r} = 1] \quad \text{Since } X_{i,r} \text{ are indicator variables}$$

$$= \sum_{i=1}^m \frac{1}{2^r} \quad h \text{ is a uniform hash}$$

$$= D \quad h \text{ hashes same elements to the same value}$$

Denote τ_1 as the smallest integer such that $2^{\tau_1} \cdot \sqrt{2} > 3D$, and τ_2 as the largest integer such that $2^{\tau_2} \cdot \sqrt{2} < \frac{D}{3}$. We see that if $\tau_1 < Z < \tau_2$, then $2^{Z} \cdot \sqrt{2}$ is a 3-approximation of D.

- If $Z \geq \tau_1$, then $2^{Z} \cdot \sqrt{2} \geq 2^{\tau_1} \cdot \sqrt{2} > 3D$

- If $Z \leq \tau_2$, then $2^{Z} \cdot \sqrt{2} \leq 2^{\tau_2} \cdot \sqrt{2} < \frac{D}{3}$
7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM

\[\Pr[Z \geq \tau_1] \leq \Pr[X_{\tau_1} \geq 1] \leq \frac{\mathbb{E}[X_{\tau_1}]}{1} \leq \frac{D}{2\tau_1} \leq \frac{\sqrt{2}}{3} \]

Since \(Z \geq \tau_1 \Rightarrow X_{\tau_1} \geq 1 \)
By Markov’s inequality
Since \(\mathbb{E}[X_r] = \frac{D}{2r} \)
Since \(2^{\tau_1} \cdot \sqrt{2} > 3D \)

\[\Pr[Z \leq \tau_2] \leq \Pr[X_{\tau_2+1} = 0] \leq \Pr[\mathbb{E}[X_{\tau_2+1}] - X_{\tau_2+1} \geq \mathbb{E}[X_{\tau_2+1}]] \leq \Pr[|X_{\tau_2+1} - \mathbb{E}[X_{\tau_2+1}]| \geq \mathbb{E}[X_{\tau_2+1}]] \leq \frac{\text{Var}[X_{\tau_2+1}]}{\left(\mathbb{E}[X_{\tau_2+1}]\right)^2} \leq \frac{\mathbb{E}[X_{\tau_2+1}]}{\left(\mathbb{E}[X_{\tau_2+1}]\right)^2} \leq \frac{2^{\tau_2+1}}{D} \leq \frac{\sqrt{2}}{3} \]

Since \(\mathbb{E}[X_r] = \frac{D}{2r} \)
Since \(2^{\tau_2} \cdot \sqrt{2} < \frac{D}{3} \)

Putting together,

\[\Pr[\left(\frac{D}{3} > 2^Z \cdot \sqrt{2}\right) \text{ or } (2^Z \cdot \sqrt{2} > 3D)] \leq \Pr[\frac{D}{3} \geq 2^Z \cdot \sqrt{2}] + \Pr[2^Z \cdot \sqrt{2} \geq 3D] \leq \frac{2\sqrt{2}}{3} \leq 1 - C \]

For \(C = 1 - \frac{2\sqrt{2}}{3} > 0 \)

Although the analysis tells us that there is a small success probability \((C = 1 - \frac{2\sqrt{2}}{3} \approx 0.0572) \), one can use \(t \) independent hashes and output the mean \(\frac{1}{t} \sum_{i=1}^{t} (2^{Z_i} \cdot \sqrt{2}) \) (Recall Trick 1). With \(t \) hashes, the variance drops by a factor of \(\frac{1}{t} \), improving the analysis for \(\Pr[Z \leq \tau_2] \). When the success
probability \(C > 0.5 \) (for instance, after \(t \geq 17 \) repetitions), one can then call the routine \(k \) times independently and return the median (Recall Trick 2).

While Tricks 1 and 2 allows us to strength the success probability \(C \), more work needs to be done to improve the approximation factor from 3 to \((1+\epsilon)\). To do this, we look at a slight modification of FM, due to [BYJK+02].

Algorithm 22

\[
\begin{align*}
N &\leftarrow n^3 \\
\frac{c}{2} &\in O\left(\frac{1}{t^2}\right) \\
h &\leftarrow \text{Random hash from } H_{m,N} \\
T &\leftarrow \emptyset \\
\text{for } a_i \in S \text{ do} & \quad \triangleright \text{ Items arrive in streaming fashion} \\
T &\leftarrow t \text{ smallest values from } T \cup \{h(a_i)\} \\
\text{(If } |T \cup \{h(a_i)\}| \leq t, \text{ then } T = T \cup \{h(a_i)\}) \\
\text{end for} \\
Z = \max_{t \in T} T \\
\text{return } \frac{tN}{Z} \quad \triangleright \text{Estimate of } D
\end{align*}
\]

Remark
For a cleaner analysis, we treat the integer interval \([N]\) as a continuous interval in Theorem 7.9. Note that there may be a rounding error of \(\frac{1}{N} \) but this is relatively small and a suitable \(c \) can be chosen to make the analysis still work.

Theorem 7.9.
In FM+, for any given \(0 < \epsilon < \frac{1}{2} \), \(\Pr[|\frac{tN}{Z} - D| \leq \epsilon D] > \frac{3}{4} \).

Proof. We first analyze \(\Pr[\frac{tN}{Z} > (1 + \epsilon)D] \) and \(\Pr[\frac{tN}{Z} < (1 - \epsilon)D] \) separately. Then, taking union bounds and negating yields the theorem’s statement.

If \(\frac{tN}{Z} > (1 + \epsilon)D \), then \(\frac{tN}{(1+\epsilon)D} > Z = \text{the } t^{th} \text{ smallest hash value} \), implying that there are \(\geq t \) hashes smaller than \(\frac{tN}{(1+\epsilon)D} \). Since the hash uniformly distributes \([n]\) over \([N]\), for each element \(a_i \),

\[
\Pr[h(a_i) \leq \frac{tN}{(1+\epsilon)D}] = \frac{tN}{(1+\epsilon)D} = \frac{t}{(1+\epsilon)D}
\]

Let \(d_1, \ldots, d_D \) be the \(D \) distinct elements in the stream. Define indicator variables

\[
X_i = \begin{cases}
1 & \text{if } h(d_i) \leq \frac{tN}{(1+\epsilon)D} \\
0 & \text{otherwise}
\end{cases}
\]
7.2. ESTIMATING THE ZEROTH MOMENT OF A STREAM

and $X = \sum_{i=1}^{D} X_i$ is the number of hashes that are smaller than $\frac{tN}{(1+\epsilon)D}$.

From above, $\Pr[X_i = 1] = \frac{t}{(1+\epsilon)D}$. By linearity of expectation, $\mathbb{E}[X] = \frac{t}{(1+\epsilon)}$.

Then, by Lemma 7.7, $\text{Var}(X) \leq \mathbb{E}[X]$. Now,

$$\Pr\left[\frac{tN}{Z} > (1 + \epsilon)D\right] \leq \Pr[X \geq t]$$

Since the former implies the latter

$$= \Pr[X - \mathbb{E}[X] \geq t - \mathbb{E}[X]]$$

Subtracting $\mathbb{E}[X]$ from both sides

$$\leq \Pr[X - \mathbb{E}[X] \geq \frac{\epsilon}{2}t]$$

Since $\mathbb{E}[X] = \frac{t}{(1+\epsilon)} \leq (1 - \frac{\epsilon}{2})t$

$$\leq \Pr[|X - \mathbb{E}[X]| \geq \frac{\epsilon}{2}t]$$

Adding absolute sign

$$\leq \frac{\text{Var}(X)}{(\epsilon t/2)^2}$$

By Chebyshev’s inequality

$$\leq \frac{\mathbb{E}[X]}{(\epsilon t/2)^2}$$

Since $\text{Var}(X) \leq \mathbb{E}[X]$

$$\leq \frac{4(1 - \epsilon/2)t}{\epsilon^2 t^2}$$

Since $\mathbb{E}[X] = \frac{t}{(1+\epsilon)} \leq (1 - \frac{\epsilon}{2})t$

$$\leq \frac{4}{\epsilon^2}$$

Simplifying with $t = \frac{c}{\epsilon^2}$ and $(1 - \frac{\epsilon}{2}) < 1$

Similarly, if $\frac{tN}{Z} < (1 - \epsilon)D$, then $\frac{tN}{(1-\epsilon)D} < Z = t^{th}$ smallest hash value, implying that there are $\leq t$ hashes smaller than $\frac{tN}{(1-\epsilon)D}$. Since the hash uniformly distributes $[n]$ over $[N]$, for each element a_i,

$$\Pr[h(a_i) \leq \frac{tN}{(1-\epsilon)D}] = \frac{\frac{tN}{(1-\epsilon)D}}{N} = \frac{t}{(1-\epsilon)D}$$

Let d_1, \ldots, d_D be the D distinct elements in the stream. Define indicator variables

$$Y_i = \begin{cases} 1 & \text{if } h(d_i) \leq \frac{tN}{(1-\epsilon)D} \\ 0 & \text{otherwise} \end{cases}$$

and $Y = \sum_{i=1}^{D} Y_i$ is the number of hashes that are smaller than $\frac{tN}{(1-\epsilon)D}$. From above, $\Pr[Y_i = 1] = \frac{t}{(1-\epsilon)D}$. By linearity of expectation, $\mathbb{E}[Y] = \frac{t}{(1-\epsilon)}$. Then, by Lemma 7.7, $\text{Var}(Y) \leq \mathbb{E}[Y]$. Now,
Pr\left[\frac{tN}{Z} < (1 - \epsilon)D\right]
\leq Pr[Y \leq t]
\quad \text{Since the former implies the latter}
= Pr[Y - \mathbb{E}[Y] \leq t - \mathbb{E}[Y]]
\quad \text{Subtracting } \mathbb{E}[Y] \text{ from both sides}
\leq Pr[Y - \mathbb{E}[Y] \leq -\epsilon t]
\quad \text{Since } \mathbb{E}[Y] = \frac{t}{(1 - \epsilon)} \geq (1 + \epsilon)t
\leq Pr[-(Y - \mathbb{E}[Y]) \geq \epsilon t]
\quad \text{Swap sides}
\leq Pr[|Y - \mathbb{E}[Y]| \geq \epsilon t]
\quad \text{Adding absolute sign}
\leq \frac{\text{Var}(Y)}{(\epsilon t)^2}
\quad \text{By Chebyshev’s inequality}
\leq \frac{\mathbb{E}[Y]}{(\epsilon t)^2}
\quad \text{Since } \text{Var}(Y) \leq \mathbb{E}[Y]
\leq \frac{(1 + 2\epsilon)t}{\epsilon^2 t^2}
\quad \text{Since } \mathbb{E}[Y] = \frac{t}{(1 - \epsilon)} \leq (1 + 2\epsilon)t
\leq \frac{3}{c}
\quad \text{Simplifying with } t = \frac{c}{\epsilon^2} \text{ and } (1 + 2\epsilon) < 3

Putting together,
Pr\left[\frac{tN}{Z} - D > \epsilon D\right] \leq Pr\left[\frac{tN}{Z} > (1 + \epsilon)D\right] + Pr\left[\frac{tN}{Z} < (1 - \epsilon)D\right]
\quad \text{By union bound}
\leq \frac{4}{c} + \frac{3}{c}
\quad \text{From above}
\leq \frac{7}{c}
\quad \text{Simplifying}
\leq \frac{1}{4}
\quad \text{For } c \geq 28

7.3 Estimating the k^{th} moment of a stream

In this section, we describe algorithms from [AMS96] that estimates the k^{th} moment of a stream, first for $k = 2$, then for general k. Recall that the k^{th} moment of a stream S is defined as $F_k = \sum_{i=1}^{n} (f_i)^k$, where for each element $i \in [n]$, f_i denotes the number of times value i appears in the stream.
7.3. ESTIMATING THE K^{TH} MOMENT OF A STREAM

7.3.1 $k = 2$

For each element $i \in [n]$, we associate a random variable $r_i \in \text{u.a.r.} \{-1, +1\}$.

Algorithm 23 AMS-2($S = \{a_1, \ldots, a_m\}$)

Assign $r_i \in \text{u.a.r.} \{-1, +1\}, \forall i \in [n]$ \quad \triangleright \text{For now, this takes } O(n) \text{ space}

$Z \leftarrow 0$

\textbf{for} $a_i \in S$ \textbf{do}
\hspace{1cm} \triangleright \text{Items arrive in streaming fashion}
\hspace{1cm} $Z \leftarrow Z + r_i$ \quad \triangleright \text{At the end, } Z = \sum_{i=1}^{n} r_i f_i$
\textbf{end for}

\textbf{return} Z^2 \quad \triangleright \text{Estimate of } F_2 = \sum_{i=1}^{n} f_i^2$

Lemma 7.10. In AMS-2, if random variables $\{r_i\}_{i \in [n]}$ are pairwise independent, then $E[Z^2] = \sum_{i=1}^{n} f_i^2 = F_2$. That is, AMS-2 is an unbiased estimator for the second moment.

Proof.

\begin{align*}
E[Z^2] &= E[(\sum_{i=1}^{n} r_i f_i)^2] \quad \text{Since } Z = \sum_{i=1}^{n} r_i f_i \text{ at the end} \\
&= \sum_{i=1}^{n} E[r_i^2 f_i^2] + 2 \sum_{1 \leq i < j \leq n} E[r_i r_j f_i f_j] \quad \text{Expanding } (\sum_{i=1}^{n} r_i f_i)^2 \\
&= \sum_{i=1}^{n} E[r_i^2] f_i^2 + 2 \sum_{1 \leq i < j \leq n} E[r_i r_j] f_i f_j \quad \text{Linearity of expectation} \\
&= \sum_{i=1}^{n} f_i^2 + 2 \sum_{1 \leq i < j \leq n} E[r_i] E[r_j] f_i f_j \quad \text{Since } r_i^2 = 1, \forall i \in [n] \\
&= \sum_{i=1}^{n} f_i^2 + 2 \sum_{1 \leq i < j \leq n} E[r_i] E[r_j] f_i f_j \quad \text{Since } \{r_i\}_{i \in [n]} \text{ are pairwise independent} \\
&= \sum_{i=1}^{n} f_i^2 \quad \text{Since } E[r_i] = 0, \forall i \in [n] \\
&= F_2 \quad \text{Since } F_2 = \sum_{i=1}^{n} f_i^2
\end{align*}

\square
So we have an unbiased estimator for the second moment but we are also interested in the probability of error. We want a small probability for the output Z^2 to deviate more than $(1 + \epsilon)$ from the true value, i.e., $\Pr[|Z^2 - F_2| > \epsilon F_2]$ should be small.

Lemma 7.11. In AMS-2, if random variables $\{r_i\}_{i \in [n]}$ are 4-wise independent, then $\text{Var}[Z^2] \leq 2(\mathbb{E}[Z^2])^2$.

Proof. As before, $\mathbb{E}[r_i] = 0$ and $r_i^2 = 1$ for all $i \in [n]$. By 4-wise independence, the expectation of any product of at most 4 different r_i’s is the product of their expectations. Thus we get $\mathbb{E}[r_ir_jrkr_l] = \mathbb{E}[r_i]\mathbb{E}[r_j]\mathbb{E}[r_k]\mathbb{E}[r_l] = 0$, as well as $\mathbb{E}(r_i^2r_j) = \mathbb{E}(r_i r_j) = 0$ and $\mathbb{E}(r_i^2r_k) = \mathbb{E}(r_i r_k) = 0$, where the indices i, j, k, l are pairwise different. This allows us to compute $\mathbb{E}[Z^4]$:

$$
\mathbb{E}[Z^4] = \mathbb{E}[(\sum_{i=1}^{n} r_if_i)^4] \\
= \sum_{i=1}^{n} \mathbb{E}[r_i^4]f_i^4 + 6 \sum_{1 \leq i < j \leq n} \mathbb{E}[r_i^2r_j^2]f_i^2f_j^2 \\
= \sum_{i=1}^{n} f_i^4 + 6 \sum_{1 \leq i < j \leq n} f_i^2f_j^2 \\
\quad \text{Since } r_i^4 = r_i^2 = 1, \forall i \in [n].
$$

Note that the coefficient of $\sum_{1 \leq i < j \leq n} \mathbb{E}[r_i^2r_j^2]f_i^2f_j^2$ is $\binom{4}{2} = 6$ and that all other terms vanish by the computation above.

$$
\text{Var}[Z^2] = \mathbb{E}[(Z^2)^2] - (\mathbb{E}[Z^2])^2 \\
= \sum_{i=1}^{n} f_i^4 + 6 \sum_{1 \leq i < j \leq n} f_i^2f_j^2 - (\mathbb{E}[Z^2])^2 \\
\quad \text{Definition of variance} \\
= \sum_{i=1}^{n} f_i^4 + 6 \sum_{1 \leq i < j \leq n} f_i^2f_j^2 - (\mathbb{E}[Z^2])^2 \\
\quad \text{From above} \\
= 4 \sum_{1 \leq i < j \leq n} f_i^2f_j^2 \\
\quad \text{By Lemma 7.10} \\
\leq 2(\sum_{i=1}^{n} f_i^2)^2 \\
\quad \text{Introducing } f_i^4 \text{ terms} \\
= 2(\mathbb{E}[Z^2])^2 \\
\quad \text{By Lemma 7.10}
$$

2The random variables $\{r_i\}_{i \in [n]}$ are said to be 4-wise independent if $\Pr((r_{i_1}, r_{i_2}, r_{i_3}, r_{i_4})) = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4) = \prod_{i=1}^{4} \Pr(r_i = \epsilon_i)$ for all $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$. Note that 4-wise independence implies pairwise independence.
7.3. **ESTIMATING THE KTH MOMENT OF A STREAM**

\[\text{Theorem 7.12.} \] In AMS-2, if \(\{r_i\}_{i \in [n]} \) are 4-wise independent, then we have
\[\Pr[|Z^2 - F_2| > \epsilon F_2] \leq \frac{2}{\epsilon^2} \text{ for any } \epsilon > 0. \]

Proof.

\[
\Pr[|Z^2 - F_2| > \epsilon F_2] = \Pr[|Z^2 - \mathbb{E}[Z^2]| > \epsilon \mathbb{E}[Z^2]] \text{ By Lemma 7.10}
\leq \frac{\text{Var}(Z^2)}{(\epsilon \mathbb{E}[Z^2])^2} \text{ By Chebyshev’s inequality}
\leq \frac{2(\mathbb{E}[Z^2])^2}{(\epsilon \mathbb{E}[Z^2])^2} \text{ By Lemma 7.11}
= \frac{2}{\epsilon^2}
\]

We can again apply the mean trick to decrease the variance by a factor of \(k \) and have a smaller upper bound on the probability of error. In particular, if we pick \(k = \frac{10}{\epsilon^2} \) repetitions of ASM-2 and output the mean value of the output \(Z^2 \) we have:

\[
\Pr[\text{error}] \leq \frac{\text{Var}[Z^2]_k}{(\epsilon \mathbb{E}[Z^2])^2} \leq \frac{1}{k} \cdot \frac{2}{\epsilon^2} = \frac{1}{5}
\]

Claim 7.13. \(\mathcal{O}(k \log n) \) bits of randomness suffices to obtain a set of \(k \)-wise independent random variables.

