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1 Probabilistic tree embedding

Trees are a special kind of graphs without cycles and some NP-hard problems are known to admit exact
polynomial time solutions on trees. Motivated by existence of efficient algorithms on trees, one hopes
to design the following framework for a general graph G = (V, E') with distance metric dg(u, v) between
vertices u,v € V:

1. Construct a tree T'

2. Solve the problem on T efficiently

3. Map the solution back to G

4. Argue that transformed solution from T is a good approximation to G.

Ideally, we want to build a tree T' such that (i) dg(u,v) < dr(u,v) and (ii) dr(u,v) < ¢ dg(u,v),
where c is the stretch of tree embedding. Unfortunately, such a construction is hopeless'. Instead, we
consider a probabilistic tree embedding of G into a collection of trees T = {T1,...,Ty,} such that

e (Over-estimates cost): VT € T,dg(u,v) < dr(u,v)
e (Expected over-estimation is not too much): VT' € T,Ercr[dr(u,v) < ¢-dg(u,v)]
e (7 is a probability space): Y i~ Pr[T;] =1

Bartal [Bar96] gave a construction® for probabilistic tree embedding with poly-logarithmic stretch
factor ¢, and proved® that a stretch factor ¢ = Q(logn) is required for general graphs. A construction
that yields ¢ = O(logn), in expectation, was subsequently found by [FRT03].

2 A tight probabilistic tree embedding construction

In this section, we describe a probabilistic tree embedding construction due to [FRT03] with a stretch
factor ¢ = O(logn). For a graph G = (V, E), let D = diam(G) and distance metric dg(u,v) denote the
distance between two vertices u,v € V. Denote B(v,r) := {u € V : dg(u,v) < r} as the ball of distance
r around vertex v, including v.

2.1 Idea: Ball carving

Before we present the actual construction, we argue that the following ball carving approach will yield a
probabilistic tree embedding.

Definition 1 (Ball carving). Given a graph G = (V, E), partition V into Vi,...,V; such that
. . D

(A) Vie{l,...,1},diam(V;) < 5

(B) Yu,v € V, Prlu and v not in same partition] < « - %7 for some «

Using ball carving, Algorithm 1 recursively partitions the vertices of a given graph until there is only
one vertex remaining. Figure 1 illustrates the process of building a tree T' from a given graph G.

Lemma 2. For any two vertices u,v € V, if T separates them at level i, then 22’,? <dr(u,v) < 42 .

1For a cycle G with n vertices, the excluded edge in a constructed tree will cause the stretch factor ¢ > n — 1.
2Theorem 8 in [Bar96]
3Theorem 9 in [Bar96]



Algorithm 1 CONSTRUCTT(G = (V, E) with diameter D)

if |[V| =1 then
return V
else

Vi,..., Vi + BALLCARVING(G)
Create auxiliary vertex r
forie{l,...,l} do

> 7 is root of current subtree

G[V;] - Subgraph induced by vertices V; > By BALLCARVING(G), diam(G[V;]) < £
r; < CONSTRUCTT(G[V;]) > Either an auxiliary vertex or an actual vertex v € V(QG)
Add edge (r,r;) with weight D
end for
return Root of subtree r > 7 is the root of the constructed T’
end if

Figure 1: Recursive ball carving with [log,(D)] levels. Red vertices are auxiliary nodes that are not in
the original graph G. Denoting the root as the 0" level, edges from level i to level i + 1 have weight 22

Proof. Tf T splits u and v at level i, then dr(u,v) has to include two edges of length g, hence dr(u,v) >

2D To be precise, dp(u,v) =2 (5 + 587 + ) < 22, See picture.
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Remark If u,v € V separate before level i, then dp(u,v) must still include the two edges of length g,
hence dr(u,v) > 22]?.

Claim 3. CONSTRUCTT(G) returns a tree T such that dg(u,v) < dr(u,v).

