1 Approximation schemes (Continued)

2 Bin packing (Continued)

During the last lecture, the bin packing problem was tackled first by FirstFit, which we showed to be a 2-approximation algorithm. We also described A_ϵ, an exact algorithm which solves bin packing under two assumptions:

1. All items have at least size ϵ
2. There are only k different possible sizes (for some constant k).

Towards the end, we worked towards removing these two assumptions.

Definition 1 (Bin packing problem). Given a set S with n items where each item i has size $i \in (0, 1]$, find the minimum number of unit-sized (size 1) bins that can hold all n items.

For any problem instance I, let $OPT(I)$ be an optimum bin assignment and $|OPT(I)|$ be the corresponding minimum number of bins required. One can see that $\sum_{i=1}^{n} size(i) \leq |OPT(I)|$.

2.1 Special case where items have sizes larger than ϵ, for some $\epsilon > 0$

Algorithm 1 PTAS-BinPacking ($I = S, \epsilon$)

\[k \leftarrow \lceil \frac{1}{\epsilon^2} \rceil \]
\[Q \leftarrow \lfloor n\epsilon^2 \rfloor \]

Partition n items into k non-overlapping groups, each with Q items \> See Figure 1

for $i \in \{1, \ldots, k\}$ do

\[k_{\text{max}} \leftarrow \max_{j \text{ in group } i} \text{size}(j) \]

for item j in group i do

\[\text{size}(j) \leftarrow k_{\text{max}} \]

end for

end for

Denote the modified instance as J

return $A_\epsilon(J)$

\[J_1 = J'_1 \]
\[J_2 = J'_2 \]
\[J \text{ rounds up} \]
\[J_k = J'_k \]

\[\leq Q \text{ items} \]
\[\leq Q \text{ items} \]
\[J' \text{ rounds down} \]
\[\leq Q \text{ items} \]

Figure 1: Partition items into k groups, each with at most Q items. Label groups in ascending size ordering. J rounds up item sizes, J' rounds down item sizes.

Algorithm 1 pre-processes the sizes of a given input instance, then calls the exact algorithm A_ϵ to solve the modified instance. Since J only rounds up sizes, $A_\epsilon(J)$ will yield a satisfying bin assignment for instance I, with possibly “spare slack”. For analysis, let us define another modified instance J' as rounding down item sizes. Since we rounded down item sizes in J', $|OPT(J')| \leq |OPT(I)|$.

Lemma 2. $|OPT(J)| \leq |OPT(J')| + Q$

Proof. Label the k groups in J by J_1, \ldots, J_k where the items in J_i have smaller sizes than the items in J_{i+1}. Label the k groups in J' similarly. See Figure 1. For $i = \{1, \ldots, k-1\}$, since the smallest item in J'_{i+1} has size larger to the largest item in J_i, any valid packing for J'_i serves as a valid packing for the J_{i-1}. For J_k (the largest group of Q items), let us use separate bins (hence the additive Q term). \hfill \Box

Lemma 3. $|OPT(J)| \leq |OPT(I)| + Q$

Proof. By Lemma 2 and the fact that $|OPT(J')| \leq |OPT(I)|$. \hfill \Box

Theorem 4. Algorithm 1 is an $(1 + \epsilon)$-approximation algorithm.

Proof. Assumption (1) tells us that all items have at least size ϵ, so $|OPT(I)| \geq n \epsilon$. Then, $Q = [n \epsilon^2] \leq n \epsilon^2 \leq \epsilon \cdot OPT(I)$. By Lemma 2, $|OPT(J)| \leq (1 + \epsilon) \cdot |OPT(I)|$. \hfill \Box

2.2 Full PTAS for bin packing without assumptions

Algorithm 2 Full-PTAS-BinPacking($I = S, \epsilon$)

\begin{algorithmic}
 \State $\epsilon' \leftarrow \min\{\frac{1}{2}, \frac{\epsilon}{2}\}$ \Comment{See analysis why we chose such an ϵ'}
 \State $X \leftarrow$ Items with size $< \epsilon'$ \Comment{Ignore small items to fulfill assumption of sizes $\geq \epsilon'$}
 \State $P \leftarrow$ PTAS-BinPacking($S \setminus X, \epsilon'$) \Comment{By theorem 4, $|P| = (1 + \epsilon') \cdot |OPT(S \setminus X)|$}
 \State $P' \leftarrow$ Using FirstFit, add items in X to P \Comment{Handle small items}
 \State \Return Resultant packing P'
\end{algorithmic}