Proof. Recall the definition of hash family \(\mathcal{H}_{n,m} \). In a similar fashion\(^3\), we consider hashes from the family (for prime \(p \)):

\[
\{h_{a_{k-1}, a_{k-2}, \ldots, a_1, a_0} : h(x) = \sum_{i=1}^{k-1} a_i x^i \mod p
= a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \ldots + a_1 x + a_0 \mod p, \forall a_{k-1}, a_{k-2}, \ldots, a_1, a_0 \in \mathbb{Z}_p \}
\]

This requires \(k \) random coefficients, which can be stored with \(\mathcal{O}(k \log n) \) bits.

\(^3\)See https://en.wikipedia.org/wiki/K-independent_hashing
Observe that the above analysis only require \(\{r_i\}_{i \in [n]} \) to be 4-wise independent. Claim 7.13 implies that AMS-2 only needs \(\mathcal{O}(4 \log n) \) bits to represent \(\{r_i\}_{i \in [n]} \).

Although the failure probability \(\frac{2}{\epsilon^2} \) is large for small \(\epsilon \), one can repeat \(t \) times and output the mean (Recall Trick 1). With \(t \in \mathcal{O}\left(\frac{1}{\epsilon^2}\right) \) samples, the failure probability drops to \(\frac{2}{t\epsilon^2} \in \mathcal{O}(1) \). When the failure probability is less than \(\frac{1}{2} \), one can then call the routine \(k \) times independently, and return the median (Recall Trick 2). On the whole, for any given \(\epsilon > 0 \) and \(\delta > 0 \), \(\mathcal{O}\left(\frac{\log(n) \log(1/\delta)}{\epsilon^2}\right) \) space suffices to yield a \((1 \pm \epsilon)\)-approximation algorithm that succeeds with probability \(> 1 - \delta \).

7.3.2 General \(k \)

Algorithm 24 AMS-k(\(S = \{a_1, \ldots, a_m\} \))

\[
m \leftarrow |S| \quad \triangleright \text{For now, assume we know } m = |S|
\]
\[
J \leftarrow \text{u.a.r.} \; [m] \quad \triangleright \text{Pick a random index}
\]
\[
r \leftarrow 0
\]
\[
\text{for } a_i \in S \text{ do}
\]
\[
\quad \text{if } i \geq J \text{ and } a_i = a_J \text{ then}
\]
\[
\quad \quad r \leftarrow r + 1
\]
\[
\text{end if}
\]
\[
\text{end for}
\]
\[
Z \leftarrow m(r^k - (r - 1)^k)
\]
\[
\text{return } Z \quad \triangleright \text{Estimate of } F_k = \sum_{i=1}^{n} (f_i)^k
\]

Remark At the end of AMS-k, \(r = |\{i \in [m] : i \geq J \text{ and } a_i = a_J\}| \) will be the number of occurrences of \(a_J \) in a suffix of the stream.

The assumption of known \(m \) in AMS-k can be removed via reservoir sampling\(^4\). The idea is as follows: Initially, initialize stream length and \(J \) as both 0. When \(a_i \) arrives, choose to replace \(J \) with \(i \) with probability \(\frac{1}{i} \). If \(J \) is replaced, reset \(r \) to 0 and start counting from this stream suffix onwards. It can be shown that the choice of \(J \) is uniform over current stream length.

Lemma 7.14. In AMS-k, \(\mathbb{E}[Z] = \sum_{i=1}^{n} f_i^k = F_k \). That is, AMS-k is an unbiased estimator for the \(k \)th moment.

\(^4\)See https://en.wikipedia.org/wiki/Reservoir_sampling
7.3. ESTIMATING THE K^{TH} MOMENT OF A STREAM

Proof. When $a_J = i$, there are f_i choices for J. By telescoping sums, we have

$$E[Z \mid a_J = i] = \frac{1}{f_i} \left[m(f_i^k - (f_i - 1)^k) + \frac{1}{f_i} [m((f_i - 1)^k - (f_i - 2)^k)] + \cdots + \frac{1}{f_i} [m(1^k - 0^k)] \right]$$

$$= \frac{m}{f_i} \left[(f_i^k - (f_i - 1)^k) + ((f_i - 1)^k - (f_i - 2)^k) + \cdots + (1^k - 0^k) \right]$$

$$= \frac{m}{f_i} f_i^k.$$

Thus,

$$E[Z] = \sum_{i=1}^{n} E[Z \mid a_J = i] \cdot \Pr[a_J = i] \quad \text{Condition on the choice of } J$$

$$= \sum_{i=1}^{n} E[Z \mid a_J = i] \cdot \frac{f_i}{m} \quad \text{Since choice of } J \text{ is uniform at random}$$

$$= \sum_{i=1}^{n} \frac{m}{f_i} f_i^k \cdot \frac{f_i}{m} \quad \text{From above}$$

$$= \sum_{i=1}^{n} f_i^k \quad \text{Simplifying}$$

$$= F_k \quad \text{Since } F_k = \sum_{i=1}^{n} f_i^k.$$

\[\square\]

Lemma 7.15. For positive reals f_1, f_2, \ldots, f_n and a positive integer k, we have

$$(\sum_{i=1}^{n} f_i)(\sum_{i=1}^{n} f_i^{2k-1}) \leq n^{1-1/k}(\sum_{i=1}^{n} f_i^k)^2.$$

Proof. Let $M = \max_{i \in [n]} f_i$, then $f_i \leq M$ for any $i \in [n]$ and $M^k \leq \sum_{i=1}^{n} f_i^k$. Hence,
In Theorem 7.16.

Remark $f_1 = n^{\frac{1}{k}}, f_2 = \cdots = f_n = 1$ is a tight example for Lemma 7.15, up to a constant factor.

Theorem 7.16. In AMS-K, $\text{Var}(Z) \leq kn^{1-\frac{1}{k}}(\mathbb{E}[Z])^2$.

Proof. Let us first analyze $\mathbb{E}[Z^2]$.

$$\mathbb{E}[Z^2] = \frac{m}{m-1}(1^k - 0^k)^2 + (2^k - 1^k)^2 + \cdots + (f_1^k - (f_1 - 1)^k)^2$$

$$+ (1^k - 0^k)^2 + (2^k - 1^k)^2 + \cdots + (f_2^k - (f_2 - 1)^k)^2$$

$$+ \ldots$$

$$+ (1^k - 0^k)^2 + (2^k - 1^k)^2 + \cdots + (f_n^k - (f_n - 1)^k)^2$$

$$\leq m[k^{-1}k^{-1}(1^k - 0^k) + k^{-1}k^{-1}(1^k - 0^k) + \cdots + k^{-1}k^{-1}(f_n^k - (f_n - 1)^k)]$$

(1) Condition on J and expand as in the proof of Theorem 7.14
7.3. **ESTIMATING THE KTH MOMENT OF A STREAM**

(2) For all $0 < b < a$,

\[a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + \cdots + ab^{k-2} + b^{k-1}) \leq (a - b)ka^{k-1}, \]

in particular, \(((a^k - (a - 1)^k)^2 \leq ka^{k-1}(a^k - (a - 1)^k)).\]

(3) Telescope each row, then ignore remaining negative terms

(4) \(F_{2k-1} = \sum_{i=1}^{n} f_i^{2k-1} \)

(5) \(F_1 = \sum_{i=1}^{n} f_i = m \)

Then,

\[
\text{Var}(Z) = \mathbb{E}[Z^2] - (\mathbb{E}[Z])^2 \\
\leq \mathbb{E}[Z^2] \\
\leq kF_1F_{2k-1} \\
\leq kn^{1-\frac{1}{k}}F_k^2 \\
= kn^{1-\frac{1}{k}}(\mathbb{E}[Z])^2
\]

By Theorem 7.14

\[\square \]

Remark Proofs for Lemma 7.15 and Theorem 7.16 were omitted in class. The above proofs are presented in a style consistent with the rest of the scribe notes. Interested readers can refer to [AMS96] for details.

Remark One can apply an analysis similar to the case when \(k = 2 \), then use Tricks 1 and 2.

Claim 7.17. For \(k > 2 \), a lower bound of \(\tilde{\Theta}(n^{1-\frac{2}{k}}) \) is known.

Proof. Theorem 3.1 in [BYJKS04] gives the lower bound. See [IW05] for algorithm that achieves it. \[\square \]
Chapter 8

Graph sketching

Definition 8.1 (Streaming connected components problem). Consider a graph of \(n \) vertices and a stream \(S \) of edge updates \(\{(e_t, \pm)\}_{t \in \mathbb{N}^+} \), where edge \(e_t \) is either added (+) or removed (-). Assume that \(S \) is “well-behaved”, that is existing edges are not added and an edge is deleted only if it’s already present in the graph.

At time \(t \), the edge set \(E_t \) of the graph \(G_t = (V, E_t) \) is the set of edges present after accounting for all stream updates up to time \(t \). How much memory do we need if we want to be able to query the connected components for \(G_t \) for any \(t \in \mathbb{N}^+ \)?

Let \(m \) be the total number of distinct edges in the stream. There are two ways to represent connected components on a graph:

1. Every vertex stores a label such that vertices in the same connected component have the same label
2. Explicitly build a tree for each connected component — This yields a maximal forest

For now, we are interested in building a maximal forest for \(G_t \). This can be done with memory size of \(O(m) \) words\(^1\), or — in the special case of only edge additions — \(O(n) \) words\(^2\). However, these are unsatisfactory as \(m \in O(n^2) \) on a complete graph, and we may have edge deletions. We show how one can maintain a data structure with \(O(n \log^4 n) \) memory, with a randomized algorithm that succeeds in building the maximal forest with success probability \(\geq 1 - \frac{1}{n^{10}} \).

\(^1\)Toggle edge additions/deletion per update. Compute connected components on demand.
\(^2\)Use the Union-Find data structure. See https://en.wikipedia.org/wiki/Disjoint-set_data_structure
Coordinator model For a change in perspective, consider the following computation model where each vertex acts independently from each other. Then, upon request of connected components, each vertex sends some information to a centralized coordinator to perform computation and outputs the maximal forest.

The coordinator model will be helpful in our analysis of the algorithm later as each vertex will send $O(\log^4 n)$ amount of data (a local sketch of the graph) to the coordinator, totalling $O(n \log^4 n)$ memory as required.

8.1 Warm up: Finding the single cut

Definition 8.2 (The single cut problem). Fix an arbitrary subset $A \subseteq V$. Suppose there is exactly 1 cut edge $\{u, v\}$ between A and $V \setminus A$. How do we output the cut edge $\{u, v\}$ using $O(\log n)$ bits of memory?

Without loss of generality, assume $u \in A$ and $v \in V \setminus A$. Note that this is not a trivial problem at first glance since it already takes $O(n)$ bits for any vertex to enumerate all its adjacent edges. To solve the problem, we use a bit trick which exploits the fact that any edge $\{a, b\} \in A$ will be considered twice by vertices in A. Since one can uniquely identify each vertex with $O(\log n)$ bits, consider the following:

- Identify an edge $e = \{u, v\}$ by the concatenation of the identifiers of its endpoints: $id(e) = id(u) \circ id(v)$ if $id(u) < id(v)$

- Locally, every vertex u maintains

$$XOR_u = \oplus \{id(e) : e \in S \land u \text{ is an endpoint of } e\}$$

Thus XOR_u represents the bit-wise XOR of the identifiers of all edges that are adjacent to u.

- All vertices send the coordinator their value XOR_u and the coordinator computes

$$XOR_A = \oplus \{XOR_u : u \in A\}$$

\[\text{In reality, the algorithm simulates all the vertices’ actions so it is not a real multi-party computation setup.}\]
Example Suppose $V = \{v_1, v_2, v_3, v_4, v_5\}$ where $id(v_1) = 000$, $id(v_2) = 001$, $id(v_3) = 010$, $id(v_4) = 011$, and $id(v_5) = 100$. Then, $id(\{v_1, v_3\}) = id(v_1) \circ id(v_3) = 000010$, and so on. Suppose

$$S = \langle \{v_1, v_2\} , \{v_2, v_3\} , \{v_1, v_3\} , \{v_4, v_5\} , \{v_2, v_5\} , \{v_1, v_2\} \rangle$$

and we query for the cut edge $\{v_2, v_3\}$ with $A = \{v_1, v_2, v_3\}$ at $t = |S|$. The figure below shows the graph G_6 when $t = 6$:

![Graph G_6](image)

Vertex v_1 sees $\langle \{v_1, v_2\} , \{v_1, v_3\} , \{v_1, v_2\} \rangle$. So,

$$XOR_1 \Rightarrow 000000 \quad \text{Initialize}$$

$$\Rightarrow 000000 \oplus id(\{v_1, v_2\}) = 000000 \oplus 000001 = 000001 \quad \text{Due to } \langle \{v_1, v_2\}, + \rangle$$

$$\Rightarrow 000001 \oplus id(\{v_1, v_3\}) = 000001 \oplus 000010 = 000011 \quad \text{Due to } \langle \{v_1, v_3\}, + \rangle$$

$$\Rightarrow 000011 \oplus id(\{v_1, v_2\}) = 000011 \oplus 000001 = 000010 \quad \text{Due to } \langle \{v_1, v_2\}, - \rangle$$

Repeating the simulation for all vertices,

$$XOR_1 = 000010 = id(\{v_1, v_2\}) \oplus id(\{v_1, v_3\}) \oplus id(\{v_1, v_2\})$$

$$= 000001 \oplus 000010 \oplus 000001$$

$$XOR_2 = 000110 = id(\{v_1, v_2\}) \oplus id(\{v_2, v_3\}) \oplus id(\{v_2, v_3\}) \oplus id(\{v_1, v_2\})$$

$$= 000001 \oplus 001010 \oplus 001100 \oplus 000001$$

$$XOR_3 = 001000 = id(\{v_2, v_3\}) \oplus id(\{v_1, v_3\})$$

$$= 001010 \oplus 000001$$

$$XOR_4 = 011100 = id(\{v_1, v_5\})$$

$$= 011100$$

$$XOR_5 = 010000 = id(\{v_1, v_3\}) \oplus id(\{v_2, v_5\})$$

$$= 011100 \oplus 001100$$
Thus, \(\text{XOR}_A = \text{XOR}_1 \oplus \text{XOR}_2 \oplus \text{XOR}_3 = 000010 \oplus 000110 \oplus 001000 = 001100 = \text{id}(\{v_2, v_5\}) \) as expected. Notice that after adding or deleting an edge \(e = (u, v) \), updating \(\text{XOR}_u \) and \(\text{XOR}_v \) can be done by doing a bit-wise XOR of each of these values together with \(\text{id}(e) \). Also, the identifier of every edge with both endpoints in \(A \) contributes two times to \(\text{XOR}_A \).

Claim 8.3. \(\text{XOR}_A = \oplus\{\text{XOR}_u : u \in A\} \) is the identifier of the cut edge.

Proof. For any edge \(e = (a, b) \) such that \(a, b \in A \), \(\text{id}(e) \) contributes to both \(\text{XOR}_a \) and \(\text{XOR}_b \). So, \(\text{XOR}_a \oplus \text{XOR}_b \) will cancel out the contribution of \(\text{id}(e) \) because \(\text{id}(e) \oplus \text{id}(e) = 0 \). Hence, the only remaining value in \(\text{XOR}_A = \oplus\{\text{XOR}_u : u \in A\} \) will be the identifier of the cut edge since only one of its endpoints lies in \(A \).

