1 Randomized approximation schemes

In earlier lectures, we saw PTAS and FPTAS. In this lecture, we study the class of algorithms which extend FPTAS by allowing randomization.

Definition 1 (Fully polynomial randomized approximation algorithm (FPRAS)). For cost metric c, an algorithm \mathcal{A} is a FPRAS if for each fixed $\epsilon>0, \operatorname{Pr}[|c(\mathcal{A}(I))-c(O P T(I))| \leq \epsilon \cdot c(O P T(I))] \geq \frac{3}{4}$ and \mathcal{A} runs in $\operatorname{poly}\left(|I|, \frac{1}{\epsilon}\right)$.

A useful inequality that we will use in the proofs below is the Chernoff bound.
Theorem 2 (Chernoff bound). For independent Bernoulli variables X_{1}, \ldots, X_{n}, let $X=\sum_{i=1}^{n} X_{i}$. Then,

$$
\begin{array}{ll}
\operatorname{Pr}[X \geq(1+\epsilon) \mathbb{E}(X)] \leq \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{3}\right) & \text { for } 0<\epsilon \\
\operatorname{Pr}[X \leq(1-\epsilon) \mathbb{E}(X)] \leq \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{2}\right) & \text { for } 0<\epsilon<1
\end{array}
$$

By union bound, for $0<\epsilon<1$, we get $\operatorname{Pr}[|X-\mathbb{E}(X)| \geq \epsilon \mathbb{E}(X)] \leq 2 \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{3}\right)$
Remark 1 We usually apply Chernoff bound to show that the probability of bad approximation is low (Pick parameters such that $2 \exp \left(\frac{-\epsilon^{2} \mathbb{E}(X)}{3}\right) \leq \delta$), then negate to get $\operatorname{Pr}[|X-\mathbb{E}(X)| \leq \epsilon \mathbb{E}(X)] \geq 1-\delta$.

Remark 2 The fraction $\frac{3}{4}$ in the definition of FPRAS is arbitrary. In fact, any fraction $\frac{1}{2}+\alpha$ for $\alpha>0$ suffices. For any $\delta>0$, one can invoke $\mathcal{O}\left(\frac{1}{\delta}\right)$ independent copies of $\mathcal{A}(I)$ then return the median. Then, Chebyshev's inequality tells us that the probability that the median is a correct estimation with probability greater than $\geq 1-\delta$. This is also sometimes known as probability amplification.

2 DNF counting

Definition 3 (Disjunctive Normal Form (DNF)). A formula F on n Boolean variables x_{1}, \ldots, x_{n} is said to be in DNF:

- $F=C_{1} \vee \cdots \vee C_{m}$ is a disjuntion of clauses
- $\forall i \in\{1, \ldots, m\}$, a clause $C_{i}=l_{i, 1} \wedge \cdots \wedge l_{i,\left|C_{i}\right|}$ is a conjunction of literals
- $\forall i \in\{1, \ldots, n\}$, a literal $l_{i} \in\left\{x_{i}, \neg x_{i}\right\}$ is either the variable x_{i} or its negation.

Let $\alpha:\{1, \ldots, n\} \rightarrow\{0,1\}$ be a truth assignment on the n variables. Formula F is said to be satisfiable if there exists a satisfying assignment α such that F evaluates to true under α (i.e. $F[\alpha]=1$).

One can see that any clause with both x_{i} and $\neg x_{i}$ is trivially false. Since we can remove such clauses in a single scan of F, let us assume that F does not contain such trivial clauses.

Example Let $F=\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{4}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(\neg x_{3} \wedge \neg x_{4}\right)$ be a Boolean formula on 4 variables x_{1}, x_{2}, x_{3}, and x_{4}, where $C_{1}=x_{1} \wedge \neg x_{2} \wedge \neg x_{4}, C_{2}=x_{2} \wedge x_{3}$ and $C_{3}=\neg x_{3} \wedge \neg x_{4}$. One can draw the truth table and check that there are 9 satisfying assignments to F, one of which is $\alpha(1)=1, \alpha(2)=\alpha(3)=\alpha(4)=0$.

Remark Another common normal form for representing Boolean formulas is the Conjunctive Normal Form (CNF). Formulas in CNF are disjunctions of conjunctions (as compared to conjunctions of disjunctions in DNF). In particular, one can determine in polynomial time whether a DNF formula is satisfiable but it is $\mathbb{N P}$-complete to determine if a CNF formula is satisfiable.