Theorem 5. Algorithm 2 uses at most $(1 + \epsilon)|OPT(I)| + 1$ bins

Proof. If FirstFit does not open a new bin, the theorem trivially holds. Suppose FirstFit opens a new bin (using m bins in total), then we know that at least $(m - 1)$ bins are strictly more than $(1 - \epsilon')$-full.

\[
|OPT(I)| \geq \sum_{i=1}^{n} \text{size}(i) \quad \text{Lower bound on } |OPT(I)|
\]

\[
> \frac{n}{m - 1} (1 - \epsilon') \quad \text{From above observation}
\]

Hence,

\[
m < \frac{|OPT(I)| + 1}{1 - \epsilon'} \quad \text{Rearranging}
\]

\[
< |OPT(I)| \cdot (1 + 2\epsilon') + 1 \quad \text{Since } \frac{1}{1 - \epsilon'} \leq 1 + 2\epsilon', \text{ for } \epsilon' \leq \frac{1}{2}
\]

\[
\leq (1 + \epsilon) \cdot |OPT(I)| + 1 \quad \text{By choice of } \epsilon' = \min\{\frac{1}{2}, \frac{\epsilon}{2}\}
\]

\hfill \Box

3 Minimum makespan scheduling

Definition 6 (Minimum makespan scheduling problem). Given n jobs $I = \{p_1, \ldots, p_n\}$, find an assignment of jobs to m identical machines such that the completion time (called the makespan) is minimized.

For any problem instance I, let $OPT(I)$ be an optimum job assignment and $|OPT(I)|$ be the corresponding makespan. One can see that:

- $p_{max} = \max_{i \in \{1, \ldots, n\}} p_i \leq |OPT(I)|$
- $\frac{1}{m} \sum_{i=1}^{n} p_i \leq |OPT(I)|$

Denote $L(I) = \max\{p_{max}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$. We see that $L(I) \leq |OPT(I)| \leq p_{max} + \frac{1}{m} \sum_{i=1}^{n} p_i \leq 2L(I)$.

Remark To prove approximation factors, it is often useful to relate to lower bounds of $|OPT(I)|$.

\hfill 2
Example Suppose we have 7 jobs \(I = \{p_1 = 3, p_2 = 4, p_3 = 5, p_4 = 6, p_5 = 4, p_6 = 5, p_7 = 6\} \) and \(m = 3 \) machines. Then, the lower bound on the makespan is \(L(I) = \max\{6, 11\} = 11 \). This is achievable via \(M_1 = \{p_1, p_2, p_5\}, M_2 = \{p_3, p_4\}, M_3 = \{p_6, p_7\} \).

We now describe a simple greedy algorithm (Algorithm 3) due to Graham [Gra66] and show that it is a 2-approximation algorithm. With slight modifications, we improve it to a \(\frac{3}{2} \)-approximation algorithm (Algorithm 4). Finally, we end off the section with a PTAS for minimum makespan scheduling.

3.1 Greedy approximation algorithms

Algorithm 3 Graham \((I = \{p_1, \ldots, p_n\}, m)\)

1. \(M_1, \ldots, M_m \leftarrow \emptyset \) \(^{\triangleright} \) All machines are initially free
2. For \(i \in \{1, \ldots, n\} \) do
 1. \(j \leftarrow \text{argmin}_{j \in \{1, \ldots, m\}} \sum_{p \in M_j} p \) \(^{\triangleright} \) Pick the least loaded machine
 2. \(M_j \leftarrow M_j \cup \{p_i\} \) \(^{\triangleright} \) Add job \(i \) to this machine
3. Return \(M_1, \ldots, M_m \)

Theorem 7. Graham (Algorithm 3) is a 2-approximation to minimum makespan scheduling.

Proof. Consider the last job that finishes running. Suppose it takes time \(p_{\text{last}} \) and it was assigned to machine \(j \) whereby \(\sum_{p \in M_j} p = t \). Then, \(|\text{Graham}(I)| = t + p_{\text{last}} \). As Graham assigns greedily to the least loaded machine, all machines take at least \(t \) time, so \(t \cdot m \leq \sum_{i=1}^n p_i \leq m \cdot |\text{OPT}(I)| \). Since \(p_{\text{last}} \leq p_{\text{max}} \leq |\text{OPT}(I)| \), \(|\text{Graham}(I)| = t + p_{\text{last}} \leq 2 \cdot |\text{OPT}(I)| \). \(\square \)

Recall the example where \(I = \{p_1 = 3, p_2 = 4, p_3 = 5, p_4 = 6, p_5 = 4, p_6 = 5, p_7 = 6\} \) and \(m = 3 \). Graham will schedule \(M_1 = \{p_1, p_4\}, M_2 = \{p_2, p_5, p_7\}, M_3 = \{p_6, p_7\} \), yielding a makespan of 14. As expected, \(14 = |\text{Graham}(I)| \leq 2 \cdot |\text{OPT}(I)| = 22 \).