Remark Bit tricks are often used in the random linear network coding literature (e.g. \([HMK+06]\)).

8.2 Warm up 2: Finding one out of \(k > 1 \) cut edges

Definition 8.4 (The \(k \) cut problem). Fix an arbitrary subset \(A \subseteq V \). Suppose there are exactly \(k \) cut edges \((u, v)\) between \(A \) and \(V \setminus A \), and we are given an estimate \(\hat{k} \) such that \(\frac{k}{2} \leq \hat{k} \leq k \). How do we output a cut edge \((u, v)\) using \(O(\log n) \) bits of memory, with high probability?

A straightforward idea is to independently mark each edge, each with probability \(1/\hat{k} \). In expectation, we expect one edge to be marked. Denote the set of marked cut edges by \(E' \).

\[
\Pr[|E'| = 1] = k \cdot \Pr[\text{Cut edge } \{u, v\} \text{ is marked; others are not}]
\geq \left(\frac{k}{2} \right) \left(1 - \frac{1}{\hat{k}} \right) \left(1 - \left(\frac{1}{\hat{k}} \right) \right)^{k-1}
\geq \frac{1}{2} \cdot 4^{-1}
\geq \frac{1}{10}
\]

Since \(1 - x \geq 4^{-x} \) for \(x \leq 1/2 \).
Remark The above analysis assumes that vertices can locally mark the edges in a consistent manner (i.e. both endpoints of any edge make the same decision whether to mark the edge or not). This can be done with a sufficiently large string of shared randomness. We discuss this in Section 8.3.

From above, we know that \(\Pr[|E'| = 1] \geq 1/10 \). If \(|E'| = 1 \), we can re-use the idea from Section 8.1. However, if \(|E'| \neq 1 \), then \(XOR_A \) may correspond erroneously to another edge in the graph. In the above example, \(id(\{v_1, v_2\}) \oplus id(\{v_2, v_4\}) = 000001 \oplus 001011 = 001010 = id(\{v_2, v_3\}) \).

To fix this, we use random bits as edge IDs instead of simply concatenating vertex IDs: Randomly assign (in a consistent manner) to each edge a random ID of \(k = 20 \log n \) bits. Since the XOR of random bits is random, for any edge \(e \), \(\Pr[XOR_A = id(e) \mid |E'| \neq 1] = \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^{20 \log n} \). Hence,

\[
\Pr[XOR_A = id(e) \text{ for some edge } e \mid |E'| \neq 1] \\
\leq \sum_{e \in (V^2)} \Pr[XOR_A = id(e) \mid |E'| \neq 1] \quad \text{Union bound over all possible edges}
\]

\[
= \binom{n}{2} \left(\frac{1}{2}\right)^{20 \log n}
\]

\[
= 2^{-18 \log n}
\]

\[
= \frac{1}{n^{18}}
\]

Rewriting

Now, we can correctly distinguish \(|E'| = 1 \) from \(|E'| \neq 1 \) and \(\Pr[|E'| = 1] \geq \frac{1}{10} \). For any given \(\epsilon > 0 \), there exists a constant \(C(\epsilon) \) such that if we repeat \(t = C(\epsilon) \log n \) times, the probability that all \(t \) tries fail to extract a single cut is \((1 - \frac{1}{10})^t \leq \frac{1}{n^{18\epsilon}} \).

8.3 Maximal forest with \(O(n \log^4 n) \) memory

Recall that Borůvka’s algorithm\(^4\) builds a minimum spanning tree by iteratively finding the cheapest edge leaving connected components and adding them into the MST. The number of connected components decreases by at least half per iteration, so it converges in \(O(\log n) \) iterations.

For any arbitrary cut, the number of edge cuts is \(k \in [0, n] \). Guessing through \(k = 2^0, 2^1, \ldots, 2^{\lfloor \log n \rfloor} \), one can use Section 8.2 to find a cut edge:

- If \(k \gg k \), the marking probability will select nothing (in expectation).

\(^4\)See https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
• If \(\hat{k} \ll k \), more than one edge will get marked, which we will then detect (and ignore) since \(XOR_A \) will likely not be a valid edge ID.

Algorithm 25 ComputeSketches
\[S = \{ (e, \pm) \}, \epsilon, R \]
\[
\text{for } i = 1, \ldots, n \text{ do} \\
\quad XOR_i \leftarrow 0^{(20 \log n) \cdot \log^3 n} \quad \triangleright \text{Initialize } \log^3 n \text{ copies} \\
\text{end for} \\
\text{for } \text{Edge update } \{ (e = (u, v), \pm) \} \in S \text{ do} \quad \triangleright \text{Streaming edge updates} \\
\quad \text{for } b = \log n \text{ times do} \\
\quad \quad \text{for } i \in \{1, 2, \ldots, \log n\} \text{ do} \quad \triangleright \text{Simulate Borůvka} \\
\quad \quad \quad \text{for } t = C(\epsilon) \log n \text{ times do} \quad \triangleright \text{Amplify success probability} \\
\quad \quad \quad \quad R_{b,i,t} \leftarrow \text{Randomness for this specific instance based on } R \\
\quad \quad \quad \text{if Edge } e \text{ is marked w.p. } 1/\hat{k} = 2^{-i}, \text{ according to } R_{b,i,t} \text{ then} \\
\quad \quad \quad \quad \text{Compute } id(e) \text{ using } R \\
\quad \quad \quad \quad XOR_u[b, i, t] \leftarrow XOR_u[b, i, t] \oplus id(e) \\
\quad \quad \quad \quad XOR_v[b, i, t] \leftarrow XOR_v[b, i, t] \oplus id(e) \\
\quad \quad \quad \text{end if} \\
\quad \quad \text{end for} \\
\quad \text{end for} \\
\quad \text{end for} \\
\text{end for} \\
\text{return } XOR_1, \ldots, XOR_n
\]

Using a source of randomness \(R \), every vertex in **ComputeSketches** maintains \(O(\log^3 n) \) copies of edge XORs using random (but consistent) edge IDs and marking probabilities:

- \(\lceil \log n \rceil \) times for Borůvka simulation later
- \(\lceil \log n \rceil \) times for guesses of cut size \(k \)
- \(C(\epsilon) \cdot \log n \) times to amplify success probability of Section 8.2

Then, **StreamingMaximalForest** simulates Borůvka using the output of **ComputeSketches**:

- Find an out-going edge from each connected component via Section 8.2
- Join connected components by adding edges to graph

Since each edge ID uses \(O(\log n) \) memory and \(O(\log^3 n) \) copies were maintained per vertex, a total of \(O(n \log^4 n) \) memory suffices. At each step, we
Algorithm 26 StreamingMaximalForest($S = \{(e, \pm), \ldots\}, \epsilon$)

$\mathcal{R} \leftarrow \text{Generate } \mathcal{O}(\log^2 n) \text{ bits of shared randomness}$

$XOR_1, \ldots, XOR_n \leftarrow \text{COMPUTE SKETCHES}(S, \epsilon, \mathcal{R})$

$F \leftarrow (V_F = V, E_F = \emptyset)$ \hfill \triangleright Initialize empty forest

for $b = \log n$ times do

\hspace{1em} $C \leftarrow \emptyset$ \hfill \triangleright Initialize candidate edges

\hspace{1em} for Every connected component A in F do

\hspace{2em} for $i \in \{1, 2, \ldots, \lceil \log n \rceil\}$ do

\hspace{3em} $R_{b,i,t} \leftarrow \text{Randomness for this specific instance}$

\hspace{3em} $XOR_A \leftarrow \oplus\{XOR_u[b, i, t] : u \in A\}$

\hspace{3em} if $XOR_A = \text{id}(e)$ for some edge $e = (u, v)$ then

\hspace{4em} $C \leftarrow C \cup \{(u, v)\}$ \hfill \triangleright Add cut edge (u, v) to candidates

\hspace{4em} Go to next connected component in F

\hspace{3em} end if

\hspace{2em} end for

\hspace{1em} end for

\hspace{1em} $E_F \leftarrow E_F \cup C$, removing cycles in $\mathcal{O}(1)$ if necessary \hfill \triangleright Add candidates

end for

return F
fail to find one cut edge leaving a connected component with probability
\(\leq (1 - \frac{1}{10})^t \), which can be be made to be in \(O(\frac{1}{n}) \). Applying union bound over all \(O(\log^3 n) \) computations of \(XOR_A \), we see that

\[
\Pr[\text{Any } XOR_A \text{ corresponds wrongly some edge ID}] \leq O\left(\frac{\log^3 n}{n^{18}}\right) \subseteq O\left(\frac{1}{n^{10}}\right)
\]

So, StreamingMaximalForest succeeds with high probability.

Remark One can drop the memory constraint per vertex from \(O(\log^4 n) \) to \(O(\log^3 n) \) by using a constant \(t \) instead of \(t \in O(\log n) \) such that the success probability is a constant larger than 1/2. Then, simulate Borůvka for \(\lceil 2 \log n \rceil \) steps. See [AGM12] (Note that they use a slightly different sketch).

Theorem 8.5. Any randomized distributed sketching protocol for computing spanning forest with success probability \(\epsilon > 0 \) must have expected average sketch size \(\Omega(\log^3 n) \), for any constant \(\epsilon > 0 \).

Proof. See [NY18].

Claim 8.6. Polynomial number of bits provide sufficient independence for the procedure described above.

Remark One can generate polynomial number of bits of randomness with \(O(\log^2 n) \) bits. Interested readers can check out small-bias sample spaces\(^5\). The construction is out of the scope of the course, but this implies that the shared randomness \(R \) can be obtained within our memory constraints.

Part III

Graph sparsification
Chapter 9

Preserving distances

Given a simple, unweighted, undirected graph G with n vertices and m edges, can we sparsify G by ignoring some edges such that certain desirable properties still hold? We will consider simple, unweighted and undirected graphs G. For any pair of vertices $u, v \in G$, denote the shortest path between them by $P_{u,v}$. Then, the distance between u and v in graph G, denoted by $d_G(u,v)$, is simply the length of shortest path $P_{u,v}$ between them.

Definition 9.1 ((α, β)-spanners). Consider a graph $G = (V, E)$ with $|V| = n$ vertices and $|E| = m$ edges. For given $\alpha \geq 1$ and $\beta \geq 0$, an (α, β)-spanner is a subgraph $G' = (V, E')$ of G, where $E' \subseteq E$, such that

$$d_G(u,v) \leq d_{G'}(u,v) \leq \alpha \cdot d_G(u,v) + \beta$$

Remark The first inequality is because G' has less edges than G. The second inequality upper bounds how much the distances “blow up” in the sparser graph G'.

For an (α, β)-spanner, α is called the **multiplicative stretch** of the spanner and β is called the **additive stretch** of the spanner. One would then like to construct spanners with small $|E'|$ and stretch factors. An $(\alpha,0)$-spanner is called a α-**multiplicative spanner**, and a $(1,\beta)$-spanner is called a β-**additive spanner**. We shall first look at α-multiplicative spanners, then β-additive spanners in a systematic fashion:

1. State the result (the number of edges and the stretch factor)
2. Give the construction
3. Bound the total number of edges $|E'|$
4. Prove that the stretch factor holds
Remark One way to prove the existence of an \((\alpha, \beta)\)-spanner is to use the probabilistic method: Instead of giving an explicit construction, one designs a random process and argues that the probability that the spanner existing is strictly larger than 0. However, this may be somewhat unsatisfying as such proofs do not usually yield a usable construction. On the other hand, the randomized constructions shown later are explicit and will yield a spanner with high probability\(^1\).

9.1 \(\alpha\)-multiplicative spanners

Let us first state a fact regarding the girth of a graph \(G\). The girth of a graph \(G\), denoted \(g(G)\), is defined as the length of the shortest cycle in \(G\). Suppose \(g(G) > 2k\), then for any vertex \(v\), the subgraph formed by the \(k\)-hop neighbourhood of \(v\) is a tree with distinct vertices. This is because the \(k\)-hop neighbourhood of \(v\) cannot have a cycle since \(g(G) > 2k\).

\[\text{Theorem 9.2.} \quad \text{[ADD}^+\text{93]} \quad \text{For a fixed} \; k \geq 1, \text{ every graph} \; G \text{ on} \; n \text{ vertices has a} \; (2k - 1)\text{-multiplicative spanner with} \; \mathcal{O}(n^{1+1/k}) \text{ edges.} \]

\[\text{Proof.} \]

\[\text{Construction} \]

1. Initialize \(E' = \emptyset\)

2. For \(e = \{u, v\} \in E\) (in arbitrary order):
 - If \(d_{G'}(u, v) \geq 2k\) currently, add \(\{u, v\}\) into \(E'\).
 - Otherwise, ignore it.

\(^1\)This is shown by invoking concentration bounds such as Chernoff.
Number of edges We claim that $|E'| \in O(n^{1+1/k})$. Suppose, for a contradiction, that $|E'| > 2n^{1+1/k}$. Let $G'' = (V'', E'')$ be a graph obtained by iteratively removing vertices with degree $\leq n^{1/k}$ from G'. By construction, $|E''| > n^{1+1/k}$ since at most $n \cdot n^{1/k}$ edges are removed. Observe the following:

- $g(G'') \geq g(G') \geq 2k + 1$, since girth does not decrease with fewer edges.
- Every vertex in G'' has degree $\geq n^{1/k} + 1$, by construction.
- Pick an arbitrary vertex $v \in V''$ and look at its k-hop neighbourhood.

$$n \geq |V''| \quad \text{By construction}$$

$$\geq |\{v\}| + \sum_{i=1}^{k} |\{u \in V'' : d_{G''}(u, v) = i\}| \quad \text{Look only at k-hop neighbourhood from v}$$

$$\geq 1 + \sum_{i=1}^{k} (n^{1/k} + 1)(n^{1/k})^{i-1} \quad \text{Vertices distinct and have deg } \geq n^{1/k} + 1$$

$$= 1 + (n^{1/k} + 1)\left(\frac{n^{1/k} - 1}{n^{1/k} - 1}\right) \quad \text{Sum of geometric series}$$

$$> 1 + (n - 1) \quad \text{Since } (n^{1/k} + 1) > (n^{1/k} - 1)$$

$$= n$$

This is a contradiction since we showed $n > n$. Hence, $|E'| \leq 2n^{1+1/k} \in O(n^{1+1/k})$.

Stretch factor For $e = \{u, v\} \in E$, $d_{G''}(u, v) \leq (2k - 1) \cdot d_G(u, v)$ since we only leave e out of E' if the distance is at most the stretch factor at the point of considering e. For any $u, v \in V$, let $P_{u,v}$ be the shortest path between u and v in G. Say, $P_{u,v} = (u, w_1, \ldots, w_k, v)$. Then,

$$d_{G'}(u, v) \leq d_{G'}(u, w_1) + \cdots + d_{G'}(w_k, v) \quad \text{Simulating $P_{u,v}$ in G'}$$

$$\leq (2k - 1) \cdot d_G(u, w_1) + \cdots + (2k - 1) \cdot d_G(w_k, v) \quad \text{Apply edge stretch to each edge}$$

$$= (2k - 1) \cdot (d_{G}(u, w_1) + \cdots + d_{G}(w_k, v)) \quad \text{Rearrange}$$

$$= (2k - 1) \cdot d_G(u, v) \quad \text{Definition of $P_{u,v}$}$$

\square
Let us consider the family of graphs G on n vertices with girth $> 2k$. It can be shown by contradiction that a graph G with n vertices with girth $> 2k$ cannot have a proper $(2k - 1)$-spanner2: Assume G' is a proper $(2k - 1)$-spanner with edge $\{u,v\}$ removed. Since G' is a $(2k - 1)$-spanner, $d_{G'}(u,v) \leq 2k - 1$. Adding $\{u,v\}$ to G' will form a cycle of length at most $2k$, contradicting the assumption that G has girth $> 2k$.

Let $g(n,k)$ be the maximum possible number of edges in a graph from G. By the above argument, a graph on n vertices with $g(n,k)$ edges cannot have a proper $(2k - 1)$-spanner. Note that the greedy construction of Theorem 9.2 will always produce a $(2k - 1)$-spanner with $\leq g(n,k)$ edges. The size of the spanner is asymptotically tight if Conjecture 9.3 holds.

Conjecture 9.3. [Erd64] For a fixed $k \geq 1$, there exists a family of graphs on n vertices with girth at least $2k + 1$ and $\Omega(n^{1+1/k})$ edges.

Remark 1 By considering edges in increasing weight order, the greedy construction is also optimal for weighted graphs [FS16].

Remark 2 The girth conjecture is confirmed for $k \in \{1, 2, 3, 5\}$ [Wen91, Woo06].