Suppose F is a DNF Boolean formula. Let $f(F)=|\{\alpha: F[\alpha]=1\}|$ be the number of satisfying assignments to F. If we let $S_{i}=\left\{\alpha: C_{i}[\alpha]=1\right\}$ be the set of satisfying assignments to clause C_{i}, then we see that $f(F)=\left|\bigcup_{i=1}^{m} S_{i}\right|$. In the above example, $\left|S_{1}\right|=2,\left|S_{2}\right|=4,\left|S_{3}\right|=4$, and $f(F)=9$. In the following, we present two failed attempts to compute $f(F)$ and then present Algorithm 1, a FPRAS for DNF counting via sampling.

2.1 Failed attempt 1: Computing $f(F)$ via Principle of Inclusion-Exclusion

By definition of $f(F)=\left|\bigcup_{i=1}^{m} S_{i}\right|$, one may be tempted to apply PIE to expand:

$$
\left|\bigcup_{i=1}^{m} S_{i}\right|=\sum_{i=1}^{m}\left|S_{i}\right|-\sum_{i<j}\left|S_{i} \cap S_{j}\right|+\ldots
$$

However, there are exponentially many terms and one can show that there exists instances where truncating the sum as a form of approximation can be arbitrarily bad.

2.2 Failed attempt 2: Sampling (wrongly)

Suppose we pick k assignments uniformly at random (u.a.r.). Let X_{i} be the indicator variable whether the i-th assignment satisfies F, and $X=\sum_{i=1}^{k} X_{i}$ be the total number of satisfying assignments out of the k sampled assignments. A u.a.r. assignment is satisfying with probability $\frac{f(F)}{2^{n}}$. By linearity of expectation, $\mathbb{E}(X)=k \frac{f(F)}{2^{n}}$. Unfortunately, since we only sample $k \in \operatorname{poly}\left(n, \frac{1}{\epsilon}\right)$ assignments, $\frac{k}{2^{n}}$ can be exponentially small. That is, this approach will not yield a FPRAS for DNF counting.

2.3 A FPRAS for DNF counting via sampling

Consider a m-by- $f(F)$ Boolean matrix M where $M[i, j]= \begin{cases}1 & \text { if assignment } \alpha_{j} \text { satisfies clause } C_{i} \\ 0 & \text { otherwise }\end{cases}$
Let $|M|$ denote the total number of 1 's in M. Since $\left|S_{i}\right|=2^{n-\left|C_{i}\right|},|M|=\sum_{i=1}^{m}\left|S_{i}\right|=\sum_{i=1}^{m} 2^{n-\left|C_{i}\right|}$. As every column represents a satisfying assignment, there are exactly $f(F)$ "topmost" 1's.

	α_{1}	α_{2}	\ldots	$\alpha_{f(F)}$
C_{1}	0	1	\ldots	0
C_{2}	1	1	\ldots	1
C_{3}	0	0	\ldots	0
\ldots	\vdots	\vdots	\ddots	\vdots
C_{m}	0	1	\ldots	1

Table 1: Red 1's indicate the ("topmost") smallest index clause C_{i} satisfied for each assignment α_{j}

Lemma 4. Algorithm 1 samples a ' 1 ' in the matrix M uniformly at random at each step.
Proof. Recall that the total number of 1's in M is $|M|=\sum_{i=1}^{m}\left|S_{i}\right|=\sum_{i=1}^{m} 2^{n-\left|C_{i}\right|}$.

$$
\begin{aligned}
\operatorname{Pr}\left[C_{i} \text { and } \alpha_{j} \text { are chosen }\right] & =\operatorname{Pr}\left[C_{i} \text { is chosen }\right] \cdot \operatorname{Pr}\left[\alpha_{j} \text { is chosen } \mid C_{i} \text { is chosen }\right] \\
& =\frac{2^{n-\left|C_{i}\right|}}{\sum_{i=1}^{m} 2^{n-\left|C_{i}\right|}} \cdot \frac{1}{2^{n-\left|C_{i}\right|}} \\
& =\frac{1}{\sum_{i=1}^{m} 2^{n-\left|C_{i}\right|}} \\
& =\frac{1}{|M|}
\end{aligned}
$$

```
Algorithm \(1 \operatorname{DNF}-\operatorname{Count}(F, \epsilon)\)
    \(X \leftarrow 0\)
                                    \(\triangleright\) Empirical number of "topmost" 1's sampled
    for \(k=\frac{9 m}{\epsilon^{2}}\) times do
        \(C_{i} \leftarrow\) Sample one of \(m\) clauses, where \(\operatorname{Pr}\left[C_{i}\right.\) chosen \(]=\frac{2^{n-\left|C_{i}\right|}}{|M|} \quad \triangleright\) Shorter clauses more likely
        \(\alpha_{j} \leftarrow\) Sample one of \(2^{n-\left|C_{i}\right|}\) satisfying assignments of \(C_{i}\)
        IsTopmost \(\leftarrow\) True
        for \(l \in\{1, \ldots, i-1\}\) do \(\quad \triangleright\) Check if \(\alpha_{j}\) is "topmost"
            if \(C_{l}[\alpha]=1\) then \(\quad \triangleright\) Checkable in \(\mathcal{O}(n)\) time
                IsTopmost \(\leftarrow\) False
            end if
        end for
        if IsTopmost then
            \(X \leftarrow X+1\)
        end if
    end for
    return \(\frac{|M| \cdot X}{k}\)
```

