Advanced Algorithms

25 September 2018

Lecture 2: Approximation Algorithms II

Lecturer: Mohsen Ghaffari

Scribe: Davin Choo

1 Approximation schemes

Previously, we described simple greedy algorithms that approximate the optimum for minimum set cover, maximal matching and vertex cover. We now formalize the notion of efficient $(1 + \epsilon)$ -approximation algorithms for minimization problems, a la [Vaz13].

Let I be an instance from the problem class of interest (e.g. minimum set cover). Denote |I| as the size of the problem (in bits), and $|I_u|$ as the size of the problem (in unary). For example, if the input is just a number x (of at most n bits), then $|I| = \log_2(x) = \mathcal{O}(n)$ while $|I_u| = \mathcal{O}(2^n)$. This distinction of "size of input" will be important later when we discuss the knapsack problem.

Definition 1 (Polynomial time approximation algorithm (PTAS)). For cost metric c, an algorithm \mathcal{A} is a PTAS if for each fixed $\epsilon > 0$, $c(\mathcal{A}(I)) \leq (1 + \epsilon) \cdot c(OPT(I))$ and \mathcal{A} runs in poly(|I|).

By definition, the runtime for PTAS may depend arbitrarily on ϵ . A stricter related definition is that of fully polynomial time approximation algorithms (FPTAS). Assuming $\mathbb{P} \neq \mathbb{NP}$, FPTAS is the best one can hope for on \mathbb{NP} -hard optimization problems.

Definition 2 (Fully polynomial time approximation algorithm (FPTAS)). For cost metric c, an algorithm \mathcal{A} is a FPTAS if for each fixed $\epsilon > 0$, $c(\mathcal{A}(I)) \leq (1 + \epsilon) \cdot c(OPT(I))$ and \mathcal{A} runs in $poly(|I|, \frac{1}{\epsilon})$.

As before, $(1 - \epsilon)$ -approximation, PTAS and FPTAS for maximization problems are defined similarly.

2 Knapsack

Definition 3 (Knapsack problem). Consider a set S with n items. Each item i has $size(i) \in \mathbb{Z}^+$ and $profit(i) \in \mathbb{Z}^+$. Given a budget B, find a subset $S^* \subseteq S$ such that:

- (i) (Fits budget): $\sum_{i \in S^*} size(i) \leq B$
- (ii) (Maximum value): $\sum_{i \in S^*} profit(i)$ is maximized.

Let us denote $p_{max} = \max_{i \in \{1,...,n\}} profit(i)$. Further assume, without loss of generality, that $size(i) \leq B, \forall i \in \{1,...,n\}$. As these items cannot be chosen in S^* , we can remove them, and relabel, in $\mathcal{O}(n)$ time without affecting the correctness of the result. Thus, observe that $p_{max} \leq profit(OPT(I))$ because we can always pick at least one item, namely the highest valued one.

Example Denote the size and profit of each item by a pair i : (size(i), profit(i)). Consider an instance where budget B = 10 and $S = \{1 : (10, 130), 2 : (7, 103), 3 : (6, 91), 4 : (4, 40), 5 : (3, 38)\}$. One can verify that the best subset $S^* \subseteq S$ is $\{2 : (7, 103), 5 : (3, 38)\}$, yielding a total profit of 103 + 38 = 141.

2.1 An exact algorithm in $poly(np_{max})$ via dynamic programming (DP)

Observe that the maximum achievable profit is at most np_{max} , where $S^* = S$. Using dynamic programming (DP), we can form a *n*-by- (np_{max}) matrix M where M[i, p] is the smallest total sized subset from $\{1, \ldots, i\}$ such that the total profit equals p. Trivially, set M[1, profit(1)] = size(1) and $M[1, p] = \infty$ for $p \neq profit(1)$. To handle boundaries, we also define $M[i, j] = \infty$ for $j \leq 0$. Then,

$$M[i+1,p] = \begin{cases} M[i,p] & \text{if } profit(i+1) > p \text{ (Cannot pick)} \\ \min\{M[i,p], size(i+1) + M(i,p-profit(i+1))\} & \text{if } profit(i+1) \le p \text{ (May pick)} \end{cases}$$

Since each cell can be computed in $\mathcal{O}(1)$ using the DP via the above recurrence, matrix M can be filled in $\mathcal{O}(n^2 p_{max})$ and S^* may be extracted by back-tracing from $M[n, np_{max}]$.