9.2 β-additive spanners

In this section, we will use a random process to select a subset of vertices by independently selecting vertices to join the subset. The following claim will be useful for analysis:

Claim 9.4. If one picks vertices independently with probability p to be in $S \subseteq V$, where $|V| = n$, then

1. $\mathbb{E}[|S|] = np$

2. For any vertex v with degree $d(v)$ and neighbourhood $N(v) = \{u \in V : (u,v) \in E\}$,
 - $\mathbb{E}[|N(v) \cap S|] = d(v) \cdot p$
 - $\Pr[|N(v) \cap S| = 0] \leq e^{-d(v) \cdot p}$

Proof. $\forall v \in V$, let X_v be the indicator whether $v \in S$. By construction, $\mathbb{E}[X_v] = \Pr[X_v = 1] = p$. 2A proper subgraph in this case refers to removing at least one edge.
9.2. β-ADDITIVE SPANNERS

1.
\[
E[|S|] = E\left[\sum_{v \in V} X_v\right] \quad \text{By construction of } S
\]
\[
= \sum_{v \in V} E[X_v] \quad \text{Linearity of expectation}
\]
\[
= \sum_{v \in V} p \quad \text{Since } E[X_v] = Pr[X_v = 1] = p
\]
\[
= np \quad \text{Since } |V| = n
\]

2.
\[
E[|N(v) \cap S|] = E\left[\sum_{v \in N(v)} X_v\right] \quad \text{By definition of } N(v) \cap S
\]
\[
= \sum_{v \in N(v)} E[X_v] \quad \text{Linearity of expectation}
\]
\[
= \sum_{v \in N(v)} p \quad \text{Since } E[X_v] = Pr[X_v = 1] = p
\]
\[
= d(v) \cdot p \quad \text{Since } |N(v)| = d(v)
\]

Probability that none of the neighbours of v is in S is
\[
Pr[|N(v) \cap S| = 0] = (1 - p)^{d(v)} \leq (e^{-p})^{d(v)} \leq e^{-p \cdot d(v)},
\]
since $1 - x \leq e^{-x}$ for any x.

\[\square\]

Remark \(\widetilde{O}\) hides logarithmic factors. For example, \(O(n \log^{1000} n) \subseteq \widetilde{O}(n)\).

Theorem 9.5. [ACIM99] Every graph G on n vertices has a 2-additive spanner with \(\widetilde{O}(n^{3/2})\) edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices H, where

\[
L = \{v \in V : \deg(v) \leq n^{1/2}\} \quad \text{and} \quad H = \{v \in V : \deg(v) > n^{1/2}\}
\]

1. Let E'_1 be the set of all edges incident to some vertex in L.
2. Initialize $E'_2 = \emptyset$.

Remark \(\widetilde{O}\) hides logarithmic factors. For example, \(O(n \log^{1000} n) \subseteq \widetilde{O}(n)\).
• Choose $S \subseteq V$ by independently putting each vertex into S with probability $10n^{-1/2}\log n$.
• For each $s \in S$, add a Breadth-First-Search (BFS) tree rooted at s to E'_2.

Select edges in spanner to be $E' = E'_1 \cup E'_2$.

Number of edges We can bound the expected number of edges in the spanner. There are at most n light vertices, so

$$|E'_1| \leq n \cdot n^{1/2} = n^{3/2}.$$

By Claim 9.4 for $p = 10n^{-1/2}\log n$, the expected size of S is

$$\mathbb{E}[|S|] = n \cdot 10n^{-1/2}\log n = 10n^{1/2}\log n.$$

The number of edges in each BFS tree is at most $n - 1$, so

$$\mathbb{E}[|E'_2|] \leq n\mathbb{E}[|S|].$$

Therefore,

$$\mathbb{E}[|E'|] = \mathbb{E}[|E'_1 \cup E'_2|] \leq \mathbb{E}[|E'_1|] + |E'_2|$$

$$= |E'_1| + \mathbb{E}[|E'_2|]$$

$$\leq n^{3/2} + n \cdot 10n^{1/2}\log n \in \tilde{O}(n^{3/2}).$$

Stretch factor Consider two arbitrary vertices u and v with the shortest path $P_{u,v}$ in G. Let h be the number of heavy vertices in $P_{u,v}$. We split the analysis into two cases: (i) $h \leq 1$; (ii) $h \geq 2$. Recall that a heavy vertex has degree at least $n^{1/2}$.

Case (i) All edges in $P_{u,v}$ are adjacent to a light vertex and are thus in E'_1.

Hence, $d_{G'}(u,v) = d_G(u,v)$, with additive stretch 0.

Case (ii)

Claim 9.6. Suppose there exists a vertex $w \in P_{u,v}$ such that $(w,s) \in E$ for some $s \in S$, then $d_{G'}(u,v) \leq d_G(u,v) + 2$.
9.2. β-ADDITIVE SPANNERS

Proof.

\begin{align*}
 d_{G'}(u, v) &\leq d_{G'}(u, s) + d_{G'}(s, v) \quad (1) \\
 &= d_G(u, s) + d_G(s, v) \quad (2) \\
 &\leq d_G(u, w) + d_G(w, s) + d_G(s, w) + d_G(w, v) \quad (3) \\
 &\leq d_G(u, w) + 1 + d_G(w, v) \quad (4) \\
 &\leq d_G(u, v) + 2 \quad (5)
\end{align*}

(1) By triangle inequality
(2) Since we add the BFS tree rooted at s
(3) By triangle inequality
(4) Since $\{s, w\} \in E$, $d_G(w, s) = d_G(s, w) = 1$
(5) Since w lies on $P_{u,v}$

Let w be a heavy vertex in $P_{u,v}$ with degree $d(w) > n^{1/2}$. By Claim 9.4 with $p = 10n^{-1/2}\log n$, $Pr[|N(w) \cap S| = 0] \leq e^{-10\log n} = n^{-10}$. Taking union bound over all possible pairs of vertices u and v,

$$
Pr[\exists u, v \in V, P_{u,v} has h \geq 2 and no neighbour in S] \leq \binom{n}{2}n^{-10} \leq n^{-8}
$$

Then, Claim 9.6 tells us that the additive stretch factor is at most 2 with probability $\geq 1 - \frac{1}{n^8}$. Therefore, with high probability ($\geq 1 - \frac{1}{n^8}$), the construction yields a 2-additive spanner.

Remark A way to remove log factors from Theorem 9.5 is to sample only $n^{1/2}$ nodes into S, and then add all edges incident to nodes that don’t have an adjacent node in S. The same argument then shows that this costs $O(n^{3/2})$ edges in expectation.

Theorem 9.7. [Che13] Every graph G on n vertices has a 4-additive spanner with $\tilde{O}(n^{7/5})$ edges.

Proof.

Construction Partition vertex set V into light vertices L and heavy vertices H, where

$$
L = \{v \in V : \deg(v) \leq n^{2/5}\} \text{ and } H = \{v \in V : \deg(v) > n^{2/5}\}
$$

1. Let E_1' be the set of all edges incident to some vertex in L.

2. Initialize $E_2' = \emptyset$.
 - Choose $S \subseteq V$ by independently putting each vertex into S with probability $30n^{-3/5} \log n$.
 - For each $s \in S$, add a Breadth-First-Search (BFS) tree rooted at s to E_2'.

3. Initialize $E_3' = \emptyset$.
 - Choose $S' \subseteq V$ by independently putting each vertex into S' with probability $10n^{-2/5} \log n$.
 - For each heavy vertex $w \in H$, if there exists an edge (w, s') for some $s' \in S'$, add one such edge to E_3'.
 - $\forall s, s' \in S'$, add the shortest path among all paths from s and s' with $\leq n^{1/5}$ internal heavy vertices.

 Note: If all paths between s and s' contain $\leq n^{1/5}$ heavy vertices, do not add any edge to E_3'.

Select edges in the spanner to be $E' = E_1' \cup E_2' \cup E_3'$.

Number of edges

- Since there are at most n light vertices, $|E_1'| \leq n \cdot n^{2/5} = n^{7/5}$.

- By Claim 9.4 with $p = 30n^{-3/5} \log n$, $E[|S|] = n \cdot 30n^{-3/5} \log n = 30n^{2/5} \log n$. Then, since every BFS tree has $n - 1$ edges3, $E[|E_2'|] \leq n \cdot |S| = 30n^{7/5} \log n \in \widetilde{O}(n^{7/5})$.

- Since there are $\leq n$ heavy vertices, $\leq n$ edges of the form (v, s') for $v \in H, s' \in S'$ will be added to E_3'. Then, for shortest $s - s'$ paths with $\leq n^{1/5}$ heavy internal vertices, only edges adjacent to the heavy vertices need to be counted because those adjacent to light vertices are already accounted for in E_3'. By Claim 9.4 with $p = 10n^{-2/5} \log n$, $E[|S'|] = n \cdot 10n^{-2/5} \log n = 10n^{3/5} \log n$. As $|S'|$ is highly concentrated around its expectation, we have $E[|S'|^2] \in \widetilde{O}(n^{6/5})$. So, E_3' contributes $\leq n + \left(\frac{|S'|}{2}\right) \cdot n^{1/5} \in \widetilde{O}(n^{7/5})$ edges to the count of $|E'|$.

3Though we may have repeated edges
Stretch factor

Consider two arbitrary vertices \(u \) and \(v \) with the shortest path \(P_{u,v} \) in \(G \). Let \(h \) be the number of heavy vertices in \(P_{u,v} \). We split the analysis into three cases: (i) \(h \leq 1 \); (ii) \(2 \leq h \leq n^{1/5} \); (iii) \(h > n^{1/5} \). Recall that a heavy vertex has degree at least \(n^{2/5} \).

Case (i) All edges in \(P_{u,v} \) are adjacent to a light vertex and are thus in \(E_1' \). Hence, \(d_{G'}(u,v) = d_G(u,v) \), with additive stretch 0.

Case (ii) Denote the first and last heavy vertices in \(P_{u,v} \) as \(w \) and \(w' \) respectively. Recall that in Case (ii), including \(w \) and \(w' \), there are at most \(n^{1/5} \) heavy vertices between \(w \) and \(w' \). By Claim 9.4, with \(p = 10n^{-2/5} \log n \),

\[
\Pr[[N(w) \cap S'] = 0], \Pr[[N(w') \cap S'] = 0] \leq e^{-n^{2/5}10n^{-2/5} \log n} = n^{-10}
\]

Let \(s, s' \in S' \) be vertices adjacent in \(G' \) to \(w \) and \(w' \) respectively. Observe that \(s - w - w' - s' \) is a path between \(s \) and \(s' \) with at most \(n^{1/5} \) internal heavy vertices. Let \(P_{s,s'}^* \) be the shortest path of length \(l^* \) from \(s \) to \(s' \) with at most \(n^{1/5} \) internal heavy vertices. By construction, we have added \(P_{s,s'}^* \) to \(E_3' \). Observe:

- By definition of \(P_{s,s'}^* \), we have \(l^* \leq d_G(s, w) + d_G(w, w') + d_G(w', s') = d_G(w, w') + 2 \).
- Since there are no internal heavy vertices between \(u - w \) and \(w' - v \), Case (i) tells us that \(d_{G'}(u, w) = d_G(u, w) \) and \(d_{G'}(w', v) = d_G(w', v) \).

Thus,

\[
d_{G'}(u, v) \\
\leq d_{G'}(u, w) + d_{G'}(w, w') + d_{G'}(w', v) \\
\leq d_{G'}(u, w) + d_{G'}(w, s) + d_{G'}(s, s') + d_{G'}(s', w') + d_{G'}(w', v) \\
\leq d_{G'}(u, w) + d_{G'}(w, s) + d_{G'}(w', s') + d_{G'}(w', v) \\
\leq d_{G'}(u, w) + d_{G'}(w, s) + d_G(w, w') + 2 + d_{G'}(s', w') + d_{G'}(w', v) \\
= d_{G'}(u, w) + 1 + d_G(w, w') + 2 + 1 + d_{G'}(w', v) \\
\leq d_G(u, v) + 4
\]

(1) Decomposing \(P_{u,v} \) in \(G' \)
CHAPTER 9. PRESERVING DISTANCES

(2) Triangle inequality
(3) $P_{s,s'}^*$ is added to E'_3
(4) Since $l^* \leq d_G(w, w') + 2$
(5) Since $(w, s) \in E'$, $(s', w') \in E'$ and $d_{G'}(w, s) = d_{G'}(s', w') = 1$
(6) Since $d_{G'}(u, w) = d_G(u, w)$ and $d_{G'}(w', v) = d_G(w', v)$
(7) By definition of $P_{u,v}$

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{triangle_inequality_diagram.pdf}
\end{array}
\]

Case (iii)

Claim 9.8. There cannot be a vertex y that is a common neighbour to more than 3 heavy vertices in $P_{u,v}$.

Proof. Suppose, for a contradiction, that y is adjacent to $w_1, w_2, w_3, w_4 \in P_{u,v}$ as shown in the picture. Then $u - w_1 - y - w_4 - v$ is a shorter $u - v$ path than $P_{u,v}$, contradicting the fact that $P_{u,v}$ is the shortest $u - v$ path.

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{vertex_neighbour_diagram.pdf}
\end{array}
\]

Note that if y is on $P_{u,v}$ it can have at most two neighbours on $P_{u,v}$. □

Claim 9.8 tells us that $|\bigcup_{w \in H \cap P_{u,v}} N(w)| \geq \sum_{w \in H \cap P_{u,v}} |N(w)| \cdot \frac{1}{3}$. Let $N_{u,v} = \{x \in V : (x, w) \in E \text{ for some } w \in P_{u,v}\}$.

Applying Claim 9.4 with $p = 30 \cdot n^{-3/5} \cdot \log n$ and Claim 9.8, we get

\[
\Pr[|N_{u,v} \cap S| = 0] \leq e^{-p|N_{u,v}|} \leq e^{-p \cdot \frac{1}{3} |H \cap P_{u,v}| \cdot n^{2/5}} = e^{-10 \log n} = n^{-10}.
\]
Taking union bound over all possible pairs of vertices \(u \) and \(v \),

\[
\Pr[\exists u, v \in V, P_{u,v} \text{ has } h > n^{1/5} \text{ and no neighbour in } S] \leq \binom{n}{2} n^{-10} \leq n^{-8}.
\]

Then, Claim 9.6 tells us that the additive stretch factor is at most 4 with probability \(\geq 1 - \frac{1}{n^8} \).

Therefore, with high probability \((\geq 1 - \frac{1}{n^8}) \), the construction yields a 4-additive spanner.

\[\square \]

Remark Suppose the shortest \(u-v \) path \(P_{u,v} \) contains a vertex from \(S \), say \(s \). Then, \(P_{u,v} \) is contained in \(E' \) since we include the BFS tree rooted at \(s \) because it is the shortest \(u-s \) path and shortest \(s-v \) path by definition. In other words, the triangle inequality between \(u,s,v \) becomes tight.

Concluding remarks

<table>
<thead>
<tr>
<th>Additive (\beta)</th>
<th>Number of edges</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ACIM99] 2</td>
<td>(\widetilde{O}(n^{3/2}))</td>
<td>Almost 4 tight [Woo06]</td>
</tr>
<tr>
<td>[Che13] 4</td>
<td>(\widetilde{O}(n^{7/5}))</td>
<td>Open: Is (\widetilde{O}(n^{4/3})) possible?</td>
</tr>
<tr>
<td>[BKMP05] (\geq 6)</td>
<td>(\widetilde{O}(n^{4/3}))</td>
<td>Tight [AB17]</td>
</tr>
</tbody>
</table>

Remark 1 A \(k \)-additive spanner is also a \((k+1) \)-additive spanner.

Remark 2 The additive stretch factors appear in even numbers because current constructions “leave” the shortest path, then “re-enter” it later, introducing an even number of extra edges. Regardless, it is a folklore theorem that it suffices to only consider additive spanners with even error. Specifically, any construction of an additive \((2k+1) \)-spanner on \(\leq E(n) \) edges implies a construction of an additive \(2k \)-spanner on \(O(E(n)) \) edges. Proof sketch: Copy the input graph \(G \) and put edges between the two copies to yield a bipartite graph \(H \); Run the spanner construction on \(H \); “Collapse” the parts back into one. The distance error must be even over a bipartite graph, and so the additive \((2k+1) \)-spanner construction must actually give an additive \(2k \)-spanner by showing that the error bound is preserved over the “collapse”.

\[^4O(n^{4/3}/2\sqrt{\log n})\text{ is still conceivable — i.e. The gap is bigger than polylog, but still subpolynomial.}\]
Chapter 10

Preserving cuts

In the previous chapter, we looked at preserving distances via spanners. In this chapter, we look at preserving cut sizes.

Definition 10.1 (Cut and minimum cut). Consider a graph $G = (V, E)$.

- For $S \subseteq V, S \neq \emptyset, S \neq V$, a non-trivial cut in G is defined as the edges $C_G(S, V \setminus S) = \{(u, v) : u \in S, v \in V \setminus S\}$

- The cut size is defined as $E_G(S, V \setminus S) = \sum_{e \in C_G(S, V \setminus S)} w(e)$.

