
Advanced Algorithms 23 October 2018

Lecture 6: Approximation Algorithms VI
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Probabilistic tree embedding

Trees are a special kind of graphs without cycles and some NP-hard problems are known to admit exact
polynomial time solutions on trees. Motivated by existence of efficient algorithms on trees, one hopes
to design the following framework for a general graph G = (V,E) with distance metric dG(u, v) between
vertices u, v ∈ V :

1. Construct a tree T

2. Solve the problem on T efficiently

3. Map the solution back to G

4. Argue that transformed solution from T is a good approximation to G.

Ideally, we want to build a tree T such that (i) dG(u, v) ≤ dT (u, v) and (ii) dT (u, v) ≤ c · dG(u, v),
where c is the stretch of tree embedding. Unfortunately, such a construction is hopeless1. Instead, we
consider a probabilistic tree embedding of G into a collection of trees T = {T1, . . . , Tm} such that

• (Over-estimates cost): ∀T ∈ T , dG(u, v) ≤ dT (u, v)

• (Expected over-estimation is not too much): ∀T ∈ T ,ET∈T [dT (u, v) ≤ c · dG(u, v)]

• (T is a probability space):
∑m
i=1 Pr[Ti] = 1

Bartal [Bar96] gave a construction2 for probabilistic tree embedding with poly-logarithmic stretch
factor c, and proved3 that a stretch factor c = Ω(log n) is required for general graphs. A construction
that yields c = O(log n), in expectation, was subsequently found by [FRT03].

2 A tight probabilistic tree embedding construction

In this section, we describe a probabilistic tree embedding construction due to [FRT03] with a stretch
factor c = O(log n). For a graph G = (V,E), let D = diam(G) and distance metric dG(u, v) denote the
distance between two vertices u, v ∈ V . Denote B(v, r) := {u ∈ V : dG(u, v) ≤ r} as the ball of distance
r around vertex v, including v.

2.1 Idea: Ball carving

Before we present the actual construction, we argue that the following ball carving approach will yield a
probabilistic tree embedding.

Definition 1 (Ball carving). Given a graph G = (V,E), partition V into V1, . . . , Vl such that

(A) ∀i ∈ {1, . . . , l}, diam(Vi) ≤ D
2

(B) ∀u, v ∈ V , Pr[u and v not in same partition] ≤ α · dG(u,v)
D , for some α

Using ball carving, Algorithm 1 recursively partitions the vertices of a given graph until there is only
one vertex remaining. Figure 1 illustrates the process of building a tree T from a given graph G.

Lemma 2. For any two vertices u, v ∈ V , if T separates them at level i, then 2D
2i ≤ dT (u, v) ≤ 4D

2i .

1For a cycle G with n vertices, the excluded edge in a constructed tree will cause the stretch factor c ≥ n− 1.
2Theorem 8 in [Bar96]
3Theorem 9 in [Bar96]

1

Algorithm 1 ConstructT(G = (V,E) with diameter D)

if |V | = 1 then
return V

else
V1, . . . , Vl ← BallCarving(G)
Create auxiliary vertex r . r is root of current subtree
for i ∈ {1, . . . , l} do

G[Vi]← Subgraph induced by vertices Vi . By BallCarving(G), diam(G[Vi]) ≤ D
2

ri ← ConstructT(G[Vi]) . Either an auxiliary vertex or an actual vertex v ∈ V (G)
Add edge (r, ri) with weight D

end for
return Root of subtree r . r is the root of the constructed T

end if

r0

. . .G[V1] G[Vl0]

D D

r0

. . .r1 rl0

. . .G[V1,1] G[V1,l1]

. . .

D D

D
2

D
2

r0

. . .r1 rl0

. .
.

G[V1,1,...,1]

...

D D

D
2

D
2i−1

D
2i

Figure 1: Recursive ball carving with dlog2(D)e levels. Red vertices are auxiliary nodes that are not in
the original graph G. Denoting the root as the 0th level, edges from level i to level i+ 1 have weight D

2i .

