1 Online Bipartite Matching [Recommended]

In the Online Bipartite Matching problem, we are given one side U of a bipartite graph $G = (U \cup V, E)$ and the vertices of the other side V of the bipartition arrive in an online fashion, one by one. Each time a vertex arrives, it arrives together with all its incident edges and we have to decide immediately and irrevocably which of its incident edges we select into the matching or whether we do not select any of the incident edges.

(A) Determine the competitive ratio of deterministic online bipartite matching, i.e., prove tight upper and lower bounds.

Hint: Assume the online algorithm takes the decision to select an edge into the matching. How do you have to continue building the graph to make that decision a bad one?

(B) How does the competitive ratio change if we are guaranteed that the bipartite input graph G is a cycle? Again, prove tight upper and lower bounds.

Hint: Consider a vertex $u \in U$ with neighbors $v, w \in V$, and assume that v arrives before w. What is the best decision you can make? What does that tell you about in which order the vertices of the cycle (that are in V) should arrive?

2 Lower Bound for the k-Server Problem on the Line [Recommended]

Argue that every deterministic online algorithm for the k-server problem on the line has competitive ratio at least k.

Hint 1: What is the smallest graph (that is a path) on which you can hope to build sufficiently bad sequences of requests? What is the smallest graph (that is a path) on which you can hope to build sufficiently bad sequences of requests?

Hint 2: For the pattern input sequence of requests crossing the most distant to the right (only) vertex in your path, how often is each edge of your path traversed? On average? How could one use this?

Hint 3: Can you obtain an upper bound on the cost incurred by OPT by applying a good offline algorithm that moves only one server (after all other servers are moved away from that point)? Depending on the reducer sequence, which server would you choose to be the moving server?
3 Hiring Professors

Due to the increasing demand for a special course on online algorithms, ETH decides to hire a new professor covering this topic. As expected, the candidates arrive in an online fashion, one after the other, and whenever a candidate arrives, the hiring committee decides immediately and irrevocably whether the candidate is hired. The only information the hiring committee determines about an arriving candidate is whether the candidate is better than all previous candidates, or not. After all, ETH only wants to hire the very best. For the same reason, ETH also hires at most one of the candidates.

The number of candidates is n and known in advance. Show that any randomized online algorithm hires the best candidate with a probability of at most $1/n$ (on the worst-case sequence of professors for the respective algorithm).

Hint 1:

Use Yao’s Principle!

Hint 2:

It might be useful to only consider input sequences where until the best candidate (which may not be the last) is reached, the quality of candidates increases monotonically.