
Advanced Algorithms 18 September 2018

Lecture 1: Approximation Algorithms I
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Approximation algorithms

Unless P = NP, we do not expect efficient algorithms for NP-hard problems. However, we are often able
to design efficient algorithms that give solutions that are provably close/approximate to the optimum .
We next formalize this.

Definition 1 (α-approximation). An algorithm A is an α-approximation algorithm for a minimization
problem with respect to a cost metric c if for any problem instance I and for some optimum algorithm
OPT , c(A(I)) ≤ α · c(OPT (I)).

Remark Maximization problems are defined similarly with c(A(I)) ≥ α · c(OPT (I)).

2 Minimum set cover

Consider a universe U = {e1, . . . , en} of n elements, a collection of subsets S = {S1, . . . , Sm} of m subsets
of U such that U =

⋃
S, and a non-negative cost function c : S → R+. Suppose Si = {e1, e2, e5}, then we

say that Si covers elements e1, e2, and e5. For any subset T ⊆ S, we define c(
⋃

Si∈T Si) =
∑

Si∈T c(Si).

Definition 2 (Minimum set cover problem). Given U , S, and c : S → R+, find a subset S∗ ⊆ S such
that:

(i) (Set cover):
⋃

Si∈S∗ Si = U

(ii) (Minimum cost): c(S∗) is minimized.

Example

S1

S2

S3

S4

e1

e2

e3

e4

e5

In this example, there are n = 5 vertices and m = 4 subsets S = {S1, S2, S3, S4}. Suppose the
cost function is defined as c(Si) = 2i. Even though S3 ∪ S4 covers all vertices, it costs c(S3 ∪ S4) =
c(S3) + c(S4) = 9 + 16 = 25. One can verify that the minimum set cover is S∗ = {S1, S2, S3} with a cost
of c(S∗) = 14. Notice that we want a minimum cover with respect to c and not the number of subsets
chosen from S (unless c is uniform cost).

2.1 A greedy minimum set cover algorithm

Minimum set cover is known to be NP-complete, hence we are interested in algorithms that give us a
good approximation for the optimum. In this section, we describe a greedy algorithm and prove that it
is a Hn-approximate algorithm.

Algorithm 1 (cite?) is a greedy set cover algorithm. The intuition is as follows: Spread the cost c(Si)
amongst the vertices that are newly covered by Si. The algorithm then greedily selects the set that has
the lowest price-per-item.

1

Algorithm 1 GreedySetCover(U ,S, c)
T ← ∅ . Selected subset of S
C ← ∅ . Covered vertices
while C 6= U do

Si ← arg minSi∈S\T
c(Si)
|Si\C| . Pick the set with the lowest price-per-item

T ← T ∪ {Si} . Add Si to selection
C ← C ∪ Si . Update covered vertices

end while
return T

Consider a run of Algorithm 1 on the earlier example. On the first iteration, price-per-item(S1) =
2/3, price-per-item(S2) = 4, price-per-item(S3) = 9/2, and price-per-item(S4) = 16/3; So, S1 is chosen.
On the second iteration, price-per-item(S2) = 4, price-per-item(S3) = 9, and price-per-item(S4) = 16;
So, S2 was chosen. In the third iteration, price-per-item(S3) = 9, and price-per-item(S4) =∞; so S3 was
chosen. Since all vertices are now covered, the algorithm terminates (coincidentally to the minimum set
cover). Notice that the price-per-item for the remaining sets change according to which vertices remain
uncovered. Furthermore, one can simply ignore S4 when it was no longer covers any uncovered vertices.

Theorem 3. Algorithm 1 gives us a Hn-approximation for minimum set cover.

Proof. Since U =
⋃
S, by the termination condition of algorithm 1, the output T is a valid set cover.

Consider any fixed minimum set cover OPT . It remains to show that c(T) ≤ Hn · c(OPT). Let
e1, . . . , en be the elements in the order they are covered by algorithm 1. Define price(ei) as the price-
per-item of the set that covered ei during the run of the algorithm.

Consider the moment in the algorithm where elements e1, . . . , ek−1 are already covered. Since there
is a cover of cost at most c(OPT) for the remaining n− k + 1 elements, then there must be an element

whose price is at most c(OPT)
n−k+1 . We formalize this intuition with the argument below.

Since OPT is a set cover, there exists a subset of OPTk ⊂ OPT that covers ek . . . en.

...

...

Not in
OPT

OPT

OPTk

...

...

e1

ek−1

ek

ek+1

en

Suppose OPTk = {O1, . . . , Op}. We know the following:

1. O1, . . . , Op ∈ S \ T . Otherwise, some element in ek, . . . , en would have been covered.

2. n− k+ 1 = |U \C| ≤ |O1 ∩ (U \C)|+ · · ·+ |Op ∩ (U \C)|, because some elements may be covered
more than once.