Proof. If T splits u and v at level i, then dT (u, v) has to include two edges of length D
2i , hence dT (u, v) ≥

2D
2i . To be precise, dT (u, v) = 2 · (D2i + D

2i+1 + · · ·) ≤ 4D
2i . See picture.

r

. . .G[{u, . . . }] G[{v, . . . }]

D
2i

D
2i

r

. . .G[{u, . . . }] G[{v, . . . }]

...
...

u v

D
2i

D
2i

D
2i+1

D
2i+1

2

Remark If u, v ∈ V separate before level i, then dT (u, v) must still include the two edges of length D
2i ,

hence dT (u, v) ≥ 2D
2i .

Claim 3. ConstructT(G) returns a tree T such that dG(u, v) ≤ dT (u, v).

Proof. Consider u, v ∈ V . Say D
2i ≤ dG(u, v) ≤ D

2i−1 for some i ∈ N. By property (A) of ball carving, T

will separate them at, or before, level i. By Lemma 2, dT (u, v) ≥ 2D
2i = D

2i−1 ≥ dG(u, v).

Claim 4. ConstructT(G) returns a tree T such that E[dT (u, v)] ≤ 4α log(D) · dG(u, v).

Proof. Consider u, v ∈ V . Define Ei as the event that “vertices u and v get separated at the ith level”,
for i ∈ N. By recursive nature of ConstructT, a graph at the ith level has diameter ≤ D

2i . So, property

(B) of ball carving tells us that Pr[Ei] ≤ α · dG(u,v)
D/2i . Then,

E[dT (u, v)] =
∑log(D)−1
i=0 Pr[Ei] · [dT (u, v), given Ei] Definition of expectation

≤
∑log(D)−1
i=0 Pr[Ei] · 4D2i By Lemma 2

≤
∑log(D)−1
i=0 (α · dG(u,v)

D/2i) · 4D2i Property (B) of ball carving

= 4α log(D) · dG(u, v) Simplifying

2.2 Ball carving construction

We now give a concrete construction of ball carving that satisfies properties (A) and (B) as defined.

Algorithm 2 BallCarving(G = (V,E) with diameter D)

if |V | = 1 then
return V

else . Say there are n vertices, where n > 1
θ ← Uniform random value from the range [D8 ,

D
4]

Pick a random permutation π on V . Denote πi as the ith vertex in π
for i ∈ {1, . . . , n} do

Vi ← B(πi, θ) \
⋃i−1
j=1B(πj , θ) . This ensures that V1, . . . , Vn is a partition of V

end for
return Non-empty sets V1, . . . , Vl . Vi = ∅ when vertices in B(πi, θ) exist in earlier balls

end if . i.e. Vi = ∅ ⇐⇒ ∀v ∈ B(πi, θ), [∃j < i, v ∈ B(πj , θ)]

Notation For vertex v ∈ V , let us denote π(v) as v’s position in π. That is, v = ππ(v).

Claim 5. BallCarving(G) returns partition V1, . . . , Vl such that ∀i ∈ {1, . . . , l}, diam(Vi) ≤ D
2

Proof. Since θ ∈ [D8 ,
D
4], all constructed balls have diameter smaller than D

2 .

Definition 6 (Ball cut). A ball B(u, r) is cut if BallCarving puts the vertices in B(u, r) in different
partitions of V1, . . . , Vl. We say Vi cuts B(u, r) if i = argmini∈[l][Vi ∩B(u, r) 6= ∅ and B(u, r) 6⊆ Vi].

Lemma 7. For any vertex u ∈ V and radius r ∈ R+, Pr[B(u, r) is cut in BallCarving] ≤ O(log n)· rD .

