1 Probabilistic tree embedding

Trees are a special kind of graphs without cycles and some NP-hard problems are known to admit exact polynomial time solutions on trees. Motivated by existence of efficient algorithms on trees, one hopes to design the following framework for a general graph $G=(V, E)$ with distance metric $d_{G}(u, v)$ between vertices $u, v \in V$:

1. Construct a tree T
2. Solve the problem on T efficiently
3. Map the solution back to G
4. Argue that transformed solution from T is a good approximation to G.

Ideally, we want to build a tree T such that (i) $d_{G}(u, v) \leq d_{T}(u, v)$ and (ii) $d_{T}(u, v) \leq c \cdot d_{G}(u, v)$, where c is the stretch of tree embedding. Unfortunately, such a construction is hopeless ${ }^{1}$. Instead, we consider a probabilistic tree embedding of G into a collection of trees $\mathcal{T}=\left\{T_{1}, \ldots, T_{m}\right\}$ such that

- (Over-estimates cost): $\forall T \in \mathcal{T}, d_{G}(u, v) \leq d_{T}(u, v)$
- (Expected over-estimation is not too much): $\forall T \in \mathcal{T}, \mathbb{E}_{T \in \mathcal{T}}\left[d_{T}(u, v) \leq c \cdot d_{G}(u, v)\right]$
- $(\mathcal{T}$ is a probability space $): \sum_{i=1}^{m} \operatorname{Pr}\left[T_{i}\right]=1$

Bartal [Bar96] gave a construction ${ }^{2}$ for probabilistic tree embedding with poly-logarithmic stretch factor c, and proved ${ }^{3}$ that a stretch factor $c=\Omega(\log n)$ is required for general graphs. A construction that yields $c=\mathcal{O}(\log n)$, in expectation, was subsequently found by [FRT03].

2 A tight probabilistic tree embedding construction

In this section, we describe a probabilistic tree embedding construction due to [FRT03] with a stretch factor $c=\mathcal{O}(\log n)$. For a graph $G=(V, E)$, let $D=\operatorname{diam}(G)$ and distance metric $d_{G}(u, v)$ denote the distance between two vertices $u, v \in V$. Denote $B(v, r):=\left\{u \in V: d_{G}(u, v) \leq r\right\}$ as the ball of distance r around vertex v, including v.

2.1 Idea: Ball carving

Before we present the actual construction, we argue that the following ball carving approach will yield a probabilistic tree embedding.

Definition 1 (Ball carving). Given a graph $G=(V, E)$, partition V into V_{1}, \ldots, V_{l} such that
(A) $\forall i \in\{1, \ldots, l\}, \operatorname{diam}\left(V_{i}\right) \leq \frac{D}{2}$
(B) $\forall u, v \in V, \operatorname{Pr}[u$ and v not in same partition $] \leq \alpha \cdot \frac{d_{G}(u, v)}{D}$, for some α

Using ball carving, Algorithm 1 recursively partitions the vertices of a given graph until there is only one vertex remaining. Figure 1 illustrates the process of building a tree T from a given graph G.

Lemma 2. For any two vertices $u, v \in V$, if T separates them at level i, then $\frac{2 D}{2^{i}} \leq d_{T}(u, v) \leq \frac{4 D}{2^{i}}$.