3. By definition, for each j ∈ {1, . . . , p}, price-per-item(Oj) =
c(Oj)

|Oj∩(U\C)| .

Since the greedy algorithm will pick a set in S \ T with the lowest price-per-item, price(ek) ≤ price-
per-item(Oj) for all j ∈ {1, . . . , p}. Hence,

c(Oj) ≥ price(ek) · |Oj ∩ (U \ C)|,∀j ∈ {1, . . . , p} (1)

2

Summing over all p sets, we have: c(OPT) ≥ c(OPTk) =
∑p

i=1 c(Oi) ≥ price(ek) ·
∑p

j=1 |Oj ∩ (U \C)| ≥
price(ek)·|U \C| = price(ek)·(n−k+1), where the second inequality is due to Equation (1). Rearranging,

we get: price(ek) ≤ c(OPT)
n−k+1 . Summing over all elements, we have:

c(T) =
∑
S∈T

c(S) =

n∑
k=1

price(ek) ≤
n∑

k=1

c(OPT)

n− k + 1
= c(OPT)

n∑
k=1

1

k
= c(OPT) ·Hn

The second equality is because the cost of sets is partitioned into the price(·) of all n vertices.

Tight bound example for algorithm 1 During lecture, it was mentioned, without an explicit
example, that the bound is tight. We construct the example here.

Note that Hn = ln(n) + γ ≤ ln(n) + 0.6 ∈ O(log(n)), where γ is the Euler-Mascheroni constant1.
Consider the following setup with n = 2 · (2k − 1) elements, for some k ∈ N \ {0}. Partition the elements
into groups of size 2 · 20, 2 · 21, 2 · 22, . . . , 2 · 2k−1. Let S = {S1, . . . , Sk, Sk+1, Sk+2}. For 1 ≤ i ≤ k, let
Si cover the group of size 2 · 2i−1 = 2i. Let Sk+1 and Sk+2 cover half of each group (i.e. 2k − 1 elements
each).

.

.

S1 S2 S3 Sk

Sk+1

Sk+2

2
elements

4
elements

8
elements

2 · 2k
elements

Suppose c(Si) = 1,∀i ∈ {1, . . . , k+ 2}. The greedy algorithm will pick Sk, then Sk−1, . . . , and finally

S1. This is because 2 · 2k > n/2 and 2 · 2i > (n−
∑k

j=i+1 2 · 2j)/2, for 1 ≤ i < k. This greedy set cover
costs k = O(log(n)). On the other hand, the minimum set cover is S∗ = {Sk+1, Sk+2} with a cost of 2.

A series of works by Lund and Yannakakis [LY93], Feige [Fei98], and Moshkovitz [Mos15] showed
that it is NP-hard to always approximate set cover to within (1− ε) ln |U|, for any constant ε > 0.

Theorem 4 ([Mos15]). It is NP-hard to always approximate set cover to within (1 − ε) ln |U|, for any
constant ε > 0.

Proof. See [Mos15]

2.2 Special cases

In this section, we show that one may improve the approximation factor from Hn if we have further as-
sumptions on the set cover instance. Define ∆ = maxi∈{1,...,m}degree(Si) and f = maxi∈{1,...,m}degree(ei).
Consider the following two special cases of set cover instances:

1. ∆ is small. i.e. All sets are small.

2. f is small. i.e. There is a small number of sets that cover any fixed element.

2.2.1 Small ∆

Theorem 5. Algorithm 1 gives us a H∆-approximation for minimum set cover.

Proof. Suppose OPTk = {O1, . . . , Op}. Consider a set Oi = {ei,1, . . . , ei,d} with degree(Oi) = d ≤ ∆.
Without loss of generality, suppose that the greedy algorithm covers ei,1, then ei,2, and so on. For

1 ≤ k ≤ d, when ei,k is covered, price(ei,k) ≤ c(Oi)
d−k+1 (The inequality could possibly be equal and Oi

could be chosen by the greedy algorithm, covering ei,k, . . . , ei,d). Hence, the greedy cost of covering

elements in Oi (i.e. ei,1, . . . , ei,d) is at most
∑d

k=1
c(Oi)
d−k+1 = c(Oi) ·

∑d
k=1

1
k = c(Oi) ·Hd ≤ c(Oi) ·H∆.

Summing over all p sets to cover all n elements, we have c(T) ≤ H∆ · c(OPT).