Proof. Let θ be the randomly chosen in BallCarving. Consider an ordering of vertices in increasing
distance from u: v1, v2, . . . , vn, such that dG(u, v1) ≤ dG(u, v2) ≤ · · · ≤ dG(u, vn). For j < i, since
dG(u, vj) ≤ dG(u, vi), if B(vi, θ) ∩B(u, r) 6= ∅, then B(vj , θ) ∩B(u, r) 6= ∅. So,

Pr[B(u, r) is cut] = Pr[
⋃n
i=1 Event that B(vi, θ) cuts B(u, r)]

≤
∑n
i=1 Pr[B(vi, θ) cuts B(u, r)] Union bound

=
∑n
i=1 Pr[π(vi) < minj∈[i−1]{π(vj)}] Pr[Vi cuts B(u, r)] Require vi to appear first

=
∑n
i=1(1/i) · Pr[Vi cuts B(u, r)] By random permutation π

≤
∑n
i=1(1/i) · 2r

D/8 diam(B(u, r)) ≤ 2r, θ ∈ [D8 ,
D
4]

= 16 r
DHn Hn =

∑n
i=1

1
i

∈ O(log(n)) · rD
In the last inequality: For Vi to cut B(u, r), we need θ ∈ (dG(u, vi)−r, dG(u, vi)+r), hence the numerator
of ≤ 2r; The denominator D

8 is because the range of values that θ is sampled from is D
4 −

D
8 = D

8 .

3

Claim 8. BallCarving(G) returns partition V1, . . . , Vl such that

∀u, v ∈ V,Pr[u and v not in same partition] ≤ α · dG(u, v)

D

Proof. Let r = dG(u, v), then v is on the boundary of B(u, r).

Pr[u and v not in same partition] ≤ Pr[B(u, r) is cut in BallCarving]
≤ O(log n) · rD By Lemma 7

= O(log n) · dG(u,v)
D Since r = dG(u, v)

Note: α = O(log n).

If we apply Claim 8 with Claim 4, we get E[dT (u, v)] ≤ O(log(n) log(D)) · dG(u, v). To remove the
log(D) factor, so that stretch factor c = O(log n), a tighter analysis is needed by only considering vertices
that may cut B(u, dG(u, v)) instead of all n vertices. For details, see Theorem 16 in the appendix.

2.3 Contraction of T

Notice in Figure 1 that we introduce auxiliary vertices in our tree construction and wonder if we can
build a T without additional vertices (i.e. V (T) = V (G). In this section, we look at Contract which
performs tree contractions to remove the auxiliary vertices. It remains to show that the produced tree
that still preserves desirable properties of a tree embedding.

Algorithm 3 Contract(T)

while T has an edge (u,w) such that u ∈ V and w is an auxiliary node do
Contract edge (u,w) by merging subtree rooted at u into w, and identifying the new node as u

end while
Multiply weight of every edge by 4
return Modified T ′

Claim 9. Contract returns a tree T such that dT (u, v) ≤ dT ′(u, v) ≤ 4 · dT (u, v).

Proof. Suppose auxiliary node w, at level i, is the closest common ancestor for two arbitrary vertices
u, v ∈ V in the original tree T . Then, dT (u, v) = dT (u,w) + dT (w, v) = 2 · (

∑logD
j=i

D
2j) ≤ 4 · D2i . Since

we do not contract actual vertices, at least one of the (u,w) or (v, w) edges of weight D
2i will remain.

Multiplying the weights of all remaining edges by 4, we get dT (u, v) ≤ 4 · D2i = dT ′(u, v).
Suppose we only multiply the weights of dT (u, v) by 4, then dT ′(u, v) = 4dT (u, v). Since we contract

edges, d′T (u, v) can only decrease, so dT ′(u, v) ≤ 4dT (u, v).

Remark Claim 9 tells us that one can construct a tree T ′ without auxiliary variables by incurring an
additional constant factor overhead.

3 Application: Buy-at-bulk network design

Definition 10 (Buy-at-bulk network design problem). Consider a graph G = (V,E) with edge lengths
le for e ∈ E. Let f : R+ → R+ be a sub-additive cost function. That is, f(x+ y) ≤ f(x) + f(y). Given k
commodity triplets (si, ti, di), where si ∈ V is the source, ti ∈ V is the target, and di ≥ 0 is the demand
for the ith commodity, find a capacity assignment on edges ce(∀e ∈ E) such that

