Lecture 2: Approximation Algorithms II

Lecturer: Mohsen Ghaffari
Scribe: Davin Choo

1 Approximation schemes

Previously, we described simple greedy algorithms that approximate the optimum for minimum set cover, maximal matching and vertex cover. We now formalize the notion of efficient $(1+\epsilon)$-approximation algorithms for minimization problems, a la [Vaz13].

Let I be an instance from the problem class of interest (e.g. minimum set cover). Denote $|I|$ as the size of the problem (in bits), and $\left|I_{u}\right|$ as the size of the problem (in unary). For example, if the input is just a number x (of at most n bits), then $|I|=\log _{2}(x)=\mathcal{O}(n)$ while $\left|I_{u}\right|=\mathcal{O}\left(2^{n}\right)$. This distinction of "size of input" will be important later when we discuss the knapsack problem.

Definition 1 (Polynomial time approximation algorithm (PTAS)). For cost metric c, an algorithm \mathcal{A} is a PTAS if for each fixed $\epsilon>0, c(\mathcal{A}(I)) \leq(1+\epsilon) \cdot c(O P T(I))$ and \mathcal{A} runs in poly $(|I|)$.

By definition, the runtime for PTAS may depend arbitrarily on ϵ. A stricter related definition is that of fully polynomial time approximation algorithms (FPTAS). Assuming $\mathbb{P} \neq \mathbb{N} \mathbb{P}$, FPTAS is the best one can hope for on $\mathbb{N P}$-hard optimization problems.

Definition 2 (Fully polynomial time approximation algorithm (FPTAS)). For cost metric c, an algorithm \mathcal{A} is a FPTAS if for each fixed $\epsilon>0, c(\mathcal{A}(I)) \leq(1+\epsilon) \cdot c(O P T(I))$ and \mathcal{A} runs in poly $\left(|I|, \frac{1}{\epsilon}\right)$.

As before, $(1-\epsilon)$-approximation, PTAS and FPTAS for maximization problems are defined similarly.

2 Knapsack

Definition 3 (Knapsack problem). Consider a set \mathcal{S} with n items. Each item i has size $(i) \in \mathbb{Z}^{+}$and profit $(i) \in \mathbb{Z}^{+}$. Given a budget B, find a subset $S^{*} \subseteq S$ such that:
(i) (Fits budget): $\sum_{i \in S^{*}} \operatorname{size}(i) \leq B$
(ii) (Maximum value): $\sum_{i \in S^{*}} \operatorname{profit}(i)$ is maximized.

Let us denote $p_{\text {max }}=\max _{i \in\{1, \ldots, n\}} \operatorname{profit}(i)$. Further assume, without loss of generality, that $\operatorname{size}(i) \leq B, \forall i \in\{1, \ldots, n\}$. As these items cannot be chosen in S^{*}, we can remove them, and relabel, in $\mathcal{O}(n)$ time without affecting the correctness of the result. Thus, observe that $p_{\text {max }} \leq \operatorname{profit}(O P T(I))$ because we can always pick at least one item, namely the highest valued one.

Example Denote the size and profit of each item by a pair $i:(\operatorname{size}(i)$, profit $(i))$. Consider an instance where budget $B=10$ and $\mathcal{S}=\{1:(10,130), 2:(7,103), 3:(6,91), 4:(4,40), 5:(3,38)\}$. One can verify that the best subset $S^{*} \subseteq S$ is $\{2:(7,103), 5:(3,38)\}$, yielding a total profit of $103+38=141$.

2.1 An exact algorithm in poly $\left(n p_{\max }\right)$ via dynamic programming (DP)

Observe that the maximum achievable profit is at most $n p_{\max }$, where $S^{*}=S$. Using dynamic programming (DP), we can form a n-by- $\left(n p_{\max }\right)$ matrix M where $M[i, p]$ is the smallest total sized subset from $\{1, \ldots, i\}$ such that the total profit equals p. Trivially, set $M[1, \operatorname{profit}(1)]=\operatorname{size}(1)$ and $M[1, p]=\infty$ for $p \neq \operatorname{profit}(1)$. To handle boundaries, we also define $M[i, j]=\infty$ for $j \leq 0$. Then,
$M[i+1, p]= \begin{cases}M[i, p] & \text { if } \operatorname{profit}(i+1)>p \text { (Cannot pick) } \\ \min \{M[i, p], \operatorname{size}(i+1)+M(i, p-\operatorname{profit}(i+1))\} & \text { if } \operatorname{profit}(i+1) \leq p \text { (May pick) }\end{cases}$
Since each cell can be computed in $\mathcal{O}(1)$ using the DP via the above recurrence, matrix M can be filled in $\mathcal{O}\left(n^{2} p_{\max }\right)$ and S^{*} may be extracted by back-tracing from $M\left[n, n p_{\max }\right]$.