[^0]```
Algorithm 1 ConstructT \((G=(V, E)\) with diameter \(D)\)
 if \(|V|=1\) then
 return \(V\)
 else
 \(V_{1}, \ldots, V_{l} \leftarrow\) BallCarving \((\mathrm{G})\)
 Create auxiliary vertex \(r \quad \triangleright r\) is root of current subtree
 for \(i \in\{1, \ldots, l\}\) do
 \(G\left[V_{i}\right] \leftarrow\) Subgraph induced by vertices \(V_{i} \quad \triangleright\) By BallCarving \((G), \operatorname{diam}\left(G\left[V_{i}\right]\right) \leq \frac{D}{2}\)
 \(r_{i} \leftarrow \operatorname{ConstructT}\left(G\left[V_{i}\right]\right) \quad \triangleright\) Either an auxiliary vertex or an actual vertex \(v \in V(G)\)
 Add edge \(\left(r, r_{i}\right)\) with weight \(D\)
 end for
 return Root of subtree \(r \quad \triangleright r\) is the root of the constructed \(T\)
 end if
```



Figure 1: Recursive ball carving with $\left\lceil\log _{2}(D)\right\rceil$ levels. Red vertices are auxiliary nodes that are not in the original graph $G$. Denoting the root as the $0^{t h}$ level, edges from level $i$ to level $i+1$ have weight $\frac{D}{2^{i}}$.

Proof. If $T$ splits $u$ and $v$ at level $i$, then $d_{T}(u, v)$ has to include two edges of length $\frac{D}{2^{i}}$, hence $d_{T}(u, v) \geq$ $\frac{2 D}{2^{i}}$. To be precise, $d_{T}(u, v)=2 \cdot\left(\frac{D}{2^{i}}+\frac{D}{2^{i+1}}+\cdots\right) \leq \frac{4 D}{2^{i}}$. See picture.


Remark If $u, v \in V$ separate before level $i$, then $d_{T}(u, v)$ must still include the two edges of length $\frac{D}{2^{i}}$, hence $d_{T}(u, v) \geq \frac{2 D}{2^{i}}$.
Claim 3. ConstructT $(G)$ returns a tree $T$ such that $d_{G}(u, v) \leq d_{T}(u, v)$.
Proof. Consider $u, v \in V$. Say $\frac{D}{2^{i}} \leq d_{G}(u, v) \leq \frac{D}{2^{i-1}}$ for some $i \in \mathbb{N}$. By property (A) of ball carving, $T$ will separate them at, or before, level $i$. By Lemma 2, $d_{T}(u, v) \geq \frac{2 D}{2^{i}}=\frac{D}{2^{i-1}} \geq d_{G}(u, v)$.
Claim 4. Construct $T(G)$ returns a tree $T$ such that $\mathbb{E}\left[d_{T}(u, v)\right] \leq 4 \alpha \log (D) \cdot d_{G}(u, v)$.
Proof. Consider $u, v \in V$. Define $\mathcal{E}_{i}$ as the event that "vertices $u$ and $v$ get separated at the $i^{t h}$ level", for $i \in \mathbb{N}$. By recursive nature of ConstructT, a graph at the $i^{t h}$ level has diameter $\leq \frac{D}{2^{i}}$. So, property (B) of ball carving tells us that $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leq \alpha \cdot \frac{d_{G}(u, v)}{D / 2^{i}}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[d_{T}(u, v)\right] & =\sum_{i=0}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot\left[d_{T}(u, v), \text { given } \mathcal{E}_{i}\right] & & \text { Definition of } \\
& \leq \sum_{i=0}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot \frac{4 D}{2^{i}} & & \text { By Lemma 2 } \\
& \leq \sum_{i=0}^{\log (D)-1}\left(\alpha \cdot \frac{d_{G}(u, v)}{D / 2^{i}}\right) \cdot \frac{4 D}{2^{i}} & & \text { Property (B) } \\
& =4 \alpha \log (D) \cdot d_{G}(u, v) & & \text { Simplifying }
\end{aligned}
$$

$$
\leq \sum_{i=0}^{\log (D)-1}\left(\alpha \cdot \frac{d_{G}(u, v)}{D / 2^{i}}\right) \cdot \frac{4 D}{2^{i}} \quad \text { Property (B) of ball carving }
$$

### 2.2 Ball carving construction

We now give a concrete construction of ball carving that satisfies properties (A) and (B) as defined.