 If the graph G is unweighted, we have $w(e) = 1$ for all $e \in E$, so $E_G(S, V \setminus S) = |C_G(S, V \setminus S)|$

- The minimum cut size of the graph G is the minimum over all non-trivial cuts, and it is denoted by $\mu(G) = \min_{S \subseteq V, S \neq \emptyset, S \neq V} E_G(S, V \setminus S)$

- A cut $C_G(S, V \setminus S)$ is said to be minimum if $E_G(S, V \setminus S) = \mu(G)$

Given an undirected graph $G = (V, E)$, our goal in this chapter is to construct a weighted graph $H = (V, E')$ with $E' \subseteq E$ and weight function $w : E' \rightarrow \mathbb{R}^+$ such that

$$(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)$$

for every $S \subseteq V, S \neq \emptyset, S \neq V$. Recall Karger’s random contraction algorithm [Kar93]¹:

¹Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm
Algorithm 27 \textsc{RandomContraction}(G = (V, E))

\begin{algorithmic}
 \While{$|V| > 2$}
 \State $e \leftarrow$ Pick an edge uniformly at random from E
 \State $G \leftarrow G/e$ \Comment{Contract edge e}
 \EndWhile
 \State \textbf{return} The remaining cut \Comment{This may be a multi-graph}
\end{algorithmic}

Theorem 10.2. For a fixed minimum cut S^* in the graph, \textsc{RandomContraction} returns it with probability $\geq 1/\left(\begin{smallmatrix} n \\ 2 \end{smallmatrix}\right)$.

Proof. Fix a minimum cut S^* in the graph and suppose $|S^*| = k$. In order for \textsc{RandomContraction} to successfully return S^*, none of the edges in S^* must be selected in the whole contraction process.

Consider the i-th step in the cycle of \textsc{RandomContraction}. By construction, there will be $n - i$ vertices in the graph at this point. Since $\mu(G) = k$, each vertex has degree $\geq k$ (otherwise that vertex itself gives a cut with size smaller than k), so there are $\geq (n - i)k/2$ edges in the graph. Thus,

\[
\Pr[\text{Success}] \geq \left(1 - \frac{k}{nk/2}\right) \cdot \left(1 - \frac{k}{(n-1)k/2}\right) \cdots \left(1 - \frac{k}{3k/2}\right) \\
= \left(1 - \frac{2}{n}\right) \cdot \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{3}\right) \\
= \frac{(n-2)}{n} \cdot \frac{(n-3)}{n-1} \cdots \frac{1}{3} \\
= \frac{2}{n(n-1)} \\
= \frac{n}{(n\choose 2)}
\]

\hfill \square

Corollary 10.3. There are $\leq \left(\begin{smallmatrix} n \\ 2 \end{smallmatrix}\right)$ minimum cuts in a graph.

Proof. Since \textsc{RandomContraction} successfully produces any given minimum cut with probability at least $1/\left(\begin{smallmatrix} n \\ 2 \end{smallmatrix}\right)$ by Theorem 10.2, there can be at most $\left(\begin{smallmatrix} n \\ 2 \end{smallmatrix}\right)$ many minimum cuts. \hfill \square

Remark There exist (multi-)graphs with $\left(\begin{smallmatrix} n \\ 2 \end{smallmatrix}\right)$ minimum cuts: consider a cycle where there are $\frac{\mu(G)}{2}$ edges between every pair of adjacent vertices (the bound is tight when $\mu(G)$ is even).
In general, we can generalize the bound on the number of cuts that are of size at most $\alpha \cdot \mu(G)$ for $\alpha \geq 1$.

Theorem 10.4. In an undirected graph, the number of α-minimum cuts is less than $n^{2\alpha}$.

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version\(^2\) of [Kar99]. \(\square\)

10.1 Warm up: $G = K_n$

Consider the following procedure to construct H:

1. Let $p = \Omega\left(\frac{\log n}{\epsilon^2 n}\right)$

2. Independently put each edge $e \in E$ into E' with probability p

3. Define $w(e) = \frac{1}{p}$ for each edge $e \in E'$

One can check\(^3\) that this suffices for $G = K_n$.

10.2 Uniform edge sampling

Given a graph G with minimum cut size $\mu(G) = k$, consider the following procedure to construct H:

1. Set $p = \frac{c \log n}{\epsilon^2 k}$ for some constant c

2. Independently put each edge $e \in E$ into E' with probability p

3. Define $w(e) = \frac{1}{p}$ for each edge $e \in E'$

\(^3\)Fix a cut, analyze, then take union bound.
Theorem 10.5. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,
\[
(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)
\]

Proof. Fix an arbitrary cut $C(S, V \setminus S)$. Suppose $E_G(S, V \setminus S) = k' = \alpha \cdot k$ for some $\alpha \geq 1$.

Let X_e be the indicator for the edge $e \in C_G(S, V \setminus S)$ being inserted into E'. By construction, $\mathbb{E}[X_i] = \Pr[X_i = 1] = p$. Then, by linearity of expectation, $\mathbb{E}[[C(S, V \setminus S)]] = \sum_{e \in C_G(S, V \setminus S)} \mathbb{E}[X_i] = k'p$. As we put $1/p$ weight on each edge in E', $\mathbb{E}[E_H(S, V \setminus S)] = k'$. Using Chernoff bound, for sufficiently large c, we get:

\[
\Pr[\text{Cut } C_G(S, V \setminus S) \text{ is badly estimated in } H] = \Pr[[E_H(S, V \setminus S) - \mathbb{E}[E_H(S, V \setminus S)]] > \epsilon \cdot k'] \leq 2e^{-\frac{2\epsilon^2k'}{3}} \leq n^{-10\alpha}
\]

Using Theorem 10.4 and union bound over all possible cuts in G,

\[
\Pr[\text{Any cut is badly estimated in } H] \leq \int_1^{\infty} n^{2\alpha} \cdot \frac{1}{n^{-10\alpha}} d\alpha \leq n^{-5}
\]

Therefore, all cuts in G are well estimated in H with high probability.

\[\square\]

Theorem 10.6. [Kar99] Given a graph G, consider sampling every edge $e \in E$ into E' with independent random weights in the interval $[0, 1]$. Let $H = (V, E')$ be the sampled graph and suppose that the expected weight of every cut in H is $\geq \frac{c \log n}{\epsilon}$, for some constant c. Then, with high probability every cut in H has weighted size within $(1 \pm \epsilon)$ of its expectation.

Theorem 10.6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem 2.1 of [Kar99].
10.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut. Consider the following example of a graph composed of two cliques of size n with only one edge connecting them:

\[K_n \quad \text{---} \quad K_n \]

Running the uniform edge sampling will not sparsify the above dumbbell graph as $\mu(G) = 1$ leads to large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first introduce the definition of k-strong components.

Definition 10.7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.

Definition 10.8 (k-strong component). A k-strong component is a maximal k-connected vertex-induced subgraph.

Definition 10.9 (edge strength). Given an edge e, its strength (or strong connectivity) k_e is the maximum k such that e is in a k-strong component. We say an edge is k-strong if $k_e \geq k$.

Remark The (standard) connectivity of an edge $e = (u, v)$ is the minimum cut size over all cuts that separate its endpoints u and v. In particular, an edge’s strong connectivity is no more than the edge’s (standard) connectivity since a cut size of k between u and v implies there is no $(k + 1)$-connected component containing both u and v.

Lemma 10.10. The following holds for k-strong components:

1. k_e is uniquely defined for every edge e

2. For any k, the k-strong components are disjoint.

3. For any 2 values k_1, k_2 ($k_1 < k_2$), k_2-strong components are a refinement of k_1-strong components

4. $\sum_{e \in E} \frac{1}{k_e} \leq n - 1$

 Intuition: If there are a lot of edges, then many of them have high strength.
CHAPTER 10. PRESERVING CUTS

Proof.

1. By definition of maximum

2. Suppose, for a contradiction, there are two different intersecting \(k \)-strong components. Since their union is also \(k \)-strong, this contradicts the fact that they were maximal.

3. For \(k_1 < k_2 \), a \(k_2 \)-strong component is also \(k_1 \)-strong, so it is a subset of some \(k_1 \)-strong component.

4. Consider a minimum cut \(C_G(S, V \setminus S) \). Since \(k_e \geq \mu(G) \) for all edges \(e \in C_G(S, V \setminus S) \), these edges contribute \(\leq \mu(G) \cdot \frac{1}{k_e} \leq \mu(G) \cdot \frac{1}{\mu(G)} = 1 \) to the summation. Remove these edges from \(G \) and repeat the argument on the remaining connected components (excluding isolated vertices). Since each cut removal contributes at most 1 to the summation and the process stops when we reach \(n \) components, then \(\sum_{e \in E} \frac{1}{k_e} \leq n - 1 \).

\[\Box \]

For a graph \(G \) with minimum cut size \(\mu(G) = k \), consider the following procedure to construct \(H \):

1. Set \(q = \frac{c \log n}{\varepsilon^2} \) for some constant \(c \)

2. Independently put each edge \(e \in E \) into \(E' \) with probability \(p_e = \frac{q}{k_e} \)

3. Define \(w(e) = \frac{1}{p_e} = \frac{k_e}{q} \) for each edge \(e \in E' \)

Lemma 10.11. \(\mathbb{E}[|E'|] \leq O\left(\frac{n \log n}{\varepsilon^2}\right) \)
Proof. Let X_e be the indicator random variable whether edge $e \in E$ was selected into E'. By construction, $\mathbb{E}[X_e] = \text{Pr}[X_e = 1] = p_e$. Then,

$$
\mathbb{E}[|E'|] = \mathbb{E}\left[\sum_{e \in E} X_e\right] \quad \text{By definition}
$$

$$
= \sum_{e \in E} \mathbb{E}[X_e] \quad \text{Linearity of expectation}
$$

$$
= \sum_{e \in E} p_e \quad \text{Since } \mathbb{E}[X_e] = \text{Pr}[X_e = 1] = p_e
$$

$$
= \sum_{e \in E} \frac{q}{k_e} \quad \text{Since } p_e = \frac{q}{k_e}
$$

$$
\leq q(n - 1) \quad \text{Since } \sum_{e \in E} \frac{1}{k_e} \leq n - 1
$$

$$
\in \mathcal{O}\left(\frac{n \log n}{\epsilon^2}\right) \quad \text{Since } q = \frac{c \log n}{\epsilon^2} \text{ for some constant } c
$$

Remark One can apply Chernoff bounds to argue that $|E'|$ is highly concentrated around its expectation.

Theorem 10.12. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,

$$(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)$$

Proof. Let $k_1 < k_2 < \cdots < k_s$ be all possible strength values in the graph. Consider G' as a weighted graph with edge weights $\frac{k_e}{q}$ for each edge $e \in E$, and a family of unweighted graphs F_1, \ldots, F_s, where $F_i = (V, E_i)$ is the graph with edges $E_i = \{e \in E : k_e \geq k_i\}$ belonging to the k_i-strong components of G. Observe that:

- $s \leq |E|$ since each edge has only 1 strength value
- By construction of F_i’s, if an edge e has strength k_i in F_i, $k_e = k_i$ in G
- $F_1 = G$
- For each $i \leq s - 1$, F_{i+1} is a subgraph of F_i
- By defining $k_0 = 0$, one can write $G' = \sum_{i=1}^{s} \frac{k_i - k_{i-1}}{q} F_i$. This is because an edge with strength k_i will appear in $F_i, F_{i-1}, \ldots, F_1$ and the terms will telescope to yield a weight of $\frac{k_i}{q}$.
The sampling process in \(G' \) directly translates to a sampling process in each graph in \(\{F_i\}_{i \in [s]} \) — when we add an edge \(e \) into \(E' \), we also add it to the edge sets of \(F_{k_e}, \ldots, F_s \).

First, consider the sampling on the graph \(F_1 = G \). We know that each edge \(e \in E \) is sampled with probability \(p_e = q/k_e \), where \(k_e \geq k_1 \) by construction of \(F_1 \). In this graph, consider any non-trivial cut \(C_{F_1}(S, V \setminus S) \) and let \(e \) be any edge of this cut. We can observe that \(k_e \leq E_{F_1}(S, V \setminus S) \), otherwise contradicting its strength \(k_e \). Then, by using the indicator random variables \(X_e \) whether the edge \(e \in E_1 \) has been sampled, the expected size of this cut in \(F_1 \) after the sampling is

\[
\mathbb{E}[E_{F_1}(S, V \setminus S)] = \mathbb{E}\left[\sum_{e \in C_{F_1}(S, V \setminus S)} X_e \right] = \sum_{e \in C_{F_1}(S, V \setminus S)} \mathbb{E}[X_e] \quad \text{Linearity of expectation}
\]

\[
= \sum_{e \in C_{F_1}(S, V \setminus S)} \frac{q}{k_e} \quad \text{Since } \mathbb{E}[X_e] = \Pr[X_e = 1] = \frac{q}{k_e}
\]

\[
\geq \sum_{e \in C_{F_1}(S, V \setminus S)} \frac{q}{E_{F_1}(S, V \setminus S)} \quad \text{Since } k_e \leq E_{F_1}(S, V \setminus S)
\]

\[
= \frac{c \log n}{\epsilon^2} \quad \text{Since } q = \frac{c \log n}{\epsilon^2}
\]

Since this holds for any cut in \(F_1 \), we can apply Theorem 10.6 to conclude that, with high probability, all cuts in \(F_1 \) have size within \((1 \pm \epsilon) \) of their expectation. Note that the same holds after scaling the edge weights in \(F_1 \) by \(k_1/k_0 \).

In a similar way, consider any other subgraph \(F_i \subseteq G \) as previously defined. Since an \(F_i \) contains the edges from the \(k_i \)-strong components of \(G \), any edge \(e \in E_i \) belongs only to one of them. Let \(D \) be the \(k_i \)-strong component such that \(e \in D \). By observing that \(e \) necessarily belongs to a \(k_e \)-connected subgraph of \(G \) by definition, and that \(k_e \geq k_i \), then such a \(k_e \)-connected subgraph is entirely contained in \(D \). Hence, the strength of \(e \) with respect to the graph \(D \) is equal to \(k_e \). By a similar argument as done for \(F_1 \), we can show that the expected size of a cut \(C_D(S, V \setminus S) \) in \(D \) after
the sampling of the edges is

\[
E[D(S, V \setminus S)] = \sum_{e \in C_D(S, V \setminus S)} \frac{q}{k_e} \quad \text{Since } E[X_e] = Pr[X_e = 1] = \frac{q}{k_e}
\]

\[
\geq \sum_{e \in C_D(S, V \setminus S)} \frac{q}{E_D(S, V \setminus S)} \quad \text{Since } k_e \leq E_D(S, V \setminus S)
\]

\[
= \frac{c \log n}{\epsilon^2} \quad \text{Since } q = \frac{c \log n}{\epsilon^2}
\]

Therefore, we can once again apply Theorem 10.6 to the subgraph \(D \), which states that, with high probability, all cuts in \(D \) are within \((1 \pm \epsilon)\) of their expected value. We arrive at the conclusion that this also holds for \(F_i \) by applying the same argument to all the \(k_i \)-strong components of \(F_i \).

To sum up, for each \(i \in [s] \) Theorem 10.6 tells us that every cut in \(F_i \) is well-estimated with high probability. Then, a union bound over \(\{F_i\}_{i \in [s]} \) provides a lower bound of the probability that all \(F_i \)’s have all cuts within \((1 \pm \epsilon)\) of their expected values, and we can see that this also happens with high probability. This tells us that any cut in \(G \) is well-estimated with high probability, also because all multiplicative factors \(k_i - k_{i-1} \) in the calculation \(G' = \sum_{i=1}^{s} \frac{k_i - k_{i-1}}{q} F_i \) are positive. \(\square \)
Part IV

Online algorithms and competitive analysis
Chapter 11

Warm up: Ski rental

We now study the class of online problems where one has to commit to provably good decisions as data arrive in an online fashion. To measure the effectiveness of online algorithms, we compare the quality of the produced solution against the solution from an optimal offline algorithm that knows the whole sequence of information a priori. The tool we will use for doing such a comparison is competitive analysis.

Remark. We do not assume that the optimal offline algorithm has to be computationally efficient. Under the competitive analysis framework, only the quality of the best possible solution matters.

Definition 11.1 (α-competitive online algorithm). Let σ be an input sequence, c be a cost function, A be the online algorithm and OPT be the optimal offline algorithm. Then, denote $c_A(\sigma)$ as the cost incurred by A on σ and $c_{OPT}(\sigma)$ as the cost incurred by OPT on the same sequence. We say that an online algorithm is α-competitive if for any input sequence σ, $c_A(\sigma) \leq \alpha \cdot c_{OPT}(\sigma)$.

Definition 11.2 (Ski rental problem). Suppose we wish to ski every day but we do not have any skiing equipment initially. On each day, we can choose between:

- Rent the equipment for a day at CHF 1
- Buying the equipment (once and for all) for CHF B

In the toy setting where we may break our leg on each day (and cannot ski thereafter), let d be the (unknown) total number of days we ski. What is the best online strategy for renting/buying?
Claim 11.3. $\mathcal{A} = \text{“Rent for } B \text{ days, then buy on day } B+1\text{”}$ is a 2-competitive algorithm.

Proof. If $d \leq B$, the optimal offline strategy is to rent everyday, incurring a cost of $c_{OPT}(d) = d$. \mathcal{A} will rent for d days and also incur a loss of $c_{A}(d) = d = c_{OPT}(d)$. If $d > B$, the optimal offline strategy is to buy the equipment immediately, incurring a loss of $c_{OPT}(d) = B$. \mathcal{A} will rent for B days and then buy the equipment for CHF B, incurring a cost of $c_{A}(d) = 2B \leq 2c_{OPT}(d)$. Thus, for any d, $c_{A}(d) \leq 2 \cdot c_{OPT}(d)$. \qed
Chapter 12

Linear search

Definition 12.1 (Linear search problem). We have a stack of n papers on the desk. Given a query, we do a linear search from the top of the stack. Suppose the i-th paper in the stack is queried. Since we have to go through i papers to reach the queried paper, we incur a cost of i doing so. We have the option to perform two types of swaps in order to change the stack:

Free swap Move the queried paper from position i to the top of the stack for 0 cost.