Remark This dynamic programming algorithm is not a PTAS because $\mathcal{O}\left(n^{2} p_{\max }\right)$ is exponential in input problem size $|I|$. This is because the value $p_{\max }$ is just a single number, hence representing it only requires $\log _{2}\left(p_{\max }\right)$ bits. As such, we call this DP algorithm a pseudo-polynomial time algorithm.

2.2 FPTAS for the knapsack problem via profit rounding

```
Algorithm 1 FPTAS-Knapsack \((\mathcal{S}, B, \epsilon)\)
    \(k \leftarrow \max \left\{1,\left\lfloor\frac{\left\lfloor p_{\text {max }}\right.}{n}\right\rfloor\right\} \quad \triangleright\) Choice of \(k\) to be justified later
    for \(i \in\{1, \ldots, n\}\) do
        \(\operatorname{profit}^{\prime}(i)=\left\lfloor\frac{\operatorname{profit}(i)}{k}\right\rfloor \quad \triangleright\) Round the profits
    end for
    Use DP described in Section 2.1 with same sizes and same budget \(B\) but re-scaled profits.
    return Answer from DP
```

Algorithm 1 pre-processes the problem input and calls the dynamic programming algorithm described in Section 2.1. Since we scaled down the profits, the new maximum profit is $\frac{p_{\max }}{k}$, hence the DP now runs in $\mathcal{O}\left(\frac{n^{2} p_{\text {max }}}{k}\right)$. To obtain a FPTAS for Knapsack, we pick k such that Algorithm 1 is a $(1-\epsilon)$ approximation algorithm and runs in poly $\left(n, \frac{1}{\epsilon}\right)$.

Theorem 4. For any $\epsilon>0$ and knapsack instance $I=(\mathcal{S}, B)$, then Algorithm $1(\mathcal{A})$ is a FPTAS.
Proof. Let loss (i) denote the decrease in value by using rounded profit' (i) for item i. By the profit rounding definition, for each item $i, \operatorname{loss}(i)=\operatorname{profit}(i)-k\left\lfloor\frac{\operatorname{profit}(i)}{k}\right\rfloor \leq k$. Then, over all n items,

$$
\begin{array}{rlcl}
\sum_{i=1}^{n} \operatorname{loss}(i) & \leq & n k & \\
& < & \epsilon \cdot p_{\max } & \\
& \text { Since } k=\left\lfloor\frac{\epsilon p_{\max }}{\text { a }}\right\rfloor \\
& \leq \epsilon \cdot \operatorname{profit}(O P T(I)) & \text { Since } p_{\max } \leq \operatorname{profit}(O P T(I))
\end{array}
$$

Thus, $\operatorname{profit}(\mathcal{A}(I)) \geq(1-\epsilon) \cdot \operatorname{profit}(O P T(I))$.
Furthermore, the $\mathcal{A}(I)$ runs in $\mathcal{O}\left(\frac{n^{2} p_{\max }}{k}\right)=\mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \in \operatorname{poly}\left(n, \frac{1}{\epsilon}\right)$.
Example Recall the earlier example where budget $B=10$ and $\mathcal{S}=\{1:(10,130), 2:(7,103), 3$: $(6,91), 4:(4,40), 5:(3,38)\}$. For $\epsilon=\frac{1}{2}$, one would set $k=\max \left\{1,\left\lfloor\frac{\epsilon p_{\max }}{n}\right\rfloor\right\}=\max \left\{1,\left\lfloor\frac{\frac{1}{2} \cdot 130}{5}\right\rfloor\right\}=13$. After rounding, we have $\mathcal{S}^{\prime}=\left\{1:(10,10), 2:(7,7), 3:(6,7), 4:(4,3), 5^{n}:(3,2)\right\}$. The optimum subset from \mathcal{S}^{\prime} is $\{3:(6,7), 4:(4,3)\}$ which translates to a total profit of $91+40=131$ in the original problem. As expected, $131=\operatorname{profit}(\operatorname{FPTAS}-\operatorname{KnAPSACK}(I)) \geq\left(1-\frac{1}{2}\right) \cdot \operatorname{profit}(O P T(I))=70.5$.

3 Bin packing

Definition 5 (Bin packing problem). Given a set \mathcal{S} with n items where each item i has size $(i) \in(0,1]$, find the minimum number of unit-sized (size 1) bins that can hold all n items.

For any problem instance I, let $O P T(I)$ be a optimum bin assignment and $|O P T(I)|$ be the corresponding minimum number of bins required. One can see that $\sum_{i=1}^{n}$ size $(i) \leq|O P T(I)|$.