```
Algorithm 2 BallCarving \((G=(V, E)\) with diameter \(D)\)
 if \(|V|=1\) then
 return \(V\)
 else \(\quad \triangleright\) Say there are \(n\) vertices, where \(n>1\)
 \(\theta \leftarrow\) Uniform random value from the range \(\left[\frac{D}{8}, \frac{D}{4}\right]\)
 Pick a random permutation \(\pi\) on \(V\)
 \(\triangleright\) Denote \(\pi_{i}\) as the \(i^{t h}\) vertex in \(\pi\)
 for \(i \in\{1, \ldots, n\}\) do
 \(V_{i} \leftarrow B\left(\pi_{i}, \theta\right) \backslash \bigcup_{j=1}^{i-1} B\left(\pi_{j}, \theta\right) \quad \triangleright\) This ensures that \(V_{1}, \ldots, V_{n}\) is a partition of \(V\)
 end for
 return Non-empty sets \(V_{1}, \ldots, V_{l} \quad \triangleright V_{i}=\emptyset\) when vertices in \(B\left(\pi_{i}, \theta\right)\) exist in earlier balls
 end if \(\quad \triangleright\) i.e. \(V_{i}=\emptyset \Longleftrightarrow \forall v \in B\left(\pi_{i}, \theta\right),\left[\exists j<i, v \in B\left(\pi_{j}, \theta\right)\right]\)
```

Notation For vertex $v \in V$, let us denote $\pi(v)$ as $v$ 's position in $\pi$. That is, $v=\pi_{\pi(v)}$.
Claim 5. BallCaRVing $(G)$ returns partition $V_{1}, \ldots, V_{l}$ such that $\forall i \in\{1, \ldots, l\}$, $\operatorname{diam}\left(V_{i}\right) \leq \frac{D}{2}$
Proof. Since $\theta \in\left[\frac{D}{8}, \frac{D}{4}\right]$, all constructed balls have diameter smaller than $\frac{D}{2}$.
Definition 6 (Ball cut). A ball $B(u, r)$ is cut if BallCarving puts the vertices in $B(u, r)$ in different partitions of $V_{1}, \ldots, V_{l}$. We say $V_{i}$ cuts $B(u, r)$ if $i=\operatorname{argmin}_{i \in[l]}\left[V_{i} \cap B(u, r) \neq \emptyset\right.$ and $\left.B(u, r) \nsubseteq V_{i}\right]$.
Lemma 7. For any vertex $u \in V$ and radius $r \in \mathbb{R}^{+}, \operatorname{Pr}[B(u, r)$ is cut in BallCarving $] \leq \mathcal{O}(\log n) \cdot \frac{r}{D}$.
Proof. Let $\theta$ be the randomly chosen in BallCarving. Consider an ordering of vertices in increasing distance from $u$ : $v_{1}, v_{2}, \ldots, v_{n}$, such that $d_{G}\left(u, v_{1}\right) \leq d_{G}\left(u, v_{2}\right) \leq \cdots \leq d_{G}\left(u, v_{n}\right)$. For $j<i$, since $d_{G}\left(u, v_{j}\right) \leq d_{G}\left(u, v_{i}\right)$, if $B\left(v_{i}, \theta\right) \cap B(u, r) \neq \emptyset$, then $B\left(v_{j}, \theta\right) \cap B(u, r) \neq \emptyset$. So,

$$
\begin{array}{rlrl}
\operatorname{Pr}[B(u, r) \text { is cut }] & =\operatorname{Pr}\left[\bigcup_{i=1}^{n} \text { Event that } B\left(v_{i}, \theta\right) \text { cuts } B(u, r)\right] & & \\
& \leq \sum_{i=1}^{n} \operatorname{Pr}\left[B\left(v_{i}, \theta\right) \text { cuts } B(u, r)\right] & & \text { Union bound } \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left[\pi\left(v_{i}\right)<\min _{j \in[i-1]}\left\{\pi\left(v_{j}\right)\right\}\right] \operatorname{Pr}\left[V_{i} \text { cuts } B(u, r)\right] & \text { Require } v_{i} \text { to appear first } \\
& =\sum_{i=1}^{n}(1 / i) \cdot \operatorname{Pr}\left[V_{i} \text { cuts } B(u, r)\right] & & \text { By random permutation } \pi \\
& \leq \sum_{i=1}^{n}(1 / i) \cdot \frac{2 r}{D / 8} & & \text { diam }(B(u, r)) \leq 2 r, \theta \in\left[\frac{D}{8}\right. \\
& =16 \frac{r}{D} H_{n} & & H_{n}=\sum_{i=1}^{n} \frac{1}{i}
\end{array}
$$

$$
\leq \sum_{i=1}^{n}(1 / i) \cdot \frac{2 r}{D / 8} \quad \operatorname{diam}(B(u, r)) \leq 2 r, \theta \in\left[\frac{D}{8}, \frac{D}{4}\right]
$$

In the last inequality: For $V_{i}$ to cut $B(u, r)$, we need $\theta \in\left(d_{G}\left(u, v_{i}\right)-r, d_{G}\left(u, v_{i}\right)+r\right)$, hence the numerator of $\leq 2 r$; The denominator $\frac{D}{8}$ is because the range of values that $\theta$ is sampled from is $\frac{D}{4}-\frac{D}{8}=\frac{D}{8}$.

Claim 8. BallCarving $(G)$ returns partition $V_{1}, \ldots, V_{l}$ such that

$$
\forall u, v \in V, \operatorname{Pr}[u \text { and } v \text { not in same partition }] \leq \alpha \cdot \frac{d_{G}(u, v)}{D}
$$

Proof. Let $r=d_{G}(u, v)$, then $v$ is on the boundary of $B(u, r)$.

$$
\begin{array}{lll}
\operatorname{Pr}[u \text { and } v \text { not in same partition }] & \leq \operatorname{Pr}[B(u, r) \text { is cut in BaLLCARVING }] & \\
& \leq \mathcal{O}(\log n) \cdot \frac{r}{D} & \text { By Lemma } 7 \\
& =\mathcal{O}(\log n) \cdot \frac{d_{G}(u, v)}{D} & \text { Since } r=d_{G}(u, v)
\end{array}
$$

Note: $\alpha=\mathcal{O}(\log n)$.
If we apply Claim 8 with Claim 4 , we get $\mathbb{E}\left[d_{T}(u, v)\right] \leq \mathcal{O}(\log (n) \log (D)) \cdot d_{G}(u, v)$. To remove the $\log (D)$ factor, so that stretch factor $c=\mathcal{O}(\log n)$, a tighter analysis is needed by only considering vertices that may cut $B\left(u, d_{G}(u, v)\right)$ instead of all $n$ vertices. For details, see Theorem 16 in the appendix.

### 2.3 Contraction of $T$

Notice in Figure 1 that we introduce auxiliary vertices in our tree construction and wonder if we can build a $T$ without additional vertices (i.e. $V(T)=V(G)$. In this section, we look at Contract which performs tree contractions to remove the auxiliary vertices. It remains to show that the produced tree that still preserves desirable properties of a tree embedding.