Proof. Consider u,v € V. Say g <dg(u,v) < 21 ST
will separate them at, or before, level i. By Lemma 2, dr(u,v)

for some i € N. By property (A) of ball carving, T
> 2D — (u,v). O

- 2’L
Claim 4. CONSTRUCTT(G) returns a tree T such that Eldr(u,v)] < 4alog(D) - dg(u,v).

Proof. Consider u,v € V. Define &; as the event that “vertices v and v get separated at the it" level”,
for i € N. By recursive nature of CONSTRUCTT, a graph at the i*” level has diameter < £. So, property

i 21
(B) of ball carving tells us that Pr[&;] < o - ch(/?;:)). Then,

Eldr(u,v)] = Ziog( 7 Pr[&] - [dr(u,v), given &]  Definition of expectation
< Ziogo(D) 1Pr[5i} 42]? By Lemma 2
< Zi‘fo(D) Yo %) AP Property (B) of ball carving
= dalog(D) - dg(u,v) Simplifying
O
2.2 Ball carving construction
We now give a concrete construction of ball carving that satisfies properties (A) and (B) as defined.
Algorithm 2 BALLCARVING(G = (V, E) with diameter D)
if |V| =1 then
return V
else > Say there are n vertices, where n > 1
¢ + Uniform random value from the range [2, 2]
Pick a random permutation w on V' > Denote 7; as the i*" vertex in 7
forie {1,...,n} do
Vi + B(m;,0) \ Uz ! B(rj,0) > This ensures that Vi,...,V,, is a partition of V'
end for
return Non-empty sets Vi,..., V] > V; = () when vertices in B(m;, ) exist in earlier balls
end if >ie V=0 < Yve B(n;,0),[3j <i,ve B(nj,0)]
Notation For vertex v € V, let us denote 7(v) as v’s position in 7. That is, v = 7 ().
Claim 5. BALLCARVING(G) returns partition Vi, ..., V; such that Vi € {1,...,1},diam(V;) < 2
Proof. Since 0 € [2 59 Z] all constructed balls have diameter smaller than £ 5 O

Definition 6 (Ball cut). A ball B(u,r) is cut if BALLCARVING puts the vertices in B(u,r) in different
partitions of Vi,...,Vi. We say V; cuts B(u,r) if i = argmin;cy[Vi N B(u,r) # 0 and B(u,r) £ Vi].

Lemma 7. For any vertexu € V and radius r € RY, Pr[B(u,r) is cut in BALLCARVING] < O(logn)- 5

Proof. Let 6 be the randomly chosen in BALLCARVING. Consider an ordering of vertices in increasing
distance from w: wvy,vs,...,v,, such that dg(u,v1) < dg(u,v2) < -+ < dg(u,v,). For j < i, since
da(u,vj) < dg(u,v;), if B(v;,0) N B(u,r) # 0, then B(v;,0) N B(u,r) # 0. So,

Pr[B(u,r) is cut] Pr[J!, Event that B(v;,0) cuts B(u,r)]

< >, Pr[B(v;,0) cuts B(u,r)] Union bound

= Y Prlr(v) < min;e;—11{7(v;)}] Pr[V; cuts B(u,r)] Require v; to appear first

= i, (1/i) - Pr[V; cuts B(u,r)] By random permutation 7

< Xin(/i)- oy diam(B(u,r)) < 2r, 0 € [2, 2]
- o5, S

e oog(n) - 5

In the last inequality: For V; to cut B(u,r), we need 8 € (dg(u,v;)—r,dg(u, v;)+7r), hence the numerator

of < 2r; The denominator % is because the range of values that 0 is sampled from is % — % = %. O



Claim 8. BALLCARVING(G) returns partition Vi, ..., V] such that

d
Yu,v € V,Pr[u and v not in same partition] < « - #
Proof. Let r = dg(u,v), then v is on the boundary of B(u,r).
Pr[u and v not in same partition] < Pr[B(u,r) is cut in BALLCARVING]
< O(logn) - 5 By Lemma 7
= O(logn) - dG(g’U) Since r = dg(u, v)
Note: o = O(logn). O

If we apply Claim 8 with Claim 4, we get E[dr(u,v)] < O(log(n)log(D)) - dg(u,v). To remove the
log(D) factor, so that stretch factor ¢ = O(logn), a tighter analysis is needed by only considering vertices
that may cut B(u,dg(u,v)) instead of all n vertices. For details, see Theorem 16 in the appendix.