Example Consider an instance where $\mathcal{S}=\{0.5,0.1,0.1,0.1,0.5,0.4,0.5,0.4,0.4\}$, where $|\mathcal{S}|=n=9$. Since $\sum_{i=1}^{n}$ size $(i)=3$, at least 3 bins are needed. One can verify that 3 bins suffices: $b_{1}=b_{2}=b_{3}=$ $\{0.5,0.4,0.1\}$. Hence, $|O P T(\mathcal{S})|=3$.

3.1 First-fit: A 2-approximation algorithm for bin packing

```
Algorithm 2 FirstFit(S)
    \(\mathrm{B} \rightarrow \emptyset \quad \triangleright\) Collection of bins
    for \(i \in\{1, \ldots, n\}\) do
        if \(\operatorname{size}(i) \leq \operatorname{size}(b)\) for some bin \(b \in B\) then
            \(\operatorname{size}(b) \leftarrow \operatorname{size}(b)-\operatorname{size}(i) \quad \triangleright\) Put item \(i\) to existing bin \(b\)
        else
            \(B \leftarrow B \cup\left\{b^{\prime}\right\}\), where \(\operatorname{size}\left(b^{\prime}\right)=1-\operatorname{size}\left(x_{i}\right) \quad \triangleright\) Put item \(i\) into a fresh bin \(b^{\prime}\)
        end if
    end for
    return \(B\)
```

Algorithm 2 shows the First-Fit algorithm which processes items one-by-one, creating new bins if an item cannot fit into existing bins.

Lemma 6. Using First-Fit, at most one bin is less than half-full. That is, $\left|\left\{b \in B: \operatorname{size}(b) \leq \frac{1}{2}\right\}\right| \leq 1$.
Proof. Suppose, for a contradiction, that there are two bins b_{i} and b_{j} such that $i<j$, size $(i) \leq \frac{1}{2}$ and $\operatorname{size}(j) \leq \frac{1}{2}$. Then, First-Fit could have put all items in b_{j} into b_{i}, and not create b_{j}. Contradiction.

Theorem 7. First-Fit is a 2-approximation algorithm for bin packing.
Proof. Suppose First-Fit terminates with $|B|=m$ bins. By lemma above, $\sum_{i=1}^{n} \operatorname{size}(i)>\frac{m-1}{2}$. Since $\sum_{i=1}^{n} \operatorname{size}(i) \leq|O P T(I)|$, we have $m-1<2 \sum_{i=1}^{n} \operatorname{size}(i) \leq 2 \cdot|O P T(I)|$. That is, $m \leq 2 \cdot|O P T(I)|$.

Recall the example where $\mathcal{S}=\{0.5,0.1,0.1,0.1,0.5,0.4,0.5,0.4,0.4\}$. First-Fit will use 4 bins: $b_{1}=$ $\{0.5,0.1,0.1,0.1\}, b_{2}=b_{3}=\{0.5,0.4\}, b_{4}=\{0.4\}$. As expected, $4=|\operatorname{FirstFit}(\mathcal{S})| \leq 2 \cdot|O P T(\mathcal{S})|=6$.

Remark If we first sort the item weights in non-increasing order, then one can show that running FirstFit on non-increasing ordering of item weights will yield a $\frac{3}{2}$-approximation algorithm for bin packing. See footnote for details ${ }^{1}$.

[^0]

Figure 1: Partition items into k groups, then round sizes up to the maximum size in each group.

It is natural to wonder whether we can do better than a $\frac{3}{2}$-approximation. Unfortunately, unless $\mathbb{P}=\mathbb{N} \mathbb{P}$, we cannot do so efficiently. To prove this, we show that if we can efficiently derive a $\left(\frac{3}{2}-\epsilon\right)$ approximation for bin packing, then the partition problem (which is $\mathbb{N P}$-hard) can be solved efficiently.
Definition 8 (Partition problem). Given a multiset \mathcal{S} of (possibly repeated) positive integers x_{1}, \ldots, x_{n}, is there a way to partition \mathcal{S} into \mathcal{S}_{1} and \mathcal{S}_{2} such that $\sum_{x \in \mathcal{S}_{1}} x=\sum_{x \in \mathcal{S}_{2}} x$?