Remark This dynamic programming algorithm is *not* a PTAS because $\mathcal{O}(n^2 p_{max})$ is exponential in input problem size |I|. This is because the value p_{max} is just a single number, hence representing it only requires $\log_2(p_{max})$ bits. As such, we call this DP algorithm a *pseudo-polynomial time algorithm*.

2.2 FPTAS for the knapsack problem via profit rounding

Algorithm 1 FPTAS-KNAPSACK (S, B, ϵ)	
$k \leftarrow \max\{1, \lfloor \frac{\epsilon p_{max}}{n} \rfloor\}$	\triangleright Choice of k to be justified later
for $i \in \{1, \ldots, n\}$ do	
$profit'(i) = \lfloor \frac{profit(i)}{k} \rfloor$	\triangleright Round the profits
end for	
Use DP described in Section 2.1 with same sizes and same budget B but re-scaled profits.	
return Answer from DP	

Algorithm 1 pre-processes the problem input and calls the dynamic programming algorithm described in Section 2.1. Since we scaled down the profits, the new maximum profit is $\frac{p_{max}}{k}$, hence the DP now runs in $\mathcal{O}(\frac{n^2 p_{max}}{k})$. To obtain a FPTAS for Knapsack, we pick k such that Algorithm 1 is a $(1 - \epsilon)$ approximation algorithm and runs in poly $(n, \frac{1}{\epsilon})$.

Theorem 4. For any $\epsilon > 0$ and knapsack instance $I = (\mathcal{S}, B)$, then Algorithm 1 (\mathcal{A}) is a FPTAS.

Proof. Let loss(i) denote the decrease in value by using rounded profit'(i) for item *i*. By the profit rounding definition, for each item *i*, $loss(i) = profit(i) - k \lfloor \frac{profit(i)}{k} \rfloor \leq k$. Then, over all *n* items,

 $\begin{array}{lll} \sum_{i=1}^{n} loss(i) & \leq & nk \\ & < & \epsilon \cdot p_{max} & \text{Since } k = \lfloor \frac{\epsilon p_{max}}{n} \rfloor \\ & \leq & \epsilon \cdot profit(OPT(I)) & \text{Since } p_{max} \leq profit(OPT(I)) \end{array}$

Thus, $profit(\mathcal{A}(I)) \ge (1-\epsilon) \cdot profit(OPT(I)).$ Furthermore, the $\mathcal{A}(I)$ runs in $\mathcal{O}(\frac{n^2 p_{max}}{k}) = \mathcal{O}(\frac{n^3}{\epsilon}) \in \text{poly}(n, \frac{1}{\epsilon}).$

Example Recall the earlier example where budget B = 10 and $S = \{1 : (10, 130), 2 : (7, 103), 3 : (6, 91), 4 : (4, 40), 5 : (3, 38)\}$. For $\epsilon = \frac{1}{2}$, one would set $k = \max\{1, \lfloor \frac{ep_{max}}{n} \rfloor\} = \max\{1, \lfloor \frac{\frac{1}{2} \cdot 130}{5} \rfloor\} = 13$. After rounding, we have $S' = \{1 : (10, 10), 2 : (7, 7), 3 : (6, 7), 4 : (4, 3), 5 : (3, 2)\}$. The optimum subset from S' is $\{3 : (6, 7), 4 : (4, 3)\}$ which translates to a total profit of 91 + 40 = 131 in the original problem. As expected, $131 = profit(\text{FPTAS-KNAPSACK}(I)) \ge (1 - \frac{1}{2}) \cdot profit(OPT(I)) = 70.5$.

3 Bin packing

Definition 5 (Bin packing problem). Given a set S with n items where each item i has $size(i) \in (0, 1]$, find the minimum number of unit-sized (size 1) bins that can hold all n items.