2.3 Contraction of T

Notice in Figure 1 that we introduce auxiliary vertices in our tree construction and wonder if we can
build a T" without additional vertices (i.e. V(T') = V(G). In this section, we look at CONTRACT which
performs tree contractions to remove the auxiliary vertices. It remains to show that the produced tree
that still preserves desirable properties of a tree embedding.

Algorithm 3 CoNTRACT(T)

while T has an edge (u,w) such that v € V and w is an auxiliary node do
Contract edge (u, w) by merging subtree rooted at u into w, and identifying the new node as u
end while
Multiply weight of every edge by 4
return Modified 7’

Claim 9. CONTRACT returns a tree T such that dr(u,v) < dgp/(u,v) < 4-dp(u,v).

Proof. Suppose auxiliary node w, at level 7, is the closest common ancestor for two arbitrary vertices
u,v € V in the original tree T. Then, dp(u,v) = dr(u,w) + dr(w,v) = 2 - (Z;O__giD Ly <4-L. Since
we do not contract actual vertices, at least one of the (u,w) or (v,w) edges of weight £ will remain.
Multiplying the weights of all remaining edges by 4, we get dr(u,v) <4 - 5 = dps (u,v).

Suppose we only multiply the weights of dr(u,v) by 4, then dg (u,v) = 4dp(u,v). Since we contract
edges, d’»(u,v) can only decrease, so dr(u,v) < 4dr(u,v). O

Remark Claim 9 tells us that one can construct a tree T” without auxiliary variables by incurring an
additional constant factor overhead.

3 Application: Buy-at-bulk network design

Definition 10 (Buy-at-bulk network design problem). Consider a graph G = (V, E) with edge lengths
le fore € E. Let f : RT — RT be a sub-additive cost function. That is, f(z+y) < f(z)+ f(y). Given k
commodity triplets (s;,t;,d;), where s; € V is the source, t; € V is the target, and d; > 0 is the demand
for the it commodity, find a capacity assignment on edges c.(Ve € E) such that

® > .cp flee) - le is minimized
e Ve € E c. > Total flow passing through it

e Flow conservation is satisfied and every commodity’s demand is met



Algorithm 4 NETWORKDESICN(G = (V, E))

ce=0,YVee FE > Initialize capacities
T < CoNSTRUCTT(G) > Build probabilistic tree embedding T of G
T < CoNTRACT(T) > V(T) = V(G) after contraction
forie{l,...,k} do > Solve problem on T

Pg;ti < Find shortest s; — t; path in T > It is unique in a tree

for Edge (u,v) of P!, in T do
va + Find shortest © — v path in G
Ce  Ce + d;, for each edge in e € ng
end for
end for
return {e € E : ¢.}

Remark If f is linear (e.g. f(z+y) = f(z) + f(y)), one can obtain an optimum solution by finding
the shortest path s; — t; for each commodity i, then summing up the required capacities for each edge.

Let us denote I = (G, f, {si,t:,d; }¥_,) as the given instance. Let OPTg(I) be the optimal solution on
G and Ar(I) be the solution produced by NETWORKDESIGN. Denote the costs as |[OPT ()| and |Ar ()|
respectively. We now compare the solutions OPT¢(I) and Ar(I) by comparing edge costs (u,v) € E in
G and tree embedding T

Claim 11. |Ar(I)| using edges in G < |Ap(I)| using edges in T.
Proof. (Sketch) For any pair of vertices u,v € V, dg(u,v) < dr(u,v). O
Claim 12. |Ar(I)| using edges in T < |OPTg(I)| using edges in T.