•
∑
e∈E f(ce) · le is minimized

• ∀e ∈ E, ce ≥ Total flow passing through it

• Flow conservation is satisfied and every commodity’s demand is met

4

Algorithm 4 NetworkDesign(G = (V,E))

ce = 0,∀e ∈ E . Initialize capacities
T ← ConstructT(G) . Build probabilistic tree embedding T of G
T ← Contract(T) . V (T) = V (G) after contraction
for i ∈ {1, . . . , k} do . Solve problem on T

PTsi,ti ← Find shortest si − ti path in T . It is unique in a tree

for Edge (u, v) of PTsi,ti in T do

PGu,v ← Find shortest u− v path in G

ce ← ce + di, for each edge in e ∈ PGu,v
end for

end for
return {e ∈ E : ce}

Remark If f is linear (e.g. f(x + y) = f(x) + f(y)), one can obtain an optimum solution by finding
the shortest path si → ti for each commodity i, then summing up the required capacities for each edge.

Let us denote I = (G, f, {si, ti, di}ki=1) as the given instance. Let OPTG(I) be the optimal solution on
G and AT (I) be the solution produced by NetworkDesign. Denote the costs as |OPTG(I)| and |AT (I)|
respectively. We now compare the solutions OPTG(I) and AT (I) by comparing edge costs (u, v) ∈ E in
G and tree embedding T .

Claim 11. |AT (I)| using edges in G ≤ |AT (I)| using edges in T .

Proof. (Sketch) For any pair of vertices u, v ∈ V , dG(u, v) ≤ dT (u, v).

Claim 12. |AT (I)| using edges in T ≤ |OPTG(I)| using edges in T .

Proof. (Sketch) Since shortest path in a tree is unique, AT (I) is optimum for T . So, any other flow
assignment has to incur higher edge capacities.

Claim 13. E[|OPTG(I)| using edges in T] ≤ O(log n) · |OPTG(I)|

Proof. (Sketch) T stretches edges by at most a factor of O(log n).

By the three claims above, NetworkDesign gives a O(log n)-approximation to the buy-at-bulk
network design problem, in expectation. For details, refer to Section 8.6 in [WS11].

References

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
184–193. IEEE, 1996.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating ar-
bitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 448–455. ACM, 2003.

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

A Ball carving with O(log n) stretch factor

If we apply Claim 8 with Claim 4, we get E[dT (u, v)] ≤ O(log(n) log(D)) ·dG(u, v). To remove the log(D)
factor, so that stretch factor c = O(log n), a tighter analysis is needed by only considering vertices that
may cut B(u, dG(u, v)) instead of all n vertices.

5

A.1 Tighter analysis of ball carving

Fix arbitrary vertices u and v. Let r = dG(u, v). Recall that θ is chosen uniformly at random from the
range [D8 ,

D
4]. A ball B(vi, θ) can cut B(u, r) only when dG(u, vi)−r ≤ θ ≤ dG(u, vi)+r. In other words,

one only needs to consider vertices vi such that D
8 − r ≤ θ − r ≤ dG(u, vi) ≤ θ + r ≤ D

4 + r.

Lemma 14. For i ∈ N, if r > D
16 , then Pr[B(u, r) is cut] ≤ 16r

D

Proof. If r > D
16 , then 16r

D > 1. As Pr[B(u, r) is cut at level i] is a probability ≤ 1, the claim holds.

Remark Although lemma 14 is not a very useful inequality per se (since any probability ≤ 1), we use
it to partition the value range of r so that we can say something stronger in the next lemma.

Lemma 15. For i ∈ N, if r ≤ D
16 , then

Pr[B(u, r) is cut] ≤ r

D
O(log(

|B(u,D/2)|
|B(u,D/16)|

))

Proof. SinceB(vi, θ) cutsB(u, r) only if D8 −r ≤ dG(u, vi) ≤ D
4 +r, we have dG(u, vi) ∈ [D16 ,

5D
16] ⊆ [D16 ,

D
2].

u

D
2

D
16

Dist from u

u

v1

D
16

D
2

vj vj+1 . . . vk

Suppose we arrange the vertices in ascending order of distance from u: u = v1, v2, . . . , vn. Denote:

• j − 1 = |B(u, D16)| as the number of nodes that have distance ≤ D
16 from u

• k = |B(u, D2)| as the number of nodes that have distance ≤ D
2 from u

We see that only vertices vj , vj+1, . . . , vk have distances from u in the range [D16 ,
D
2]. Pictorially, only

vertices in the shaded region could possibly cut B(u, r). As before, let π(v) be the ordering in which
vertex v appears in random permutation π. Then,

Pr[B(u, r) is cut]

= Pr[
⋃k
i=j Event that B(vi, θ) cuts B(u, r)] Only vj , vj+1, . . . , vk can cut

≤
∑k
i=j Pr[π(vi) < minz<[i−1]{π(vz}] · Pr[vi cuts B(u, r)] Union bound

=
∑k
i=j

1
i · Pr[B(vi, θ) cuts B(u, r)] By random permutation π

≤
∑k
i=j

1
i ·

2r
D/8 diam(B(u, r)) ≤ 2r, θ ∈ [D8 ,

D
4]

= r
D (Hk −Hj) where Hk =

∑k
i=1

1
i

∈ r
DO(log(|B(u,D/2)|

|B(u,D/16)|)) since Hk ∈ Θ(log(k))

A.2 Plugging into ConstructT

Recall that ConstructT is a recursive algorithm which handles graphs of diameter ≤ D
2i at each level.

For a given pair of vertices u and v, there exists i∗ ∈ N such that D
2i∗
≤ r = dG(u, v) ≤ D

2i∗−1 . In other

words, D
2i∗−4

1
16 ≤ r ≤ D

2i∗−5
1
16 . So, lemma 15 applies for levels i ∈ [0, i∗ − 5] and lemma 14 applies for

levels i ∈ [i∗ − 4, log(D)− 1].

6

Theorem 16. E[dT (u, v)] ∈ O(log n) · dG(u, v)

Proof. As before, let Ei be the event that “vertices u and v get separated at the ith level”. For Ei to
happen, the ball B(u, r) = B(u, dG(u, v)) must be cut at level i, so Pr[Ei] ≤ Pr[B(u, r) is cut at level i].

E[dT (u, v)]

=
∑log(D)−1
i=0 Pr[Ei] · [dT (u, v), given Ei] Definition of expectation

≤
∑log(D)−1
i=0 Pr[Ei] · 4D2i By Lemma 2

=
∑i∗−5
i=0 Pr[Ei] · 4D2i +

∑log(D)−1
i=i∗−4 Pr[Ei] · 4D2i Split into cases: D

2i∗−4
1
16 ≤ r ≤

D
2i∗−5

1
16

≤
∑i∗−5
i=0

r
D/2iO(log(|B(u,D/2i+1)|

|B(u,D/2i+4)|)) ·
4D
2i +

∑log(D)−1
i=i∗−4 Pr[Ei] · 4D2i By Lemma 15

≤
∑i∗−5
i=0

r
D/2iO(log(|B(u,D/2i+1)|

|B(u,D/2i+4)|)) ·
4D
2i +

∑log(D)−1
i=i∗−4

16r
D/2i∗−4 · 4D2i By Lemma 14 with respect to D/2i

∗−4

= 4r
∑i∗−5
i=0 O(log(|B(u,D/2i+1)|

|B(u,D/2i+4)|)) +
∑log(D)−1
i=i∗−4 4 · 2i∗−i · r Simplifying

≤ 4r
∑i∗−5
i=0 O(log(|B(u,D/2i+1)|

|B(u,D/2i+4)|)) + 27r Since
∑log(D)−1
i=i∗−4 2i

∗−i ≤ 25

= 4rO(log(n)) + 27r log(xy) = log(x)− log(y) and |B(u,∞)| ≤ n
∈ O(log n)r

7

	Probabilistic tree embedding
	A tight probabilistic tree embedding construction
	Idea: Ball carving
	Ball carving construction
	Contraction of T

	Application: Buy-at-bulk network design
	Ball carving with O(logn) stretch factor
	Tighter analysis of ball carving
	Plugging into ConstructT