For any problem instance I, let OPT(I) be a optimum bin assignment and |OPT(I)| be the corresponding minimum number of bins required. One can see that $\sum_{i=1}^{n} size(i) \leq |OPT(I)|$.

Example Consider an instance where $S = \{0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4\}$, where |S| = n = 9. Since $\sum_{i=1}^{n} size(i) = 3$, at least 3 bins are needed. One can verify that 3 bins suffices: $b_1 = b_2 = b_3 = \{0.5, 0.4, 0.1\}$. Hence, |OPT(S)| = 3.

3.1 First-fit: A 2-approximation algorithm for bin packing

Algorithm 2 $FIRSTFIT(S)$	
$\mathbf{B} \to \emptyset$	\triangleright Collection of bins
for $i \in \{1, \dots, n\}$ do	
if $size(i) \leq size(b)$ for some bin $b \in B$ then	
$size(b) \leftarrow size(b) - size(i)$	\triangleright Put item <i>i</i> to existing bin <i>b</i>
else	
$B \leftarrow B \cup \{b'\}$, where $size(b') = 1 - size(x_i)$	\triangleright Put item <i>i</i> into a fresh bin <i>b</i> '
end if	
end for	
return B	

Algorithm 2 shows the First-Fit algorithm which processes items one-by-one, creating new bins if an item cannot fit into existing bins.

Lemma 6. Using First-Fit, at most one bin is less than half-full. That is, $|\{b \in B : size(b) \le \frac{1}{2}\}| \le 1$.

Proof. Suppose, for a contradiction, that there are two bins b_i and b_j such that i < j, $size(i) \le \frac{1}{2}$ and $size(j) \le \frac{1}{2}$. Then, First-Fit could have put all items in b_j into b_i , and not create b_j . Contradiction. \Box

Theorem 7. First-Fit is a 2-approximation algorithm for bin packing.

Proof. Suppose First-Fit terminates with |B| = m bins. By lemma above, $\sum_{i=1}^{n} size(i) > \frac{m-1}{2}$. Since $\sum_{i=1}^{n} size(i) \le |OPT(I)|$, we have $m-1 < 2\sum_{i=1}^{n} size(i) \le 2 \cdot |OPT(I)|$. That is, $m \le 2 \cdot |OPT(I)|$. \Box

Recall the example where $S = \{0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.5, 0.4, 0.4\}$. First-Fit will use 4 bins: $b_1 = \{0.5, 0.1, 0.1, 0.1\}, b_2 = b_3 = \{0.5, 0.4\}, b_4 = \{0.4\}$. As expected, $4 = |\text{FIRSTFIT}(S)| \le 2 \cdot |OPT(S)| = 6$.

Remark If we first sort the item weights in non-increasing order, then one can show that running First-Fit on non-increasing ordering of item weights will yield a $\frac{3}{2}$ -approximation algorithm for bin packing. See footnote for details¹.

¹Curious readers may want to read the following lecture notes for proof on First-Fit-Decreasing: http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012%20-%20Combinatorial%200ptimization/ 12-BinPacking.pdf

Figure 1: Partition items into k groups, then round sizes up to the maximum size in each group.

It is natural to wonder whether we can do better than a $\frac{3}{2}$ -approximation. Unfortunately, unless $\mathbb{P} = \mathbb{NP}$, we cannot do so efficiently. To prove this, we show that if we can efficiently derive a $(\frac{3}{2} - \epsilon)$ -approximation for bin packing, then the partition problem (which is \mathbb{NP} -hard) can be solved efficiently.

Definition 8 (Partition problem). Given a multiset S of (possibly repeated) positive integers x_1, \ldots, x_n , is there a way to partition S into S_1 and S_2 such that $\sum_{x \in S_1} x = \sum_{x \in S_2} x$?

Theorem 9. Solving bin packing with $(\frac{3}{2} - \epsilon)$ -approximation for $\epsilon \in (0, \frac{1}{2}]$ is NP-hard.