Lemma 5. In Algorithm 1, $\operatorname{Pr}\left[\left|\frac{|M| \cdot X}{k}-f(F)\right| \leq \epsilon \cdot f(F)\right] \geq \frac{3}{4}$.
Proof. Let X_{i} be the indicator variable whether the i-th sampled assignment is "topmost", where $p=$ $\operatorname{Pr}\left[X_{i}=1\right]$. By Lemma $4, p=\operatorname{Pr}\left[X_{i}=1\right]=\frac{f(F)}{|M|}$. Let $X=\sum_{i=1}^{k} X_{i}$ be the empirical number of "topmost" 1's. Then, $\mathbb{E}(X)=k p$ by linearity of expectation. By picking $k=\frac{9 m}{\epsilon^{2}}$, Chernoff bound gives:

$$
\begin{aligned}
\operatorname{Pr}[|X-k p| \geq \epsilon k p] & \leq 2 \exp \left(-\frac{\epsilon^{2} k p}{3}\right) & & \\
& =2 \exp \left(-\frac{3 m \cdot f(F)}{|M|}\right) & & \text { Since } k=\frac{9 m}{\epsilon^{2}} \text { and } p=\frac{f(F)}{|M|} \\
& \leq 2 \exp (-3) & & \text { Since }|M| \leq m \cdot f(F) \\
& \leq \frac{1}{8} & &
\end{aligned}
$$

Splitting up the absolute sign, we have: $\operatorname{Pr}[X \geq(1+\epsilon) k p] \leq \frac{1}{8}$ and $\operatorname{Pr}[X \leq(1-\epsilon) k p] \leq \frac{1}{8}$. So,

1. $\operatorname{Pr}\left[X \geq(1+\epsilon) k p=(1+\epsilon) \frac{k \cdot f(F)}{|M|}\right] \leq \frac{1}{8}$
2. $\operatorname{Pr}\left[X \leq(1-\epsilon) k p=(1-\epsilon) \frac{k \cdot f(F)}{|M|}\right] \leq \frac{1}{8}$

Multiplying both sides by $\frac{|M|}{k}$, union bound gives us:

$$
\operatorname{Pr}\left[\left|\frac{|M| \cdot X}{k}-f(F)\right| \geq \epsilon \cdot f(F)\right] \leq \operatorname{Pr}\left[X \leq(1-\epsilon) \frac{k \cdot f(F)}{|M|}\right]+\operatorname{Pr}\left[X \geq(1+\epsilon) \frac{k \cdot f(F)}{|M|}\right] \leq \frac{1}{8}+\frac{1}{8}=\frac{1}{4}
$$

Negating, we get:

$$
\operatorname{Pr}\left[\left|\frac{|M| \cdot X}{k}-f(F)\right| \leq \epsilon \cdot f(F)\right] \geq 1-\frac{1}{4}=\frac{3}{4}
$$

Lemma 6. Algorithm 1 runs in $\operatorname{poly}\left(F, \frac{1}{\epsilon}\right)=\operatorname{poly}\left(n, m, \frac{1}{\epsilon}\right)$.
Proof. There are $k \in \mathcal{O}\left(\frac{m}{\epsilon^{2}}\right)$ iterations. In each iteration, we spend $\mathcal{O}(m+n)$ sampling C_{i} and α_{j}, and $\mathcal{O}(n m)$ for checking if a sampled α_{j} is "topmost". In total, Algorithm 1 runs in $\mathcal{O}\left(\frac{m^{2} n(m+n)}{\epsilon^{2}}\right)$ time.

Theorem 7. Algorithm 1 is a FPRAS for DNF counting.
Proof. By Lemmas 5 and 6.