```
Algorithm 3 Contract \((T)\)
 while \(T\) has an edge \((u, w)\) such that \(u \in V\) and \(w\) is an auxiliary node do
 Contract edge \((u, w)\) by merging subtree rooted at \(u\) into \(w\), and identifying the new node as \(u\)
 end while
 Multiply weight of every edge by 4
 return Modified \(T^{\prime}\)
```

Claim 9. Contract returns a tree $T$ such that $d_{T}(u, v) \leq d_{T^{\prime}}(u, v) \leq 4 \cdot d_{T}(u, v)$.
Proof. Suppose auxiliary node $w$, at level $i$, is the closest common ancestor for two arbitrary vertices $u, v \in V$ in the original tree $T$. Then, $d_{T}(u, v)=d_{T}(u, w)+d_{T}(w, v)=2 \cdot\left(\sum_{j=i}^{\log D} \frac{D}{2^{j}}\right) \leq 4 \cdot \frac{D}{2^{i}}$. Since we do not contract actual vertices, at least one of the $(u, w)$ or $(v, w)$ edges of weight $\frac{D}{2^{i}}$ will remain. Multiplying the weights of all remaining edges by 4 , we get $d_{T}(u, v) \leq 4 \cdot \frac{D}{2^{i}}=d_{T^{\prime}}(u, v)$.

Suppose we only multiply the weights of $d_{T}(u, v)$ by 4 , then $d_{T^{\prime}}(u, v)=4 d_{T}(u, v)$. Since we contract edges, $d_{T}^{\prime}(u, v)$ can only decrease, so $d_{T^{\prime}}(u, v) \leq 4 d_{T}(u, v)$.

Remark Claim 9 tells us that one can construct a tree $T^{\prime}$ without auxiliary variables by incurring an additional constant factor overhead.

## 3 Application: Buy-at-bulk network design

Definition 10 (Buy-at-bulk network design problem). Consider a graph $G=(V, E)$ with edge lengths $l_{e}$ for $e \in E$. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a sub-additive cost function. That is, $f(x+y) \leq f(x)+f(y)$. Given $k$ commodity triplets $\left(s_{i}, t_{i}, d_{i}\right)$, where $s_{i} \in V$ is the source, $t_{i} \in V$ is the target, and $d_{i} \geq 0$ is the demand for the $i^{\text {th }}$ commodity, find a capacity assignment on edges $c_{e}(\forall e \in E)$ such that

- $\sum_{e \in E} f\left(c_{e}\right) \cdot l_{e}$ is minimized
- $\forall e \in E, c_{e} \geq$ Total flow passing through it
- Flow conservation is satisfied and every commodity's demand is met