Proof. Suppose algorithm \mathcal{A} solves bin packing with $(\frac{3}{2} - \epsilon)$ -approximation for $\epsilon > 0$. Given an instance of the partition problem with $\mathcal{S} = \{x_1, \ldots, x_n\}$, let $X = \sum_{i=1}^n x_i$. Define set $\mathcal{S}' = \{\frac{2x_1}{X}, \ldots, \frac{2x_n}{X}\}$ and run $\mathcal{A}(\mathcal{S}')$. Since $\sum_{x \in \mathcal{S}'} x = 2$, at least two bins are required. By construction, one can bi-partition \mathcal{S} if and only if only two bins are required to pack \mathcal{S}' . Since \mathcal{A} gives a $(\frac{3}{2} - \epsilon)$ -approximation, if the OPT(I) returns 2 bins, then $\mathcal{A}(I)$ will return $\lfloor (\frac{3}{2} - \epsilon)(2) \rfloor = 2$ bins. As \mathcal{A} can solve the partition problem, solving bin packing with $(\frac{3}{2} - \epsilon)$ -approximation for $\epsilon \in (0, \frac{1}{2}]$ is NP-hard.

3.2 Special case where items have sizes larger than ϵ , for some $\epsilon > 0$

In this section, we describe a PTAS algorithm that solves the special case of bin packing assuming all items have at least size $\epsilon > 0$. We first describe an exact algorithm that further assumes another condition. Then, we show how we round the item weights and make use of the exact algorithm, as a black box, to yield a PTAS. Note that the final algorithm we describe is *not* a FPTAS because it will run in time exponential in $\frac{1}{\epsilon}$.

3.2.1 Exact solving via \mathcal{A}_{ϵ}

Let us describe an exact algorithm for a special case of bin packing with two assumptions:

- 1. All items have at least size ϵ
- 2. There are only k different possible sizes (for some constant k)

Let $M = \lceil \frac{1}{\epsilon} \rceil$ and x_i be the number of items of the i^{th} possible size. Let R be the number of weight configurations, or possible item configurations (multiset of item weights) in a bin. By assumption 1, each bin can only contain $\leq M$ items. By assumption 2, there are at most $R = \binom{M+k}{M}$. Then, the total number of bin configurations is at most $\binom{n+R}{R}$. Since k is a constant, one can enumerate over all possible bin configurations (denote this algorithm as \mathcal{A}_{ϵ}) to *exactly* solve bin packing in this special case in $\mathcal{O}(n^R) \in \text{poly}(n)$ since R is a constant (with respect to constants ϵ and k).

Remark 1 Number of configurations are computed by solving combinatorics problems of the following form: How many non-negative integer solutions are there to $x_1 + \cdots + x_n \leq k$?²

Remark 2 The number of bin configurations is computed out of n bins (i.e. 1 bin for each item). One may use less than n bins, but this upper bound suffices for our purposes.

3.2.2 PTAS for special case

Algorithm 3 pre-processes the sizes of a given input instance, then calls the exact algorithm \mathcal{A}_{ϵ} to solve the modified instance. Since we only round up sizes, $\mathcal{A}_{\epsilon}(J)$ will yield a satisfying bin assignment for instance I, with spare "slack". We will prove the following claim in the next lecture.

Claim 10. $|OPT(J)| \leq |OPT(I)| + n\epsilon^2$

²See slides 22 and 23 of http://www.cs.ucr.edu/~neal/2006/cs260/piyush.pdf for illustration of $\binom{M+k}{M}$ and $\binom{n+R}{R}$.

 $\begin{array}{l} \hline \textbf{Algorithm 3} \mbox{PTAS-BINPACKING}(I=\mathcal{S},\epsilon) \\ \hline k \leftarrow \lceil \frac{1}{\epsilon^2} \rceil \\ \mbox{Partition n items into k non-overlapping groups, each with at most $\frac{n}{k}$ items } > \mbox{See Figure 1} \\ \hline \textbf{for $i \in \{1, \ldots, k\}$ do} \\ \hline k_{max} \leftarrow \max_{item j in group i size(j)} \\ \hline \textbf{for item j in group i do} \\ \hline size(j) \leftarrow k_{max} \\ \hline \textbf{end for} \\ \mbox{Denote the modified instance as J} \\ \hline \textbf{return $\mathcal{A}_{\epsilon}(J$)} \end{array}$

References

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.