Remark The approximation for Graham is loose because we have no guarantees on \(p_{\text{last}} \) beyond \(p_{\text{last}} \leq p_{\text{max}} \). This motivates us to order the job timings in descending order (see Algorithm 4).

Lemma 8. Let \(p_{\text{last}} \) be the last job that finishes running. If \(p_{\text{last}} > \frac{1}{3} |\text{OPT}(I)| \), then \(|\text{ModifiedGraham}(I)| = |\text{OPT}(I)| \).

3
Suppose, for a contradiction, that \(|\text{ModifiedGraham}(I)| > |OPT(I)| \). Then, there exists a sequence of jobs with descending sizes \(I = \{p_1, \ldots, p_n\} \) such that the last smallest job \(p_n \) causes \(\text{ModifiedGraham}(I) \) to have a makespan larger than \(OPT(I) \). That is, \(p_{\text{last}} = p_n \) and \(|\text{ModifiedGraham}(I \setminus \{p_n\})| \leq |OPT(I)| \). Let \(\mathcal{C} \) be the configuration of machines after \(\text{ModifiedGraham} \) assigned \(\{p_1, \ldots, p_{n-1}\} \).

Observation 1 In \(\mathcal{C} \), each machine has either 1 or 2 jobs.

If there exists machine \(M_i \) with \(\geq 3 \) jobs, \(M_i \) will take \(> |OPT(I)| \) time because all jobs take \(> \frac{1}{3} \cdot |OPT(I)| \) time. This contradicts the assumption \(|\text{ModifiedGraham}(I \setminus \{p_n\})| \leq |OPT(I)| \).

Let us denote the jobs that are alone in \(\mathcal{C} \) as heavy jobs, and the machines they are on as heavy machines.

Observation 2 In \(OPT(I) \), all heavy jobs are alone.

Assigning \(p_n \) to any machine (in particular, the heavy machines) in \(\mathcal{C} \) causes the makespan to exceed \(|OPT(I)| \). Since \(p_n \) is the smallest job, no other job can be assigned to the heavy machines otherwise \(|OPT(I)| \) cannot attained by \(OPT(I) \).

Suppose there are \(k \) heavy jobs occupying a machine each in \(OPT(I) \). Then, there are \(2(m-k)+1 \) jobs (two non-heavy jobs per machine in \(\mathcal{C} \), and \(p_n \)) to be distributed across \(m-k \) machines. By pigeonhole principle, at least one machine \(M^* \) will get \(\geq 3 \) jobs in \(OPT(I) \). However, since the smallest job \(p_n \) takes \(> \frac{1}{3} \cdot |OPT(I)| \) time, \(M^* \) will spend \(> |OPT(I)| \) time. Contradiction.

Theorem 9. \(\text{ModifiedGraham} \) (Algorithm 4) is a \(\frac{4}{3} \)-approximation to minimum makespan scheduling.

Proof. Case 1: \(p_{\text{last}} \leq \frac{1}{3} \cdot |OPT(I)| \)

By similar arguments as per Theorem 7, \(|\text{ModifiedGraham}(I)| = t + p_{\text{last}} \leq \frac{4}{3} \cdot |OPT(I)| \)

Case 2: \(p_{\text{last}} > \frac{1}{3} \cdot |OPT(I)| \)

By Lemma 8, \(|\text{ModifiedGraham}(I)| = |OPT(I)| \).
3.2 PTAS for minimum makespan scheduling

Recall that any makespan scheduling instance (I, m) has a lower bound $L(I) = \max\{p_{\text{max}}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$. We know that $|OPT(I)| \in [L(I), 2L(I)]$. Let $Bin(I, t)$ be the minimum number of bins of size t that can hold all jobs. By associating job times with sizes, and scaling bin sizes up by a factor of t, in $O(\log n)$ rounding remaining jobs take $Bin(I, t)$ that $|\cdot|$.