1https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

3

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

Remarks We apply the same greedy algorithm for small ∆ but analyzed in a more localized manner.
Crucially, in our analysis, we always work with the exact degree d and only use the fact d ≤ ∆ after
summation. Observe that ∆ ≤ n and the approximation factor equals that of Theorem 3 when ∆ = n.

2.2.2 Small f

We first look at the case when f = 2, show that it is related to another graph problem, then generalize
the approach for general f .

Vertex cover as a special case of set cover

Definition 6 (Minimum vertex cover problem). Given a graph G = (V,E), find a subset S ⊆ V such
that:

(i) (Vertex cover): ∀e = (u, v) ∈ E, u ∈ S or v ∈ S

(ii) (Minimum cost): |S| is minimized

When f = 2 and c(Si) = 1,∀Si ∈ S, the minimum set cover problem is essentially a minimum vertex
cover problem — Each element is an edge with endpoints being the two sets that cover it. One way to
obtain a 2-approximation to minimum vertex cover (and hence 2-approximation for this special case of
set cover) is to use a maximal matching.

Definition 7 (Maximal matching problem). Given a graph G = (V,E), find a subset M ⊆ E such that:

(i) (Matching): ∀ei, ej ∈M , edges ei and ej do not share an endpoint.

(ii) (Maximal): ∀ek 6∈M , adding M ∪ {ek} is not a matching (violates first property).

A related concept to maximal matching is maximum matching, where one tries to maximize the
set of M . By definition, any maximum matching is also maximal matching, but the converse is not
necessarily true. Consider the line graph of 6 vertices and 5 edges below. Both the set of blue edges
{(a, b), (c, d), (e, f)} and the set of red edges {(b, c), (d, e)} are valid maximal matchings, where the
maximum matching is the former.

a b c d e f

Algorithm 2 GreedyMaximalMatching(V,E)

M ← ∅ . Selected edges
C ← ∅ . Set of incident vertices
while E 6= ∅ do

ei = (u, v)← Pick any edge from E
M ←M ∪ {ei} . Add ei to the matching
C ← C ∪ {u, v} . Add endpoints to incident vertices
Remove all edges in E that are incident to u or v

end while
return M

Algorithm 2 is a greedy maximal matching algorithm. The algorithm greedily adds any available
edge ei that is not yet incident to M , then exclude all edges that are adjacent to ei.

. . .

. . .
Maximal matching M

Vertex cover C,
where |C| = 2 · |M |

Theorem 8. The set of incident vertices C in Algorithm 2 is a 2-approximation for minimum vertex
cover.

4

Proof. Suppose, for a contradiction, that C is not a vertex cover. Then, there exists an edge e = (u, v)
such that u 6∈ C and v 6∈ C. If such an edge exists, it would not be removed from E during in the greedy
algorithm. This is a contradiction, hence C is a vertex cover.

Consider the matching M . Any vertex cover has to include either endpoints, hence the minimum
vertex cover OPT has at least |M | vertices. By picking C as our vertex cover, |C| = 2 · |M | ≤ 2 · |OPT |.
Therefore, C is a 2-approximation.

We now generalize beyond f = 2 by considering hypergraphs. Hypergraphs are a generalization of
graphs in which an edge can join any number of vertices. Formally, a hypergraph H = (X,E) consists
of a set of vertices/elements X and a set of hyperedges E where each hyperedge is a non-empty subset
of P(X), the powerset of X. The minimum vertex cover problem and maximal matching problems are
defined similarly on a hypergraph.

Remark A hypergraph H = (X,E) can be viewed as a bipartite graph where the partitions X and E
respectively and the edges are between element x ∈ X and hyperedge e ∈ E if x ∈ e.

Example Suppose H = (X,E) where X = {a, b, c, d, e} and E = {{a, b, c}, {b, c}, {a, d, e}}. A mini-
mum vertex cover of size 2 would be {a, e} (there are multiple size 2 vertex covers). Maximal matchings
would be {{a, b, c}} and {{b, c}, {a, d, e}}, where the latter is the maximum matching.

Claim 9. For general f , we can find a f -approximation for minimum vertex cover.

Sketch of Proof

• Greedily compute a maximal matching in the hypergraph, removing any edge involving vertices
that appear in the hyperedge of the greedy selection.

• Let C be the set of all vertices involved in the greedily selected edges.

• C can be showed to be an f -approximation in a similar manner as the proof in Theorem 8.

References

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[LY93] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization prob-
lems. In Proc. of the Symp. on Theory of Comp. (STOC), pages 286–293, 1993.

[Mos15] Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-approximating
set-cover. Theory of Computing, 11(1):221–235, 2015.

5

	Approximation algorithms
	Minimum set cover
	A greedy minimum set cover algorithm
	Special cases
	Small
	Small f