3 Counting graph colourings

Definition 8 (Graph colouring). Let $G=(V, E)$ be a graph on $|V|=n$ vertices and $|E|=m$ edges. Denote the maximum degree as Δ. Given valid q-colouring of G is an assignment $c: V \rightarrow\{1, \ldots, q\}$ such that no adjacent vertices have the same colour. i.e. $(u, v) \in E \Rightarrow c(u) \neq c(v)$.

Example (3-colouring of the Petersen graph)

For $q \geq \Delta+1$, one can obtain a valid q-colouring by sequentially colouring a vertex with available colours greedily. In this section, we show a FPRAS for counting the graph colouring $f(G)$ when $q \geq$ $2 \Delta+1$.

3.1 Sampling a colouring uniformly

When $q \geq 2 \Delta+1$, the Markov chain approach in Algorithm 2 allows us to sample a random colour in $\mathcal{O}\left(n \log \frac{n}{\epsilon}\right)$ steps.

```
Algorithm \(2 \operatorname{SAMPleColour}(G=(V, E), \epsilon)\)
    Greedily colour the graph
    for \(k=\mathcal{O}\left(n \log \frac{n}{\epsilon}\right)\) times do
        Pick a random vertex \(v\) uniformly at random from \(V\)
        Pick an available colour (different from \(N(v)\) ) uniformly random
        Colour \(v\) with new colour \(\quad \triangleright\) May end up with same colour
    end for
    return Colouring
```

Claim 9. For $q \geq 2 \Delta+1$, the distribution of colourings returned by Algorithm 2 is ϵ-close to a uniform distribution on all valid colourings.
Proof. Beyond the scope of the course.

3.2 FPRAS for counting graph colourings for $q \geq 2 \Delta+1$ and $\Delta \geq 2$

Fix an arbitrary ordering of edges in E. For $i=\{1, \ldots, m\}$, let $G_{i}=\left(V, E_{i}\right)$ be a sequence of graphs such that $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ be the first i edges. Define $\Omega_{i}=\left\{c: c\right.$ is a valid colouring for $\left.G_{i}\right\}$ be the set of all proper colourings of G_{i}, and denote $r_{i}=\frac{\left|\Omega_{i}\right|}{\mid \Omega_{i-1}}$.

One can see that $\Omega_{i} \subseteq \Omega_{i-1}$ as removal of e_{i} in G_{i-1} can only increase the number of valid colourings. Furthermore, suppose $e_{i}=(u, v)$, then $\Omega_{i-1} \backslash \Omega_{i}=\{c: c(u)=c(v)\}$. Fix the colouring of, say the lowerindexed vertex, u. Then, there are $\geq q-\Delta=2 \Delta+1=\Delta+1$ possible recolourings of v. Hence, $\left|\Omega_{i}\right| \geq(\Delta+1)\left|\Omega_{i-1} \backslash \Omega_{i}\right| \geq(\Delta+1)\left(\Omega_{i-1}\left|-\left|\Omega_{i}\right|\right)\right.$. This implies that $r_{i}=\frac{\left|\Omega_{i}\right|}{\left|\Omega_{i-1}\right|} \geq \frac{\Delta+1}{\Delta+2} \geq \frac{3}{4}$ since $\Delta \geq 2$.

Since $f(G)=\left|\Omega_{m}\right|=\left|\Omega_{0}\right| \cdot \frac{\left|\Omega_{1}\right|}{\left|\Omega_{0}\right|} \cdot \frac{\left|\Omega_{m}\right|}{\left|\Omega_{m-1}\right|}=\left|\Omega_{0}\right| \cdot \Pi_{i=1}^{m} r_{i}=q^{m} \cdot \Pi_{i=1}^{m} r_{i}$, if we can find a good estimate of r_{i} for each r_{i} with high probability, then we have a FPRAS for counting the number of valid graph colourings for G.
Lemma 10. In Algorithm 3, for all $i \in\{1, \ldots, m\}, \operatorname{Pr}\left[\left|\widehat{r}_{i}-r_{i}\right| \leq \frac{\epsilon}{m} \cdot r_{i}\right] \geq \frac{3}{4 m}$.
Proof. Let X_{j} be the indicator variable whether the i-th sampled colouring for Ω_{i-1} is a valid colouring for Ω_{i}, where $p=\operatorname{Pr}\left[X_{j}=1\right]$. From above, we know that $p=\operatorname{Pr}\left[X_{j}=1\right]=\frac{\left|\Omega_{i}\right|}{\left|\Omega_{i-1}\right|} \geq \frac{3}{4}$. Let $X=\sum_{j=1}^{k} X_{j}$ be the empirical fraction of colourings that is valid for both Ω_{i-1} and Ω_{i}, captured by $k \cdot \widehat{r}_{i}$. Then, $\mathbb{E}(X)=k p$ by linearity of expectation. Picking $k=\frac{128 m^{3}}{\epsilon^{2}}$, Chernoff bound gives:

$$
\begin{aligned}
\operatorname{Pr}\left[|X-k p| \geq \frac{\epsilon}{2 m} k p\right] & \leq 2 \exp \left(-\frac{\left(\frac{\epsilon}{2 m}\right)^{2} k p}{3}\right) & & \\
& =2 \exp \left(-\frac{32 m p}{3}\right) & & \text { Since } k=\frac{128 m^{3}}{3} \\
& \leq 2 \exp (-8 m) & & \text { Since } p \geq \frac{3}{4} \\
& \leq \frac{1}{4 m} & & \text { Since } \exp (-x) \leq \frac{1}{x} \text { for } x>0
\end{aligned}
$$

```
Algorithm 3 Colour-Count \((G, \epsilon)\)
    \(\widehat{r_{1}}, \ldots, \widehat{r_{m}} \leftarrow 0 \quad \triangleright\) Estimates for \(r_{i}\)
    for \(i=1, \ldots, m\) do
        for \(k=\frac{128 m^{3}}{\epsilon^{2}}\) times do
            \(c \leftarrow\) Sample colouring of \(G_{i-1} \quad \triangleright\) Using Algorithm 2
            if Adding \(c\) is a valid colouring for \(G_{i}\) then
                        \(\widehat{r_{i}} \leftarrow \widehat{r_{i}}+\frac{1}{k} \quad \triangleright\) Update empirical count of \(r_{i}=\frac{\left|\Omega_{i}\right|}{\left|\Omega_{i-1}\right|}\)
                end if
        end for
    end for
    return \(q^{m} \Pi_{i=1}^{m} \widehat{r_{i}}\)
```

Dividing by k and negating, we have: $\operatorname{Pr}\left[\left|r_{i}-r_{i}\right| \leq \frac{\epsilon}{2 m} \cdot r_{i}\right]=\operatorname{Pr}\left[|X-k p| \geq \frac{\epsilon}{2 m} k p\right] \geq 1-\frac{1}{4 m}=\frac{3}{4 m}$.

Lemma 11. Algorithm 3 runs in poly $\left(F, \frac{1}{\epsilon}\right)=\operatorname{poly}\left(n, m, \frac{1}{\epsilon}\right)$.
Proof. There are $m r_{i}$'s to estimate. Each estimation has $k \in \mathcal{O}\left(\frac{m^{3}}{\epsilon^{2}}\right)$ iterations. In each iteration, we spend $\mathcal{O}\left(n \log \frac{n}{\epsilon}\right)$ sampling a colouring of G_{i-1} and $\mathcal{O}(n)$ checking if it is a valid colouring for G_{i}. In total, Algorithm 3 runs in $\mathcal{O}\left(m k\left(n \log \frac{n}{\epsilon}+n\right)\right)=\mathcal{O}\left(\frac{m^{4} n \log \frac{n}{\epsilon}}{\epsilon^{2}}\right)$ time.
Theorem 12. Algorithm 3 is a FPRAS for counting the number of valid graph colourings for $q \geq 2 \Delta+1$ and $\Delta \geq 2$.

Proof. By Lemma 11, Algorithm 3 runs in poly $\left(n, m, \frac{1}{\epsilon}\right)$ time. Since $1+x \leq e^{x}$ for all real x, we have $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leq e^{\frac{\epsilon}{2}} \leq 1+\epsilon$. On the other hand, Bernoulli's inequality tells us that $\left(1-\frac{\epsilon}{2 m}\right)^{m} \geq 1-\frac{\epsilon}{2} \geq 1-\epsilon$. Therefore, via Lemma 10,

$$
\operatorname{Pr}\left[\left|q^{m} \Pi_{i=1}^{m} \widehat{r}_{i}-f(G)\right| \leq \epsilon f(G)\right]=1-\operatorname{Pr}\left[\left|q^{m} \Pi_{i=1}^{m} \widehat{r}_{i}-f(G)\right| \geq \epsilon f(G)\right] \geq\left(\frac{3}{4 m}\right)^{m} \geq \frac{3}{4}
$$