We know that $\sum_{i=1}^{n} p_i = m$, and that $Bin(I, t)$ is monotonically decreasing. To get a $(1 + \epsilon)$-approximate schedule, it suffices to find a $t \leq (1 + \epsilon) \cdot |OPT(I)|$ such that $Bin(I, t) \leq m$.

Algorithm 5 PTAS-Makespan$(I = \{p_1, \ldots, p_n\}, m)$

1. $L = \max\{p_{\text{max}}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$
2. for $t \in \{L, L + \epsilon, L + 2\epsilon, \ldots, 2L\}$ do
 1. $X \leftarrow$ Jobs with sizes $\leq \epsilon t$ (Remaining jobs have sizes $\in (\epsilon t, t]$)
 2. $I' \leftarrow I \setminus X$ (Ignore small jobs)
 3. $h \leftarrow \lceil \log_{1+\epsilon}(\frac{1}{\epsilon t}) \rceil$ (Partition $(\epsilon t, t]$ into powers of $(1 + \epsilon)$: $t \cdot (1, 1 + \epsilon), \ldots, (1 + \epsilon)^h = \epsilon^{-1}$)
 4. for $p_i \in I'$ do
 1. $k \leftarrow \min_{j \in \{0, \ldots, h\}} \{p_i \geq t(1 + \epsilon)^j\}$ (Find lowest power of $(1 + \epsilon)$ for rounding down)
 2. $p_i \leftarrow t(1 + \epsilon)^j$ (Round down job sizes)
 3. end for
3. $P \leftarrow \mathcal{A}_e(I')$ (See Section 3.2.1 in Lecture 2 notes for \mathcal{A}_e, but with size t bins)
4. $\alpha(I, t, \epsilon) \leftarrow$ Use bins of size $t(1 + \epsilon)$ to emulate P (Use extra $(1 + \epsilon)$ buffer)
5. $\alpha(I, t, \epsilon) \leftarrow$ Using FirstFit, add items in X to $\alpha(I, t, \epsilon)$ (Handle small items)
6. if $\alpha(I, t, \epsilon)$ uses $\leq m$ bins then
 1. return Assign jobs to machines according to bin assignment $\alpha(I, t, \epsilon)$ (Since $|OPT(I)| \in [L, 2L]$, this will occur at some point)
 2. end if
7. end for

Given t, Algorithm 5 transforms a makespan scheduling instance into a bin packing instance, then solves for an approximate bin packing to yield an approximate scheduling. Let $\alpha(I, t, \epsilon)$ as the number of bins used by Algorithm 5.

Lemma 10. For any $t > 0$, $\alpha(I, t, \epsilon) \leq Bin(I, t)$.

Proof. If FirstFit does not open a new bin, then $\alpha(I, t, \epsilon) \leq Bin(I, t)$ since $\alpha(I, t, \epsilon)$ uses additional $(1 + \epsilon)$ buffer. If FirstFit opens a new bin (say, totaling b bins), then there are at least $(b-1)$ produced bins from \mathcal{A}_e (exact solving on rounded down non-small items) that are more than $(t(1 + \epsilon) - t) = t$-full. Hence, any bin packing algorithm must use strictly more than $\frac{(b-1)t}{t} = b - 1$ bins.

Theorem 11. PTAS-Makespan is a $(1 + \epsilon)$-approximation for minimum makespan scheduling.

Proof. Let $\min_t \{Bin(I, t) = m\} = t^*$. By Lemma 10, $\min_t \{\alpha(I, t, \epsilon) = m\} \leq \min_t \{Bin(I, t) = m\} = |OPT(I)|$. But since PTAS-Makespan checks for values of t that differ by ϵ, it may terminate with $t^* + \epsilon L$ instead. Since $L \leq |OPT(I)|$, $|\text{PTAS-Makespan}(I)| \leq t^* + \epsilon L \leq (1 + \epsilon) \cdot |OPT(I)|$.

Theorem 12. PTAS-Makespan is runs in $\text{poly}(I, m)$.

Proof. There are at most $\frac{L}{\epsilon} = \max\{p_{\text{max}}, \frac{1}{m} \sum_{i=1}^{n} p_i\}$ values of t to try. Filtering small jobs and rounding remaining jobs take $O(n)$. From previous lecture, \mathcal{A}_e runs in $O(\frac{L}{\epsilon} \cdot n \cdot \frac{1}{\epsilon})$ and FirstFit runs in $O(nm)$.

References