```
Algorithm 4 NetworkDesign \((G=(V, E))\)
 \(c_{e}=0, \forall e \in E \quad \triangleright\) Initialize capacities
 \(T \leftarrow\) Construct \(T(G) \quad \triangleright\) Build probabilistic tree embedding \(T\) of \(G\)
 \(T \leftarrow \operatorname{Contract}(\mathrm{~T})\)
 for \(i \in\{1, \ldots, k\}\) do
 \(\triangleright V(T)=V(G)\) after contraction
 \(\triangleright\) Solve problem on \(T\)
 \(P_{s_{i}, t_{i}}^{T} \leftarrow\) Find shortest \(s_{i}-t_{i}\) path in \(T\)
 \(\triangleright\) It is unique in a tree
 for Edge (\(u, v\)) of \(P_{s_{i}, t_{i}}^{T}\) in \(T\) do
 \(P_{u, v}^{G} \leftarrow\) Find shortest \(u-v\) path in \(G\)
 \(c_{e} \leftarrow c_{e}+d_{i}\), for each edge in \(e \in P_{u, v}^{G}\)
 end for
 end for
 return \(\left\{e \in E: c_{e}\right\}\)
```

Remark If $f$ is linear (e.g. $f(x+y)=f(x)+f(y)$ ), one can obtain an optimum solution by finding the shortest path $s_{i} \rightarrow t_{i}$ for each commodity $i$, then summing up the required capacities for each edge.

Let us denote $I=\left(G, f,\left\{s_{i}, t_{i}, d_{i}\right\}_{i=1}^{k}\right)$ as the given instance. Let $O P T_{G}(I)$ be the optimal solution on $G$ and $A_{T}(I)$ be the solution produced by NetworkDesign. Denote the costs as $\left|O P T_{G}(I)\right|$ and $\left|A_{T}(I)\right|$ respectively. We now compare the solutions $O P T_{G}(I)$ and $A_{T}(I)$ by comparing edge costs $(u, v) \in E$ in $G$ and tree embedding $T$.

Claim 11. $\left|A_{T}(I)\right|$ using edges in $G \leq\left|A_{T}(I)\right|$ using edges in $T$.
Proof. (Sketch) For any pair of vertices $u, v \in V, d_{G}(u, v) \leq d_{T}(u, v)$.
Claim 12. $\left|A_{T}(I)\right|$ using edges in $T \leq\left|O P T_{G}(I)\right|$ using edges in $T$.
Proof. (Sketch) Since shortest path in a tree is unique, $A_{T}(I)$ is optimum for $T$. So, any other flow assignment has to incur higher edge capacities.

Claim 13. $\mathbb{E}\left[\left|O P T_{G}(I)\right|\right.$ using edges in $\left.T\right] \leq \mathcal{O}(\log n) \cdot\left|O P T_{G}(I)\right|$
Proof. (Sketch) $T$ stretches edges by at most a factor of $\mathcal{O}(\log n)$.
By the three claims above, NetworkDesign gives a $\mathcal{O}(\log n)$-approximation to the buy-at-bulk network design problem, in expectation. For details, refer to Section 8.6 in [WS11].

## References

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 184-193. IEEE, 1996.
[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 448-455. ACM, 2003.
[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge university press, 2011.

## A Ball carving with $\mathcal{O}(\log n)$ stretch factor

If we apply Claim 8 with Claim 4 , we get $\mathbb{E}\left[d_{T}(u, v)\right] \leq \mathcal{O}(\log (n) \log (D)) \cdot d_{G}(u, v)$. To remove the $\log (D)$ factor, so that stretch factor $c=\mathcal{O}(\log n)$, a tighter analysis is needed by only considering vertices that may cut $B\left(u, d_{G}(u, v)\right)$ instead of all $n$ vertices.