Paid swap For any consecutive pair of items (a, b) before i, swap their relative order to (b, a) for 1 cost.

What is the best online strategy for manipulating the stack to minimize total cost on a sequence of queries?

Remark One can reason that the free swap costs 0 because we already incurred a cost of i to reach the queried paper.

12.1 Amortized analysis

Amortized analysis\(^1\) is a way to analyze the complexity of an algorithm on a sequence of operations. Instead of looking the worst case performance on a single operation, it measures the total cost for a batch of operations.

The dynamic resizing process of hash tables is a classical example of amortized analysis. An insertion or deletion operation will typically cost

\(^1\)See https://en.wikipedia.org/wiki/Amortized_analysis
\(\mathcal{O}(1)\) unless the hash table is almost full or almost empty, in which case we double or halve the hash table of size \(m\), incurring a runtime of \(\mathcal{O}(m)\).

Worst case analysis tells us that dynamic resizing will incur \(\mathcal{O}(m)\) run time per operation. However, resizing only occurs after \(\mathcal{O}(m)\) insertion/deletion operations, each costing \(\mathcal{O}(1)\). Amortized analysis allows us to conclude that this dynamic resizing runs in amortized \(\mathcal{O}(1)\) time. There are two equivalent ways to see it:

- Split the \(\mathcal{O}(m)\) resizing overhead and “charge” \(\mathcal{O}(1)\) to each of the earlier \(\mathcal{O}(m)\) operations.
- The total run time for every sequential chunk of \(m\) operations is \(\mathcal{O}(m)\). Hence, each step takes \(\mathcal{O}(m)/m = \mathcal{O}(1)\) amortized run time.

12.2 Move-to-Front

Move-to-Front (MTF) [ST85] is an online algorithm for the linear search problem where we move the queried item to the top of the stack (and do no other swaps). We will show that MTF is a 2-competitive algorithm for linear search. Before we analyze MTF, let us first define a potential function \(\Phi\) and look at examples to gain some intuition.

Let \(\Phi_t\) be the number of pairs of papers \((i,j)\) that are ordered differently in MTF’s stack and OPT’s stack at time step \(t\). By definition, \(\Phi_t \geq 0\) for any \(t\). We also know that \(\Phi_0 = 0\) since MTF and OPT operate on the same initial stack sequence.

Example One way to interpret \(\Phi\) is to count the number of inversions between MTF’s stack and OPT’s stack. Suppose we have the following stacks (visualized horizontally) with \(n = 6\):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF’s stack</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>OPT’s stack</td>
<td>a</td>
<td>e</td>
<td>b</td>
<td>d</td>
<td>c</td>
<td>f</td>
</tr>
</tbody>
</table>

We have the inversions \((c,d)\), \((c,e)\) and \((d,e)\), so \(\Phi = 3\).

Scenario 1 We swap \((b,e)\) in OPT’s stack — A new inversion \((b,e)\) was created due to the swap.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF’s stack</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>OPT’s stack</td>
<td>a</td>
<td>e</td>
<td>b</td>
<td>d</td>
<td>c</td>
<td>f</td>
</tr>
</tbody>
</table>
Now, we have the inversions \((b, e), (c, d), (c, e)\) and \((d, e)\), so \(\Phi = 4\).

Scenario 2 We swap \((e, d)\) in OPT’s stack — The inversion \((d, e)\) was destroyed due to the swap.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTF’s stack</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>OPT’s stack</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>c</td>
<td>f</td>
</tr>
</tbody>
</table>

Now, we have the inversions \((c, d)\) and \((c, e)\), so \(\Phi = 2\).

In either case, we see that any paid swap results in \(\pm 1\) inversions, which changes \(\Phi\) by \(\pm 1\).

Claim 12.2. MTF is 2-competitive.

Proof. We will consider the potential function \(\Phi\) as before and perform amortized analysis on any given input sequence \(\sigma\). Let \(a_t = c_{MTF}(t) + (\Phi_t - \Phi_{t-1})\) be the amortized cost of MTF at time step \(t\), where \(c_{MTF}(t)\) is the cost MTF incurs at time \(t\). Suppose the queried item \(x\) at time step \(t\) is at position \(k\) in MTF’s stack. Denote:

\[
F = \{\text{Items on top of } x \text{ in MTF’s stack and on top of } x \text{ in OPT’s stack}\}
\]

\[
B = \{\text{Items on top of } x \text{ in MTF’s stack and underneath } x \text{ in OPT’s stack}\}
\]

Let \(|F| = f\) and \(|B| = b\). There are \(k - 1\) items in front \(x\), so \(f + b = k - 1\).

Since \(x\) is the \(k\)-th item, MTF will incur \(c_{MTF}(t) = k = f + b + 1\) to reach item \(x\), then move it to the top. On the other hand, OPT needs to
spend at least \(f + 1 \) to reach \(x \). Suppose OPT does \(p \) paid swaps, then \(c_{\text{OPT}}(t) \geq f + 1 + p \).

To measure the change in potential, we first look at the swaps done by MTF and how OPT’s swaps can affect them. Let \(\Delta_{\text{MTF}}(\Phi_t) \) be the change in \(\Phi \) due to MTF and \(\Delta_{\text{OPT}}(\Phi_t) \) be the change in \(\Phi_t \) due to OPT. Thus, \(\Delta(\Phi_t) = \Delta_{\text{MTF}}(\Phi_t) + \Delta_{\text{OPT}}(\Phi_t) \). In MTF, moving \(x \) to the top destroys \(b \) inversions and creates \(f \) inversions, so the change in \(\Phi \) due to MTF is \(\Delta_{\text{MTF}}(\Phi_t) = f - b \). If OPT chooses to do a free swap, \(\Phi \) does not increase as both stacks now have \(x \) before any element in \(F \). For every paid swap that OPT performs, \(\Phi \) changes by one since inversions only locally affect the swapped pair and thus, \(\Delta_{\text{OPT}}(\Phi_t) \leq p \).

Therefore, the effect on \(\Phi \) from both processes is: \(\Delta(\Phi_t) = \Delta_{\text{MTF}}(\Phi_t) + \Delta_{\text{OPT}}(\Phi_t) \leq (f - b) + p \). Putting together, we have \(c_{\text{OPT}}(t) \geq f + 1 + p \) and \(a_t = c_{\text{MTF}}(t) + (\Phi_t - \Phi_{t-1}) = k + \Delta(\Phi_t) \leq 2f + 1 + p \leq 2 \cdot c_{\text{OPT}}(t) \). Summing up over all queries in the sequence yields:

\[
2 \cdot c_{\text{OPT}}(\sigma) = \sum_{t=1}^{|\sigma|} 2 \cdot c_{\text{OPT}}(t) \geq \sum_{t=1}^{|\sigma|} a_t
\]

With \(a_t = c_{\text{MTF}}(t) + (\Phi_t - \Phi_{t-1}) \) and using the fact that the sum over the change in potential is telescoping, we get:

\[
\sum_{t=1}^{|\sigma|} a_t = \sum_{t=1}^{|\sigma|} c_{\text{MTF}}(t) + (\Phi_t - \Phi_{t-1}) = \sum_{t=1}^{|\sigma|} c_{\text{MTF}}(t) + (\Phi_{|\sigma|} - \Phi_0)
\]

Since \(\Phi_t \geq 0 = \Phi_0 \) and \(c_{\text{MTF}}(\sigma) = \sum_{t=1}^{|\sigma|} c_{\text{MTF}}(t) \):

\[
\sum_{t=1}^{|\sigma|} c_{\text{MTF}}(t) + (\Phi_{|\sigma|} - \Phi_0) \geq \sum_{t=1}^{|\sigma|} c_{\text{MTF}}(t) = c_{\text{MTF}}(\sigma)
\]

We have shown that \(c_{\text{MTF}}(\sigma) \leq 2 \cdot c_{\text{OPT}}(\sigma) \) which completes the proof. \(\square \)
Chapter 13
Paging

Definition 13.1 (Paging problem [ST85]). Suppose we have a fast memory (cache) that can fit \(k \) pages and an unbounded sized slow memory. Accessing items in the cache costs 0 units of time while accessing items in the slow memory costs 1 unit of time. After accessing an item in the slow memory, we can bring it into the cache by evicting an incumbent item if the cache was full. What is the best online strategy for maintaining items in the cache to minimize the total access cost on a sequence of queries?

Denote cache miss as accessing an item that is not in the cache. Any sensible strategy should aim to reduce the number of cache misses. For example, if \(k = 3 \) and \(\sigma = \{1, 2, 3, 4, \ldots, 2, 3, 4\} \), keeping item 1 in the cache will incur several cache misses. Instead, the strategy should aim to keep items \{2, 3, 4\} in the cache. We formalize this notion in the following definition of conservative strategy.

Definition 13.2 (Conservative strategy). A strategy is conservative if on any consecutive subsequence that includes only \(k \) distinct pages, there are at most \(k \) cache misses.

Remark Some natural paging strategies such as “Least Recently Used (LRU)” and “First In First Out (FIFO)” are conservative.

Claim 13.3. If \(\mathcal{A} \) is a deterministic online algorithm that is \(\alpha \)-competitive, then \(\alpha \geq k \).

Proof. Consider the following input sequence \(\sigma \) on \(k + 1 \) pages: since the cache has size \(k \), at least one item is not in the cache at any point in time. Iteratively pick \(\sigma(t + 1) \) as the item not in the cache after time step \(t \).

Since \(\mathcal{A} \) is deterministic, the adversary can simulate \(\mathcal{A} \) for \(|\sigma| \) steps and build \(\sigma \) accordingly. By construction, \(c_\mathcal{A}(\sigma) = |\sigma| \).
On the other hand, since OPT can see the entire sequence σ, OPT can choose to evict the page i that is requested furthest in the future. The next request for page i has to be at least k requests ahead in the future, since by definition of i all other pages $j \neq i \in \{1, \ldots, k+1\}$ have to be requested before i. Thus, in every k steps, OPT has ≤ 1 cache miss. Therefore, $c_{OPT} \leq \frac{|\sigma|}{k}$ which implies: $k \cdot c_{OPT} \leq |\sigma| = c_A(\sigma)$.

Claim 13.4. Any conservative online algorithm A is k-competitive.

Proof. For any given input sequence σ, partition σ into m maximal phases — P_1, P_2, \ldots, P_m — where each phase has k distinct pages, and a new phase is created only if the next element is different from the ones in the current phase. Let x_i be the first item that does not belong in Phase i.

\[
\sigma = \begin{array}{cccc}
\hline
\text{k distinct pages} & x_1 & \text{k distinct pages} & x_2 & \cdots \\
\hline
\text{Phase 1} & & \text{Phase 2}
\end{array}
\]

By construction, OPT has to pay ≥ 1 to handle the elements in $P_i \cup \{x_i\}$, for any i; so $c_{OPT} \geq m$. On the other hand, since A is conservative, A has $\leq k$ cache misses per phase. Hence, $c_A(\sigma) \leq k \cdot m \leq k \cdot c_{OPT}(\sigma)$.

Remark A randomized algorithm can achieve $O(\log k)$-competitiveness. This will be covered in the next lecture.

13.1 Types of adversaries

Since online algorithms are analyzed on all possible input sequences, it helps to consider adversarial inputs that may induce the worst case performance for a given online algorithm A. To this end, one may wish to classify the classes of adversaries designing the input sequences (in increasing power):

- **Oblivious** The adversary designs the input sequence σ at the beginning. It does not know any randomness used by algorithm A.

- **Adaptive** At each time step t, the adversary knows all randomness used by algorithm A thus far. In particular, it knows the exact state of the algorithm. With these in mind, it then picks the $(t+1)$-th element in the input sequence.

- **Fully adaptive** The adversary knows all possible randomness that will be used by the algorithm A when running on the full input sequence σ. For
instance, assume the adversary has access to the same pseudorandom number generator used by \(\mathcal{A} \) and can invoke it arbitrarily many times while designing the adversarial input sequence \(\sigma \).

Remark If \(\mathcal{A} \) is deterministic, then all three classes of adversaries have the same power.

13.2 Random Marking Algorithm (RMA)

Consider the Random Marking Algorithm (RMA), a \(\mathcal{O}(\log k) \)-competitive algorithm for paging against oblivious adversaries:

- Initialize all pages as marked
- Upon request of a page \(p \)
 - If \(p \) is not in cache,
 * If all pages in cache are marked, unmark all
 * Evict a random unmarked page
 - Mark page \(p \)

Example Suppose \(k = 3 \), \(\sigma = (2, 5, 2, 1, 3) \).

Suppose the cache is initially:

<table>
<thead>
<tr>
<th>Cache</th>
<th>1</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

When \(\sigma(1) = 2 \) arrives, all pages were unmarked. Suppose the random eviction chose page ‘3’. The newly added page ‘2’ is then marked.

<table>
<thead>
<tr>
<th>Cache</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked?</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

When \(\sigma(2) = 5 \) arrives, suppose random eviction chose page ‘4’ (between pages ‘1’ and ‘4’). The newly added page ‘5’ is then marked.

<table>
<thead>
<tr>
<th>Cache</th>
<th>1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked?</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

When \(\sigma(3) = 2 \) arrives, page ‘2’ in the cache is marked (no change).
When $\sigma(4) = 1$ arrives, page ‘1’ in the cache is marked. At this point, any page request that is not from $\{1, 2, 5\}$ will cause a full unmarking of all pages in the cache.

<table>
<thead>
<tr>
<th>Cache</th>
<th>1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

When $\sigma(5) = 3$ arrives, all pages were unmarked. Suppose the random eviction chose page ‘5’. The newly added page ‘3’ is then marked.

<table>
<thead>
<tr>
<th>Cache</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marked?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

We denote a phase as the time period between 2 consecutive full unmarking steps. That is, each phase is a maximal run where we access k distinct pages. In the above example, $\{2, 5, 2, 1\}$ is such a phase for $k = 3$.

Observation
As pages are only unmarked at the beginning of a new phase, the number of unmarked pages is monotonically decreasing within a phase.

![Figure 13.1: The number of marked pages within a phase is monotonically increasing.](image)

Theorem 13.5. RMA is $O(\log k)$-competitive against any oblivious adversary.

Proof. Let P_i be the set of pages at the start of phase i. Since requesting a marked page does not incur any cost, it suffices to analyze the first time any request occurs within the phase.

Let m_i be the number of unique new requests (pages that are not in P_i) and o_i as the number of unique old requests (pages that are in P_i). By definition, $o_i \leq k$ and $m_i + o_i = k$.

We have $c_{RMA}(\text{Phase } i) = (\text{Cost due to new requests}) + (\text{Cost due to old requests})$. We first focus on the extra cost incurred from the old requests,
that is when an old page is requested that has already been kicked out upon the arrival of a new request.

Order the old requests in the order which they appear in the phase and let x_j be the j^{th} old request, for $j \in \{1, \ldots, o_i\}$. Define l_j as the number of distinct new requests before x_j.

For $j \in \{1, \ldots, o_i\}$, consider the first time the j^{th} old request x_j occurs. Since the adversary is oblivious, x_j is equally likely to be in any position in the cache at the start of the phase. After seeing $(j - 1)$ old requests and marking their cache positions, there are $k - (j - 1)$ initial positions in the cache that x_j could be in. Since we have only seen l_j new requests and $(j - 1)$ old requests, there are at least $k - l_j - (j - 1)$ old pages remaining in the cache. So, the probability that x_j is in the cache when requested is at least $\frac{k - l_j - (j - 1)}{k - (j - 1)}$. Then,

$$\text{Cost due to old requests} = \sum_{j=1}^{o_i} \Pr[x_j \text{ is not in cache when requested}] \quad \text{Sum over old requests}$$

$$\leq \sum_{j=1}^{o_i} \frac{l_j}{k - (j - 1)} \quad \text{From above}$$

$$\leq \sum_{j=1}^{o_i} \frac{m_i}{k - (j - 1)} \quad \text{Since } l_j \leq m_i = |\mathcal{N}|$$

$$\leq m_i \cdot \sum_{j=1}^{k} \frac{1}{k - (j - 1)} \quad \text{Since } o_i \leq k$$

$$= m_i \cdot H_k \quad \text{Rewriting}$$

Since every new request incurs a unit cost, the cost due to these requests is m_i.

Together for new and old requests, we get $c_{RMA}(\text{Phase } i) \leq m_i + m_i \cdot H_k$.