Theorem 9. Solving bin packing with $\left(\frac{3}{2}-\epsilon\right)$-approximation for $\epsilon \in\left(0, \frac{1}{2}\right]$ is $\mathbb{N P}$-hard.
Proof. Suppose algorithm \mathcal{A} solves bin packing with $\left(\frac{3}{2}-\epsilon\right)$-approximation for $\epsilon>0$. Given an instance of the partition problem with $\mathcal{S}=\left\{x_{1}, \ldots, x_{n}\right\}$, let $X=\sum_{i=1}^{n} x_{i}$. Define set $\mathcal{S}^{\prime}=\left\{\frac{2 x_{1}}{X}, \ldots, \frac{2 x_{n}}{X}\right\}$ and run $\mathcal{A}\left(\mathcal{S}^{\prime}\right)$. Since $\sum_{x \in \mathcal{S}^{\prime}} x=2$, at least two bins are required. By construction, one can bi-partition \mathcal{S} if and only if only two bins are required to pack \mathcal{S}^{\prime}. Since \mathcal{A} gives a $\left(\frac{3}{2}-\epsilon\right)$-approximation, if the $O P T(I)$ returns 2 bins, then $\mathcal{A}(I)$ will return $\left\lfloor\left(\frac{3}{2}-\epsilon\right)(2)\right\rfloor=2$ bins. As \mathcal{A} can solve the partition problem, solving bin packing with $\left(\frac{3}{2}-\epsilon\right)$-approximation for $\epsilon \in\left(0, \frac{1}{2}\right]$ is $\mathbb{N P}$-hard.

3.2 Special case where items have sizes larger than ϵ, for some $\epsilon>0$

In this section, we describe a PTAS algorithm that solves the special case of bin packing assuming all items have at least size $\epsilon>0$. We first describe an exact algorithm that further assumes another condition. Then, we show how we round the item weights and make use of the exact algorithm, as a black box, to yield a PTAS. Note that the final algorithm we describe is not a FPTAS because it will run in time exponential in $\frac{1}{\epsilon}$.

3.2.1 Exact solving via \mathcal{A}_{ϵ}

Let us describe an exact algorithm for a special case of bin packing with two assumptions:

1. All items have at least size ϵ
2. There are only k different possible sizes (for some constant k)

Let $M=\left\lceil\frac{1}{\epsilon}\right\rceil$ and x_{i} be the number of items of the $i^{\text {th }}$ possible size. Let R be the number of weight configurations, or possible item configurations (multiset of item weights) in a bin. By assumption 1, each bin can only contain $\leq M$ items. By assumption 2 , there are at most $R=\binom{M+k}{M}$. Then, the total number of bin configurations is at most $\binom{n+R}{R}$. Since k is a constant, one can enumerate over all possible bin configurations (denote this algorithm as \mathcal{A}_{ϵ}) to exactly solve bin packing in this special case in $\mathcal{O}\left(n^{R}\right) \in \operatorname{poly}(n)$ since R is a constant (with respect to constants ϵ and k).

Remark 1 Number of configurations are computed by solving combinatorics problems of the following form: How many non-negative integer solutions are there to $x_{1}+\cdots+x_{n} \leq k ?^{2}$

Remark 2 The number of bin configurations is computed out of n bins (i.e. 1 bin for each item). One may use less than n bins, but this upper bound suffices for our purposes.

3.2.2 PTAS for special case

Algorithm 3 pre-processes the sizes of a given input instance, then calls the exact algorithm \mathcal{A}_{ϵ} to solve the modified instance. Since we only round up sizes, $\mathcal{A}_{\epsilon}(J)$ will yield a satisfying bin assignment for instance I, with spare "slack". We will prove the following claim in the next lecture.
Claim 10. $|O P T(J)| \leq|O P T(I)|+n \epsilon^{2}$

[^1]```
Algorithm 3 PTAS-BinPACKING \((I=\mathcal{S}, \epsilon)\)
 \(k \leftarrow\left\lceil\frac{1}{\epsilon^{2}}\right\rceil\)
 Partition \(n\) items into \(k\) non-overlapping groups, each with at most \(\frac{n}{k}\) items \(\quad \triangleright\) See Figure 1
 for \(i \in\{1, \ldots, k\}\) do
 \(k_{\text {max }} \leftarrow \max _{\text {item } j \text { in group } i \operatorname{size}(j)}\)
 for item \(j\) in group \(i\) do
 \(\operatorname{size}(j) \leftarrow k_{\text {max }}\)
 end for
 end for
 Denote the modified instance as \(J\)
 return \(\mathcal{A}_{\epsilon}(J)\)
```


## References

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science \& Business Media, 2013.


[^0]:    ${ }^{1}$ Curious readers may want to read the following lecture notes for proof on First-Fit-Decreasing: http://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/bin_packing.pdf https://dcg.epfl.ch/files/content/sites/dcg/files/courses/2012\%20-\% 20Combinatorial\%200ptimization/ 12-BinPacking.pdf

[^1]:    ${ }^{2}$ See slides 22 and 23 of http://www.cs.ucr.edu/ $\sim$ neal/2006/cs260/piyush.pdf for illustration of $\binom{M+k}{M}$ and $\binom{n+R}{R}$.