## A. 1 Tighter analysis of ball carving

Fix arbitrary vertices $u$ and $v$. Let $r=d_{G}(u, v)$. Recall that $\theta$ is chosen uniformly at random from the range $\left[\frac{D}{8}, \frac{D}{4}\right]$. A ball $B\left(v_{i}, \theta\right)$ can cut $B(u, r)$ only when $d_{G}\left(u, v_{i}\right)-r \leq \theta \leq d_{G}\left(u, v_{i}\right)+r$. In other words, one only needs to consider vertices $v_{i}$ such that $\frac{D}{8}-r \leq \theta-r \leq d_{G}\left(u, v_{i}\right) \leq \theta+r \leq \frac{D}{4}+r$.

Lemma 14. For $i \in \mathbb{N}$, if $r>\frac{D}{16}$, then $\operatorname{Pr}[B(u, r)$ is cut $] \leq \frac{16 r}{D}$
Proof. If $r>\frac{D}{16}$, then $\frac{16 r}{D}>1$. As $\operatorname{Pr}[B(u, r)$ is cut at level $i]$ is a probability $\leq 1$, the claim holds.
Remark Although lemma 14 is not a very useful inequality per se (since any probability $\leq 1$ ), we use it to partition the value range of $r$ so that we can say something stronger in the next lemma.

Lemma 15. For $i \in \mathbb{N}$, if $r \leq \frac{D}{16}$, then

$$
\operatorname{Pr}[B(u, r) \text { is cut }] \leq \frac{r}{D} \mathcal{O}\left(\log \left(\frac{|B(u, D / 2)|}{|B(u, D / 16)|}\right)\right)
$$

Proof. Since $B\left(v_{i}, \theta\right)$ cuts $B(u, r)$ only if $\frac{D}{8}-r \leq d_{G}\left(u, v_{i}\right) \leq \frac{D}{4}+r$, we have $d_{G}\left(u, v_{i}\right) \in\left[\frac{D}{16}, \frac{5 D}{16}\right] \subseteq\left[\frac{D}{16}, \frac{D}{2}\right]$.


Suppose we arrange the vertices in ascending order of distance from $u: u=v_{1}, v_{2}, \ldots, v_{n}$. Denote:

- $j-1=\left|B\left(u, \frac{D}{16}\right)\right|$ as the number of nodes that have distance $\leq \frac{D}{16}$ from $u$
- $k=\left|B\left(u, \frac{D}{2}\right)\right|$ as the number of nodes that have distance $\leq \frac{D}{2}$ from $u$

We see that only vertices $v_{j}, v_{j+1}, \ldots, v_{k}$ have distances from $u$ in the range $\left[\frac{D}{16}, \frac{D}{2}\right]$. Pictorially, only vertices in the shaded region could possibly cut $B(u, r)$. As before, let $\pi(v)$ be the ordering in which vertex $v$ appears in random permutation $\pi$. Then,

$$
\begin{array}{lll} 
& \operatorname{Pr}[B(u, r) \text { is cut }] & \\
=\operatorname{Pr}\left[\bigcup_{i=j}^{k} \text { Event that } B\left(v_{i}, \theta\right) \text { cuts } B(u, r)\right] & \text { Only } v_{j}, v_{j+1}, \ldots, v_{k} \text { can cut } \\
\leq \sum_{i=j}^{k} \operatorname{Pr}\left[\pi\left(v_{i}\right)<\min _{z<[i-1]}\left\{\pi\left(v_{z}\right\}\right] \cdot \operatorname{Pr}\left[v_{i} \text { cuts } B(u, r)\right]\right. & \text { Union bound } \\
=\sum_{i=j}^{k} \cdot \frac{1}{i} \cdot \operatorname{Pr}\left[B\left(v_{i}, \theta\right) \text { cuts } B(u, r)\right] & \text { By random permutation } \pi \\
\leq \sum_{i=j}^{k} \frac{1}{i} \cdot \frac{2 r}{D / 8} & \text { diam }(B(u, r)) \leq 2 r, \theta \in\left[\frac{D}{8}, \frac{D}{4}\right] \\
=\frac{r}{D}\left(H_{k}-H_{j}\right) & \text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \\
\in \frac{r}{D} \mathcal{O}\left(\log \left(\frac{|B(u, D / 2)|}{|B(u, D / 16)|}\right)\right) & \text { since } H_{k} \in \Theta(\log (k))
\end{array}
$$