We now analyze OPT’s performance. By definition of phases, among all requests between two consecutive phases (say, $i - 1$ and i), a total of $k + m_i$ distinct pages are requested. So, OPT has to incur at least $\geq m_i$ to bring in

\footnote{We get an equality if all these requests kicked out an old page.}
these new pages. To avoid double counting, we lower bound $c_{OPT}(\sigma)$ for both odd and even i: $c_{OPT}(\sigma) \geq \sum_{\text{odd } i} m_i$ and $c_{OPT}(\sigma) \geq \sum_{\text{even } i} m_i$. Together,

$$2 \cdot c_{OPT}(\sigma) \geq \sum_{\text{odd } i} m_i + \sum_{\text{even } i} m_i \geq \sum_i m_i$$

Therefore, we have:

$$c_{RMA}(\sigma) \leq \sum_i (m_i + m_i \cdot H_k) = \mathcal{O}(\log k) \sum_i m_i \leq \mathcal{O}(\log k) \cdot c_{OPT}(\sigma)$$

Remark In the above example, $k = 3$, phase 1 = (2, 5, 2, 1), $P_1 = \{1, 3, 4\}$, new requests = \{2, 5\}, old requests = \{1\}. Although ‘2’ appeared twice, we only care about analyzing the first time it appeared.
Chapter 14

Yao’s Minimax Principle

Given the sequence of random bits used, a randomized algorithm behaves deterministically. Hence, one may view a randomized algorithm as a random choice from a distribution of deterministic algorithms.

Let X be the space of problem inputs and A be the space of all possible deterministic algorithms. Denote probability distributions over A and X by $p_a = \Pr[A = a]$ and $q_x = \Pr[X = x]$, where X and A are random variables for input and deterministic algorithm, respectively. Define $c(a, x)$ as the cost of algorithm $a \in A$ on input $x \in X$.

Theorem 14.1 ([Yao77]).

\[
C = \max_{x \in X} \mathbb{E}_p[c(a, x)] \geq \min_{a \in A} \mathbb{E}_q[c(a, x)] = D
\]

Proof.

\[
C = \sum_x q_x \cdot C \\
\geq \sum_x q_x \mathbb{E}_p[c(A, x)] \\
= \sum_x q_x \sum_a p_a c(a, x) \\
= \sum_a p_a \sum_q q_x c(a, x) \\
= \sum_a p_a \mathbb{E}_q[c(a, X)] \\
\geq \sum_a p_a \cdot D \\
= D
\]

Sum over all possible inputs x

Since $C = \max_{x \in X} \mathbb{E}_p[c(A, x)]$

Definition of $\mathbb{E}_p[c(A, x)]$

Swap summations

Definition of $\mathbb{E}_q[c(a, X)]$

Since $D = \min_{a \in A} \mathbb{E}_q[c(a, X)]$

Sum over all possible algorithms a

\[
\square
\]
Implication If one can argue that no deterministic algorithm can do well on a given distribution of random inputs \(D\), then no randomized algorithm can do well on all inputs \(C\).

14.1 Application to the paging problem

Theorem 14.2. Any (randomized) algorithm has competitive ratio \(\Omega(\log k)\) against an oblivious adversary.

Proof. Fix an arbitrary deterministic algorithm \(A\). Let \(n = k + 1\) and \(|\sigma| = m\). Consider the following random input sequence \(\sigma\) where the \(i\)-th page is drawn from \(\{1, \ldots, k + 1\}\) uniformly at random.

By construction of \(\sigma\), the probability of having a cache miss is \(\frac{1}{k+1}\) for \(A\), regardless of what \(A\) does. Hence, \(\mathbb{E}[c_A(\sigma)] = \frac{m}{k+1}\).

On the other hand, an optimal offline algorithm may choose to evict the page that is requested furthest in the future. As before, we denote a phase as a maximal run where there are \(k\) distinct page requests. This means that

\[
\mathbb{E}[c_{OPT}(\sigma)] = \text{Expected number of phases} = \frac{m}{\text{Expected phase length}}.
\]

To analyze the expected length of a phase, suppose there are \(i\) distinct pages so far, for \(0 \leq i \leq k\). The probability of the next request being new is \(\frac{k+1-i}{k+1}\), and one expects to get \(\frac{k+1}{k+1-i}\) requests before having \(i+1\) distinct pages. Thus, the expected length of a phase is \(\sum_{i=0}^{k} \frac{k+1}{k+1-i} = (k+1) \cdot H_{k+1}\). Therefore, \(\mathbb{E}[c_{OPT}(\sigma)] = \frac{m}{(k+1)H_{k+1}}\).

So far we have obtained that \(D = \mathbb{E}[c_A(\sigma)] = \frac{m}{k+1}\); from Yao’s Minimax Principle we know that \(C \geq D\), hence we can also compare the competitive ratios \(\frac{C}{\mathbb{E}[c_{OPT}(\sigma)]} \geq \frac{D}{\mathbb{E}[c_{OPT}(\sigma)]} = H_{k+1} = \Theta(\log k)\).

Remark The length of a phase is essentially the coupon collector problem with \(n = k + 1\) coupons.
Chapter 15

The k-server problem

Definition 15.1 (k-server problem [MMS90]). Consider a metric space (V,d) where V is a set of n points and $d : V \times V \to \mathbb{R}$ is a distance metric between any two points. Suppose there are k servers placed on V and we are given an input sequence $\sigma = (v_1,v_2,\ldots)$. Upon request of $v_i \in V$, we have to move one server to point v_i to satisfy that request. What is the best online strategy to minimize the total distance travelled by servers to satisfy the sequence of requests?

Remark We do not fix the starting positions of the k servers, but we compare the performance of OPT on σ with same initial starting positions.

The paging problem is a special case of the k-server problem where the points are all possible pages, the distance metric is unit cost between any two different points, and the servers represent the pages in cache of size k.

Progress It is conjectured that a deterministic k-competitive algorithm exists and a randomized $(\log k)$-competitive algorithm exists. The table below shows the current progress on this problem.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Competitive ratio</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MMS90]</td>
<td>k-competitive, for $k = 2$ and $k = n - 1$</td>
<td>Deterministic</td>
</tr>
<tr>
<td>[FRR90]</td>
<td>$2^{\Theta(k \log k)}$-competitive</td>
<td>Deterministic</td>
</tr>
<tr>
<td>[Gro91]</td>
<td>$2^{\Theta(k)}$-competitive</td>
<td>Deterministic</td>
</tr>
<tr>
<td>[KP95]</td>
<td>$(2k - 1)$-competitive</td>
<td>Deterministic</td>
</tr>
<tr>
<td>[BBMN11]</td>
<td>poly$(\log n, \log k)$-competitive</td>
<td>Randomized</td>
</tr>
<tr>
<td>[Lee18]</td>
<td>$\Theta(\log^6 k)$-competitive</td>
<td>Randomized</td>
</tr>
</tbody>
</table>
Remark [BBMN11] uses a probabilistic tree embedding, a concept we have seen in earlier lectures.

15.1 Special case: Points on a line

Consider the metric space where V are points on a line and $d(u,v)$ is the distance between points $u,v \in V$. One can think of all points lying on the 1-dimensional number line \mathbb{R}.

15.1.1 Greedy is a bad idea

A natural greedy idea would be to pick the closest server to serve any given request. However, this can be arbitrarily bad. Consider the following:

Without loss of generality, suppose all servers currently lie on the left of “0”. For $\epsilon > 0$, consider the sequence $\sigma = (1 + \epsilon, 2 + \epsilon, 1 + \epsilon, 2 + \epsilon, \ldots)$. The first request will move a single server s^* to “1 + ϵ”. By the greedy algorithm, subsequent requests then repeatedly use s^* to satisfy requests from both “1 + ϵ” and “2 + ϵ” since s^* is the closest server. This incurs a total cost of $\geq |\sigma|$ while OPT could station 2 servers on “1 + ϵ” and “2 + ϵ” and incur a constant total cost on input sequence σ.

15.1.2 Double coverage

The double coverage algorithm does the following:

- If request r is on one side of all servers, move the closest server to cover it.
- If request r lies between two servers, move both towards it at constant speed until r is covered.

Before r is moved:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\ldots x \quad \longrightarrow r \quad \ldots]</td>
<td>[\ldots x \quad \longrightarrow r \quad \ldots]</td>
</tr>
</tbody>
</table>

Before r is covered:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\ldots x \quad \longrightarrow r \quad \longrightarrow]</td>
<td>[\ldots x \quad \longrightarrow r \quad \longrightarrow]</td>
</tr>
</tbody>
</table>
Theorem 15.2. Double coverage (DC) is k-competitive on a line.

Proof. Without loss of generality,

- Suppose location of DC’s servers on the line are: $x_1 \leq x_2 \leq \cdots \leq x_k$
- Suppose location of OPT’s servers on the line are: $y_1 \leq y_2 \leq \cdots \leq y_k$

Define potential function $\Phi = \Phi_1 + \Phi_2 = k \cdot \sum_{i=1}^{k} |x_i - y_i| + \sum_{i<j} (x_j - x_i)$, where Φ_1 is k times the “paired distances” between x_i and y_i and Φ_2 is the pairwise distance between any two servers in DC.

We denote the potential function at time step t by $\Phi_t = \Phi_{t,1} + \Phi_{t,2}$. For a given request r at time step t, we will first analyze OPT’s action then DC’s action. We analyze the change in potential $\Delta(\Phi)$ by looking at $\Delta(\Phi_{t,1})$ and $\Delta(\Phi_{t,2})$ separately, and further distinguish the effects of DC and OPT on $\Delta(\Phi)$ via $\Delta_{DC}(\Phi)$ and $\Delta_{OPT}(\Phi)$ respectively.

Suppose OPT moves server s^* by a distance of $d(s^*, r)$ to reach the point r. Then, $c_{OPT}(t) \geq x$. Since s^* moved by x, $\Delta(\Phi_{t,1}) \leq kx$. Since OPT does not move DC’s servers, $\Delta(\Phi_{t,2}) = 0$. Hence, $\Delta_{OPT}(\Phi_t) \leq kx$.

There are three cases for DC, depending on where r appears.

1. r appears exactly on a current server position
 DC does nothing. So, $c_{DC}(t) = 0$ and $\Delta_{DC}(\Phi_t) = 0$. Hence,
 \[
 c_{DC}(t) + \Delta(\Phi_t) = c_{DC}(t) + \Delta_{DC}(\Phi_t) + \Delta_{OPT}(\Phi_t) \\
 \leq 0 + kx + 0 = kx \\
 \leq k \cdot c_{OPT}(t)
 \]

2. r appears on one side of all servers x_1, \ldots, x_k (say $r > x_k$ without loss of generality)
 DC will move server x_k by a distance $y = d(x_k, r)$ to reach point r. That is, $c_{DC}(t) = y$. Since OPT has a server at r, $y_k \geq r$. So, $\Delta_{DC}(\Phi_{t,1}) = -ky$. Since only x_k moved, $\Delta_{DC}(\Phi_{t,2}) = (k-1)y$. Hence,
 \[
 c_{DC}(t) + \Delta(\Phi_t) = c_{DC}(t) + \Delta_{DC}(\Phi_t) + \Delta_{OPT}(\Phi_t) \\
 \leq y - ky + (k-1)y + kx \\
 = kx \\
 \leq k \cdot c_{OPT}(t)
 \]

3. r appears between two servers $x_i < r < x_{i+1}$
 Without loss of generality, say r is closer to x_i and denote $z = d(x_i, r)$. DC will move server x_i by a distance of z to reach point r, and server x_{i+1} by a distance of z to reach $x_{i+1} - z$. That is, $c_{DC}(t) = 2z$.

Claim 15.3. At least one of \(x_i \) or \(x_{i+1} \) is moving closer to its partner (\(y_i \) or \(y_{i+1} \) respectively).

Proof. Suppose, for a contradiction, that both \(x_i \) and \(x_{i+1} \) are moving away from their partners. That means \(y_i \leq x_i < r < x_{i+1} \leq y_{i+1} \) at the end of OPT’s action (before DC moved \(x_i \) and \(x_{i+1} \)). This is a contradiction since OPT must have a server at \(r \) but there is no server between \(y_i \) and \(y_{i+1} \) by definition.

Since at least one of \(x_i \) or \(x_{i+1} \) is moving closer to its partner, \(\Delta_{DC}(\Phi_{t,1}) \leq z - z = 0 \).

Meanwhile, since \(x_i \) and \(x_{i+1} \) are moved a distance of \(z \) towards each other, \((x_{i+1} - x_i) = -2z \) while the total change against other pairwise distances cancel out, so \(\Delta_{DC}(\Phi_{t,2}) = -2z \).

Hence,

\[
c_{DC}(t) + \Delta(\Phi_t) = c_{DC}(t) + \Delta_{DC}(\Phi_t) + \Delta_{OPT}(\Phi_t) \leq 2z - 2z + kx = kx \leq k \cdot c_{OPT}(t)
\]

In all cases, we see that \(c_{DC}(t) + \Delta(\Phi_t) \leq k \cdot c_{OPT}(t) \). Hence,

\[
\sum_{t=1}^{\sigma} (c_{DC}(t) + \Delta(\Phi_t)) \leq \sum_{t=1}^{\sigma} k \cdot c_{OPT}(t) \quad \text{Summing over } \sigma
\]

\[
\Rightarrow \sum_{t=1}^{\sigma} c_{DC}(t) + (\Phi_{|\sigma|} - \Phi_0) \leq k \cdot c_{OPT}(\sigma) \quad \text{Telescoping}
\]

\[
\Rightarrow \sum_{t=1}^{\sigma} c_{DC}(t) - \Phi_0 \leq k \cdot c_{OPT}(\sigma) \quad \text{Since } \Phi_t \geq 0
\]

\[
\Rightarrow c_{DC}(\sigma) \leq k \cdot c_{OPT}(\sigma) + \Phi_0 \quad \text{Since } c_{DC}(\sigma) = \sum_{t=1}^{\sigma} c_{DC}(t)
\]

Since \(\Phi_0 \) is a constant that captures the initial state, DC is \(k \)-competitive.

Remark One can generalize the approach of double coverage to points on a tree. The idea is as follows: For a given request point \(r \), consider the set of servers \(S \) such that for \(s \in S \), there is no other server \(s' \) between \(s \) and \(r \). Move all servers in \(S \) towards \(r \) “at the same speed” until one
of them reaches r. This generalization gives us a k-competitiveness on a tree; building on this we can use the Probabilistic Tree Embedding approach (stretching distances by only $O(\log n)$ in expectation) getting immediately an $O(k \log n)$-competitiveness in expectation on a graph.
Chapter 16

Multiplicative Weights Update (MWU)

In this final lecture, we discuss the Multiplicative Weight Updates (MWU) method. A comprehensive survey on MWU and its applications can be found in [AHK12].

Definition 16.1 (The learning from experts problem). Every day, we are to make a binary decision. At the end of the day, a binary output is revealed and we incur a mistake if our decision did not match the output. Suppose we have access to n experts e_1, \ldots, e_n, each of which makes a recommendation for the binary decision to take per day. How does one make use of the experts to minimize the total number of mistakes on an online binary sequence?

Toy setting Consider a stock market with only a single stock. Every day, we decide whether to buy the stock or not. At the end of the day, the stock value will be revealed and we incur a mistake/loss of 1 if we did not buy when the stock value rose, or bought when the stock value fell.

Example — Why it is non-trivial Suppose $n = 3$ and $\sigma = (1, 1, 0, 0, 1)$. In hindsight, we have:

<table>
<thead>
<tr>
<th>Days</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>e_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>e_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

In hindsight, e_1 is always correct so we would have incurred 0 mistakes if we always followed e_1’s recommendation. However, we do not know which
is expert e_1 (assuming a perfect expert even exists). Furthermore, it is not necessarily true that the best expert always incurs the least number of mistakes on any prefix of the sequence σ. Ignoring e_1, one can check that e_2 outperforms e_3 on the example sequence. However, at the end of day 2, e_3 incurred 0 mistakes while e_2 incurred 1 mistake.

The goal is as follows: If a perfect expert exists, we hope to eventually converge to always following him/her. If not, we hope to not do much worse than the best expert on the entire sequence.

16.1 Warm up: Perfect expert exists

Suppose there exists a perfect expert. Do the following on each day:

- Make a decision by taking the majority vote of the remaining experts.
- If we incur a loss, remove the experts that were wrong.

Theorem 16.2. We incur at most $\log_2 n$ mistakes on any given sequence.

Proof. Whenever we incur a mistake, at least half the experts were wrong and were removed. Hence, the total number of experts is at least halved whenever a mistake occurred. After at most $\log_2 n$ removals, the only expert left will be the perfect expert and we will be always correct thereafter. ∎

16.2 A deterministic MWU algorithm

Suppose that there may not be a perfect expert. The idea is similar, but we update our trust for each expert instead of completely removing an expert when he/she makes a mistake. Consider the following deterministic algorithm (DMWU):

- Initialize weights $w_i = 1$ for expert e_i, for $i \in \{1, \ldots, n\}$.
- On each day:
 - Make a decision by the weighted majority.
 - If we incur a loss, set w_i to $(1 - \epsilon) \cdot w_i$ for each wrong expert, for some constant $\epsilon \in (0, \frac{1}{2})$.