Proof. (Sketch) Since shortest path in a tree is unique, Ar(I) is optimum for T. So, any other flow
assignment has to incur higher edge capacities. O

Claim 13. E[|OPT¢(I)| using edges in T] < O(logn) - |OPT¢(I)|
Proof. (Sketch) T stretches edges by at most a factor of O(logn). O

By the three claims above, NETWORKDESIGN gives a O(logn)-approximation to the buy-at-bulk
network design problem, in expectation. For details, refer to Section 8.6 in [WS11].
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A Ball carving with O(logn) stretch factor
If we apply Claim 8 with Claim 4, we get E[dr(u,v)] < O(log(n)log(D))-dg(u,v). To remove the log(D)

factor, so that stretch factor ¢ = O(logn), a tighter analysis is needed by only considering vertices that
may cut B(u,dg(u,v)) instead of all n vertices.



A.1 Tighter analysis of ball carving

Fix arbitrary vertices v and v. Let r = dg(u,v). Recall that € is chosen uniformly at random from the
range (2, 2]. A ball B(v;,0) can cut B(u,r) only when dg(u,v;) —r < 6 < dg(u, v;)+r. In other words,
one only needs to consider vertices v; such that % —r<f0-—r<dg(u,v;) <0+r< % + 7.

Lemma 14. Fori €N, ifr > £ then Pr[B(u,r) is cut] < 18

Proof. 1f r > £ then 18 > 1. As Pr[B(u,r) is cut at level 4] is a probability < 1, the claim holds. [

16’

Remark Although lemma 14 is not a very useful inequality per se (since any probability < 1), we use
it to partition the value range of r so that we can say something stronger in the next lemma.

Lemma 15. ForieN, ifr < 2 15, then
r |B(u,D/2)|
Pr[B(u,r) is cut]| < =O(log(—=—F——7"—+
(B is cut) < O(log(1pa )
Proof. Since B(v;,0) cuts B(u,r) only if 2—r < dg(u,v;) < Z+r, we have de(u,v;) € [£&,32] C [£, 2],
D
2
D |
16 I
— |
| |
w oo }
|
U1 Vj Uj4+1 - Uk Dist from u
Suppose we arrange the vertices in ascending order of distance from u: w = vy, v9,...,v,. Denote:
e j—1=|B(u, 16)\ as the number of nodes that have distance < {5 from U
e k= |B(u,Z)| as the number of nodes that have distance < £ from u
We see that only vertices vj,v;41,...,vr have distances from u in the range [16 %] Pictorially, only
vertices in the shaded region could possibly cut B(u,r). As before, let m(v) be the ordering in which

vertex v appears in random permutation 7. Then,

Pr[B(u,r) is cut]
Pr[Uf:j Event that B(v;,0) cuts B(u,r)] Only vj,vj41,..., v can cut

< Zf:j Prlm(v;) < min,<—y{m(v.}] - Pr[v; cuts B(u,r)] Union bound

= Zf:j 1 Pr[B(v;,0) cuts B(u,r)] By random permutation w

< Zf:j 1. 1)2;8 diam(B(u,r)) < 2r,0 € [2, 2]
= IL(H - 1%«) o where Hj, = Y 1

€ 50(log({gPhAk) since Hy, € ©(log(k))

A.2 Plugging into ConstructT

Recall that CONSTRUCTT is a recursive algorithm which handles graphs of diameter < at each level.

For a given pair of vertlces u and v, there exists ¢* € N such that <r=dg(u,v) § 2”71 In other
D 1

words, 5715 <1 < 7*_5 16

levels ¢ € [i* — 4,log(D ) 1].

2L*
So, lemma 15 applies for levels ¢ € [0,¢* — 5] and lemma 14 applies for



Theorem 16. E[dr(u,v)] € O(logn) - dg(u,v)

Proof. As before, let & be the event that “vertices v and v get separated at the it level”.

happen, the ball B(u,r) = B(u, dg(u,v)) must be cut at level i, so Pr[&;] < Pr[B(u,r) is cut at level i].
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Since SI08(P) "1 9i"—i < 95

log () = log(x) —log(y) and [B(u,o0)| < n

O
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