## A. 2 Plugging into ConstructT

Recall that ConstructT is a recursive algorithm which handles graphs of diameter $\leq \frac{D}{2^{i}}$ at each level. For a given pair of vertices $u$ and $v$, there exists $i^{*} \in \mathbb{N}$ such that $\frac{D}{2^{i^{*}}} \leq r=d_{G}(u, v) \leq \frac{D}{2^{i^{*}-1}}$. In other words, $\frac{D}{2^{i^{*}-4}} \frac{1}{16} \leq r \leq \frac{D}{2^{*}-5} \frac{1}{16}$. So, lemma 15 applies for levels $i \in\left[0, i^{*}-5\right]$ and lemma 14 applies for levels $i \in\left[i^{*}-4, \log (D)-1\right]$.

## Theorem 16. $\mathbb{E}\left[d_{T}(u, v)\right] \in \mathcal{O}(\log n) \cdot d_{G}(u, v)$

Proof. As before, let $\mathcal{E}_{i}$ be the event that "vertices $u$ and $v$ get separated at the $i^{\text {th }}$ level". For $\mathcal{E}_{i}$ to happen, the ball $B(u, r)=B\left(u, d_{G}(u, v)\right)$ must be cut at level $i$, so $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leq \operatorname{Pr}[B(u, r)$ is cut at level $i]$.

$$
\begin{aligned}
& \mathbb{E}\left[d_{T}(u, v)\right] \\
& =\quad \sum_{i=0}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot\left[d_{T}(u, v) \text {, given } \mathcal{E}_{i}\right] \\
& \leq \quad \sum_{i=0}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot \frac{4 D}{2^{i}} \\
& =\sum_{i=0}^{i^{*}-5} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot \frac{4 D}{2^{i}}+\sum_{i=i^{*}-4}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot \frac{4 D}{2^{i}} \\
& \leq \quad \sum_{i=0}^{i^{*}-5} \frac{r}{D / 2^{i}} \mathcal{O}\left(\log \left(\frac{\left|B\left(u, D / 2^{i+1}\right)\right|}{\left|B\left(u, D / 2^{i+4}\right)\right|}\right)\right) \cdot \frac{4 D}{2^{i}}+\sum_{i=i^{*}-4}^{\log (D)-1} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \cdot \frac{4 D}{2^{i}} \\
& \leq \quad \sum_{i=0}^{i^{*}-5} \frac{r}{D / 2^{i}} \mathcal{O}\left(\log \left(\frac{\left|B\left(u, D / 2^{i+1}\right)\right|}{\left|B\left(u, D / 2^{i+4}\right)\right|}\right)\right) \cdot \frac{4 D}{2^{i}}+\sum_{i=i^{*}-4}^{\log (D)-1} \frac{16 r}{D / 2^{i^{*}-4}} \cdot \frac{4 D}{2^{i}} \\
& =4 r \sum_{i=0}^{i^{*}-5} \mathcal{O}\left(\log \left(\frac{\left|B\left(u, D / /^{i+1}\right)\right|}{\left|B\left(u, D / 2^{i+4}\right)\right|}\right)\right)+\sum_{i=i^{*}-4}^{\log (D)-1} 4 \cdot 2^{i^{*}-i} \cdot r \\
& \leq 4 r \sum_{i=0}^{i^{*}-5} \mathcal{O}\left(\log \left(\frac{\left|B\left(u, D / 2^{i+1}\right)\right|}{\left|B\left(u, D / 2^{i+4}\right)\right|}\right)\right)+2^{7} r \\
& =4 r \mathcal{O}(\log (n))+2^{7} r \\
& \in \mathcal{O}(\log n) r \\
& \text { Definition of expectation } \\
& \text { By Lemma } 2 \\
& \text { Split into cases: } \frac{D}{2^{i^{*}-4}} \frac{1}{16} \leq r \leq \frac{D}{2^{i^{*}-5}} \frac{1}{16} \\
& \text { By Lemma } 15 \\
& \text { By Lemma } 14 \text { with respect to } D / 2^{i^{*}-4} \\
& \text { Simplifying } \\
& \text { Since } \sum_{i=i^{*}-4}^{\log (D)-1} 2^{i^{*}-i} \leq 2^{5} \\
& \log \left(\frac{x}{y}\right)=\log (x)-\log (y) \text { and }|B(u, \infty)| \leq n
\end{aligned}
$$


[^0]:    ${ }^{1}$ For a cycle $G$ with $n$ vertices, the excluded edge in a constructed tree will cause the stretch factor $c \geq n-1$.
    ${ }^{2}$ Theorem 8 in [Bar96]
    ${ }^{3}$ Theorem 9 in [Bar96]