Theorem 16.3. Suppose the best expert makes m^* mistakes and DMWU makes m mistakes. Then,

$$m \leq 2(1 + \epsilon)m^* + \frac{2 \ln n}{\epsilon}$$
16.3. A RANDOMIZED MWU ALGORITHM

Proof. Observe that when DMWU makes a mistake, the weighted majority was wrong and their weight decreases by a factor of $(1 - \epsilon)$. Suppose that $\sum_{i=1}^{\infty} w_i = x$ at the start of the day. If we make a mistake, x drops to $\leq \frac{x}{2}(1 - \epsilon) + \frac{x}{2} = x(1 - \frac{\epsilon}{2})$. That is, the overall weight reduces by at least a factor of $(1 - \frac{\epsilon}{2})$. Since the best expert e^* makes m^* mistakes, his/her weight at the end is $(1 - \epsilon)^{m^*}$. By the above observation, the total weight of all experts would be $\leq n(1 - \frac{\epsilon}{2})^{m^*}$ at the end of the sequence. Then,

\[(1 - \epsilon)^{m^*} \leq n(1 - \frac{\epsilon}{2})^{m^*}\] Expert e^*’s weight is part of the overall weight

$\Rightarrow m^* \ln(1 - \epsilon) \leq \ln n + m \ln(1 - \frac{\epsilon}{2})$ Taking ln on both sides

$\Rightarrow m^*(-\epsilon - \epsilon^2) \leq \ln n + m(-\frac{\epsilon}{2})$ Since $-x - x^2 \leq \ln(1 - x) \leq -x$ for $x \in (0, \frac{1}{2})$

$\Rightarrow m \leq 2(1 + \epsilon)m^* + \frac{2 \ln n}{\epsilon}$ Rearranging

Remark 1 In the warm up, $m^* = 0$.

Remark 2 For $x \in (0, \frac{1}{2})$, the inequality $-x - x^2 \leq \ln(1 - x) \leq -x$ is due to the Taylor expansion\(^1\) of \ln. A more familiar equivalent form would be: $e^{-x-x^2} \leq (1 - x) \leq e^{-x}$.

Theorem 16.4. No deterministic algorithm \mathcal{A} can do better than 2-competitive.

Proof. Consider only two experts e_0 and e_1 where e_0 always outputs 0 and e_1 always outputs 1. Any binary sequence σ must contain at least $\frac{|\sigma|}{2}$ zeroes or $\frac{|\sigma|}{2}$ ones. Thus, $m^* \leq \frac{|\sigma|}{2}$. On the other hand, the adversary looks at \mathcal{A} and produces a sequence σ which forces \mathcal{A} to incur a loss every day. Thus, $m = |\sigma| \geq 2m^*$.

16.3 A randomized MWU algorithm

The 2-factor in DMWU is due to the fact that DMWU deterministically takes the (weighted) majority at each step. Let us instead interpret the weights as probabilities. Consider the following randomized algorithm (RMWU):

- Initialize weights $w_i = 1$ for expert e_i, for $i \in \{1, \ldots, n\}$.

\(^1\)See https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm
• On each day:
 – Pick a random expert with probability proportional to their weight.
 (i.e. Pick \(e_i \) with probability \(\frac{w_i}{\sum_{i=1}^{n} w_i} \))
 – Follow that expert’s recommendation.
 – For each wrong expert, set \(w_i \) to \((1 - \epsilon) \cdot w_i \), for some constant \(\epsilon \in (0, \frac{1}{2}) \).

Another way to think about the probabilities is to split all experts into two groups \(A = \{\text{Experts that output 0}\} \) and \(B = \{\text{Experts that output 1}\} \). Then, decide ‘0’ with probability \(\frac{w_A}{w_A + w_B} \) and ‘1’ with probability \(\frac{w_B}{w_A + w_B} \), where \(w_A = \sum_{e_i \in A} w_i \) and \(w_B = \sum_{e_i \in B} w_i \) are the sum of weights in each set.

Theorem 16.5. Suppose the best expert makes \(m^* \) mistakes and RMWU makes \(m \) mistakes. Then,

\[
\mathbb{E}[m] \leq (1 + \epsilon)m^* + \frac{\ln n}{\epsilon}
\]

Proof. Fix an arbitrary day \(j \in \{1, \ldots, |\sigma|\} \). Denote \(A = \{\text{Experts that output 0 on day } j\} \) and \(B = \{\text{Experts that output 1 on day } j\} \), where \(w_A = \sum_{e_i \in A} w_i \) and \(w_B = \sum_{e_i \in B} w_i \) are the sum of weights in each set. Let \(F_j \) be the weighted fraction of wrong experts on day \(j \). If \(\sigma_j = 0 \), then \(F_j = \frac{w_B}{w_A + w_B} \). If \(\sigma_j = 1 \), then \(F_j = \frac{w_A}{w_A + w_B} \). By definition of \(F_j \), RMWU makes a mistake on day \(j \) with probability \(F_j \). By linearity of expectation, \(\mathbb{E}[m] = \sum_{j=1}^{|\sigma|} F_j \).

Since the best expert \(e^* \) makes \(m^* \) mistakes, his/her weight at the end is \((1 - \epsilon)^{m^*} \). On each day, RMWU reduces the overall weight by a factor of \((1 - \epsilon \cdot F_j) \) by penalizing wrong experts. Hence, the total weight of all experts would be \(n \cdot \Pi_{j=1}^{\sigma} (1 - \epsilon \cdot F_j) \) at the end of the sequence. Then,

\[
(1 - \epsilon)^{m^*} \leq n \cdot \Pi_{j=1}^{\sigma} (1 - \epsilon \cdot F_j) \quad \text{Expert } e^* \text{'s weight is part of the overall weight}
\]

\[\Rightarrow \]

\[
(1 - \epsilon)^{m^*} \leq n \cdot e^{\sum_{j=1}^{\sigma} (-\epsilon \cdot F_j)} \quad \text{Since } (1 - x) \leq e^{-x}
\]

\[\Rightarrow \]

\[
(1 - \epsilon)^{m^*} \leq n \cdot e^{-\epsilon \mathbb{E}[m]} \quad \text{Since } \mathbb{E}[m] = \sum_{j=1}^{\sigma} F_j
\]

\[\Rightarrow \]

\[
m^* \ln(1 - \epsilon) \leq \ln n - \epsilon \cdot \mathbb{E}[m] \quad \text{Taking ln on both sides}
\]

\[\Rightarrow \]

\[
\mathbb{E}[m] \leq - \frac{\ln(1 - \epsilon)}{\epsilon} m^* + \frac{\ln n}{\epsilon} \quad \text{Rearranging}
\]

\[\Rightarrow \]

\[
\mathbb{E}[m] \leq (1 + \epsilon)m^* + \frac{\ln n}{\epsilon} \quad \text{Since } -\ln(1 - x) \leq -(x - x^2) = x + x^2 \]

\(\square \)
16.4 Generalization

Denote the loss of expert i on day t as $l^i_t \in [-\rho, \rho]$, for some constant ρ. When we incur a loss, update the weights of affected experts from w_i to $(1 - \epsilon \frac{l^i_t}{\rho})w_i$. Note that $\frac{l^i_t}{\rho}$ is essentially the normalized loss in $[-1,1]$.

Claim 16.6 (Without proof). With RMWU, we have

$$\mathbb{E}[m] \leq \min_i \left(\sum_t l^i_t + \epsilon \sum_t |l^i_t| + \frac{\rho \ln n}{\epsilon} \right)$$

Remark If each expert has a different ρ_i, one can modify the update rule and claim to use ρ_i instead of a uniform ρ accordingly.

16.5 Application: Online routing of virtual circuits

Definition 16.7 (The online routing of virtual circuits problem). Consider a graph $G = (V,E)$ where each edge $e \in E$ has a capacity u_e. A request is denoted by a triple $\langle s(i), t(i), d(i) \rangle$, where $s(i) \in V$ is the source, $t(i) \in V$ is the target, and $d(i) > 0$ is the demand for the ith request respectively. Given the ith request, we are to build a connection (single path P_i) from $s(i)$ to $t(i)$ with flow $d(i)$. The objective is to minimize the maximum congestion on all edges as we handle requests in an online manner. To be precise, we wish to minimize $\max_{e \in E} \frac{\sum_{i=1}^{|\sigma|} \sum_{P_i \ni e} d(i)}{u_e}$ on the input sequence σ where $P_i \ni e$ is the set of paths that include edge e.

Remark This is similar to the multi-commodity routing problem in lecture 5. However, in this problem, each commodity flow cannot be split into multiple paths, and the commodities appear in an online fashion.

Example Consider the following graph $G = (V,E)$ with 5 vertices and 5 edges with the edge capacities u_e annotated for each edge $e \in E$. Suppose there are 2 requests: $\sigma = (\langle v_1, v_4, 5 \rangle, \langle v_5, v_2, 8 \rangle)$.
Upon seeing $\sigma(1) = \langle v_1, v_4, 5 \rangle$, we (red edges) commit to $P_1 = v_1 - v_3 - v_4$ as it minimizes the congestion to $5/10$. When $\sigma(2) = \langle v_5, v_2, 8 \rangle$ appears, $P_2 = v_5 - v_3 - v_2$ minimizes the congestion given that we committed to P_1. This causes the congestion to be $8/8 = 1$. On the other hand, the optimal offline algorithm (blue edges) can attain a congestion of $8/10$ via $P_1 = v_1 - v_3 - v_5 - v_4$ and $P_2 = v_5 - v_4 - v_3 - v_2$.

To facilitate further discussion, we define the following notations:

- $p_e(i) = \frac{d_i}{u_e}$ is the relative demand i with respect to the capacity of edge e.
- $l_e(j) = \sum_{P_i \ni e, i \leq j} p_e(i)$ as the relative load of edge e after request j.
- $l^*_e(j)$ as the optimal offline algorithm’s relative load of edge e after request j.

In other words, the objective is to minimize $\max_{e \in E} l_e(|\sigma|)$ for a given sequence σ. Denoting Λ as the (unknown) optimal congestion factor, we normalize $\tilde{p}_e(i) = \frac{p_e(i)}{\Lambda}$, $\tilde{l}_e(j) = \frac{l_e(j)}{\Lambda}$, and $\tilde{l}^*_e(j) = \frac{l^*_e(j)}{\Lambda}$. Let a be a constant to be determined. Consider algorithm A which does the following on request $i + 1$:

- Denote the cost of edge e by $c_e = a\tilde{l}^*_e(j) + \tilde{p}_e(i+1) - a\tilde{l}_e(i)$
- Return the shortest (smallest total c_e cost) $s(i) - t(i)$ path P_i on G with edge weights c_e

Finding the shortest path via the cost function c_e tries to minimize the load impact of the new $(i+1)^{th}$ request. To analyze A, we consider the following potential function: $\Phi(j) = \sum_{e \in E} a\tilde{l}^*_e(j)(\gamma - \tilde{l}^*_e(j))$, for some constant $\gamma \geq 2$. Because of normalization, $\tilde{l}^*_e(j) \leq 1$, so $\gamma - \tilde{l}^*_e(j) \geq 1$. Initially, when $j = 0$, $\Phi(0) = \sum_{e \in E} \gamma = m\gamma$.

Lemma 16.8. For $\gamma \geq 1$ and $0 \leq x \leq 1$, $(1 + \frac{1}{2\gamma})^x < 1 + \frac{x}{\gamma}$.

Proof. By Taylor series\(^2\), $(1 + \frac{1}{2\gamma})^x = 1 + \frac{x}{2\gamma} + O(\frac{x}{2\gamma}) < 1 + \frac{x}{\gamma}$. \(\square\)

Lemma 16.9. For $a = 1 + \frac{1}{2\gamma}$, $\Phi(j + 1) - \Phi(j) \leq 0$.

Proof. Let P_{j+1} be the path that A found and P^*_{j+1} be the path that the optimal offline algorithm assigned to the $(j + 1)^{th}$ request $\langle s(j + 1), t(j + 1), d(j + 1) \rangle$. For any edge e, observe the following:

- If $e \notin P^*_{j+1}$, the load on e due to the optimal offline algorithm remains unchanged. That is, $\tilde{\ell}^*_e(j + 1) = \tilde{\ell}^*_e(j)$. On the other hand, if $e \in P^*_{j+1}$, then $\tilde{\ell}^*_e(j + 1) = \tilde{\ell}^*_e(j) + \tilde{p}_e(j + 1)$.

- Similarly, (i) If $e \notin P_{j+1}$, then $\tilde{\ell}_e(j + 1) = \tilde{\ell}_e(j)$; (ii) If $e \in P_{j+1}$, then $\tilde{\ell}_e(j + 1) = \tilde{\ell}_e(j) + \tilde{p}_e(j + 1)$.

- If e is neither in P_{j+1} nor in P^*_{j+1}, then $a\tilde{\ell}^{(j+1)}(\gamma - \tilde{\ell}^*_e(j + 1)) = a\tilde{\ell}^{(j)}(\gamma - \tilde{\ell}^*_e(j))$.
 That is, only edges used by P_{j+1} or P^*_{j+1} affect $\Phi(j + 1) - \Phi(j)$.

Using the observations above together with Lemma 16.8 and the fact that A computes a shortest path, one can show that $\Phi(j + 1) - \Phi(j) \leq 0$. In detail,
\[
\Phi(j + 1) - \Phi(j) \\
= \sum_{e \in E} a^{\tilde{\ell}_e(j+1)}(\gamma - \tilde{\ell}_e(j + 1)) - a^{\tilde{\ell}_e(j)}(\gamma - \tilde{\ell}_e(j)) \\
= \sum_{e \in P_{j+1} \setminus P_{j+1}^*} (a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) (\gamma - \tilde{\ell}_e(j)) \\
+ \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j+1)}(\gamma - \tilde{\ell}_e(j) - \tilde{p}_e(j + 1)) - a^{\tilde{\ell}_e(j)}(\gamma - \tilde{\ell}_e(j)) \\
= \sum_{e \in P_{j+1}} (a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) (\gamma - \tilde{\ell}_e(j)) - \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j+1)} \tilde{p}_e(j + 1) \\
\leq \sum_{e \in P_{j+1}} (a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) \gamma - \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j+1)} \tilde{p}_e(j + 1) \\
\leq \sum_{e \in P_{j+1}} (a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) \gamma - \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j)} \tilde{p}_e(j + 1) \\
= \sum_{e \in P_{j+1}} (a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) \gamma - \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j)} \tilde{p}_e(j + 1) \\
\leq \sum_{e \in P_{j+1}^*} ((a^{\tilde{\ell}_e(j+1)} - a^{\tilde{\ell}_e(j)}) \gamma - a^{\tilde{\ell}_e(j)} \tilde{p}_e(j + 1)) \\
= \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j)} ((a^{\tilde{\ell}_e(j+1)} - 1) \gamma - \tilde{p}_e(j + 1)) \\
= \sum_{e \in P_{j+1}^*} a^{\tilde{\ell}_e(j)} (((1 + \frac{1}{2\gamma}) \tilde{p}_e(j+1) - 1) \gamma - \tilde{p}_e(j + 1)) \leq 0
\]

(1) From observations above
(2) \(\tilde{\ell}_e(j) \geq 0 \)
(3) \(\tilde{\ell}_e(j + 1) \geq \tilde{\ell}_e(j) \)
(4) For \(e \in P_{j+1}, \tilde{\ell}_e(j + 1) = \tilde{\ell}_e(j) + \tilde{p}_e(j + 1) \)
(5) Since \(P_{j+1} \) is the shortest path
(6) Since \(a = 1 + \frac{1}{2\gamma} \)
(7) Lemma 16.8 with \(0 \leq \tilde{p}_e(j + 1) \leq 1 \)
16.5. APPLICATION: ONLINE ROUTING OF VIRTUAL CIRCUITS

Theorem 16.10. Let $L = \max_{e \in E} \tilde{l}_e(|\sigma|)$ be the maximum normalized load at the end of the input sequence σ. For $a = 1 + \frac{1}{2\gamma}$ and $\gamma \geq 2$, $L \in \mathcal{O}(\log n)$. That is, A is $\mathcal{O}(\log n)$-competitive.

Proof. Since $\Phi(0) = m\gamma$ and $\Phi(j + 1) - \Phi(j) \leq 0$, we see that $\Phi(j) \leq m\gamma$, for all $j \in \{1, \ldots, |\sigma|\}$. Consider the edge e with the highest congestion. Since $\gamma - \tilde{l}_e^*(j) \geq 1$, we see that

$$(1 + \frac{1}{2\gamma})^L \leq a^L \cdot (\gamma - \tilde{l}_e^*(j)) \leq \Phi(j) \leq m\gamma \leq n^{2\gamma}$$

Taking log on both sides and rearranging, we get:

$$L \leq (2\log(n) + \log(\gamma)) \cdot \frac{1}{\log(1 + \frac{1}{2\gamma})} \in \mathcal{O}(\log n)$$

Handling unknown Λ Since Λ is unknown but is needed for the run of \tilde{A} (to compute c_e when a request arrives), we use a dynamically estimated $\tilde{\Lambda}$. Let β be a constant such that \tilde{A} is β-competitive according to Theorem 16.10. The following modification to \tilde{A} is a 4β-competitive: On the first request, we can explicitly compute $\tilde{\Lambda} = \Lambda$. Whenever the actual congestion exceeds $\tilde{\Lambda}\beta$, we reset the edge loads to 0, update our estimate to $2\tilde{\Lambda}$, and start a new phase.

- By the updating procedure, $\tilde{\Lambda} \leq 2\beta\Lambda$ in all phases.
- Let T be the total number of phases. In any phase $i \leq T$, the congestion at the end of phase i is at most $\frac{2\beta\Lambda}{2^{T-i}}$. Across all phases, we have $\sum_{i=1}^{T} \frac{2\beta\Lambda}{2^{T-i}} \leq 4\beta\Lambda$.

\(^3\)Existing paths are preserved, just that we ignore them in the subsequent computations of c_e.
Bibliography

BIBLIOGRAPHY

