Advanced Algorithms

23 October 2018

Lecture 6: Approximation Algorithms VI

Lecturer: Mohsen Ghaffari

Scribe: Davin Choo

1 Probabilistic tree embedding

Trees are a special kind of graphs without cycles and some **NP**-hard problems are known to admit exact polynomial time solutions on trees. Motivated by existence of efficient algorithms on trees, one hopes to design the following framework for a general graph G = (V, E) with distance metric $d_G(u, v)$ between vertices $u, v \in V$:

- 1. Construct a tree ${\cal T}$
- 2. Solve the problem on T efficiently
- 3. Map the solution back to G
- 4. Argue that transformed solution from T is a good approximation to G.

Ideally, we want to build a tree T such that (i) $d_G(u, v) \leq d_T(u, v)$ and (ii) $d_T(u, v) \leq c \cdot d_G(u, v)$, where c is the stretch of tree embedding. Unfortunately, such a construction is hopeless¹. Instead, we consider a probabilistic tree embedding of G into a collection of trees $\mathcal{T} = \{T_1, \ldots, T_m\}$ such that

- (Over-estimates cost): $\forall T \in \mathcal{T}, d_G(u, v) \leq d_T(u, v)$
- (Expected over-estimation is not too much): $\forall T \in \mathcal{T}, \mathbb{E}_{T \in \mathcal{T}}[d_T(u, v) \leq c \cdot d_G(u, v)]$
- (\mathcal{T} is a probability space): $\sum_{i=1}^{m} \Pr[T_i] = 1$

Bartal [Bar96] gave a construction² for probabilistic tree embedding with poly-logarithmic stretch factor c, and proved³ that a stretch factor $c = \Omega(\log n)$ is required for general graphs. A construction that yields $c = \mathcal{O}(\log n)$, in expectation, was subsequently found by [FRT03].

2 A tight probabilistic tree embedding construction

In this section, we describe a probabilistic tree embedding construction due to [FRT03] with a stretch factor $c = \mathcal{O}(\log n)$. For a graph G = (V, E), let D = diam(G) and distance metric $d_G(u, v)$ denote the distance between two vertices $u, v \in V$. Denote $B(v, r) := \{u \in V : d_G(u, v) \leq r\}$ as the ball of distance r around vertex v, including v.

2.1 Idea: Ball carving

Before we present the actual construction, we argue that the following *ball carving* approach will yield a probabilistic tree embedding.

Definition 1 (Ball carving). Given a graph G = (V, E), partition V into V_1, \ldots, V_l such that

(A)
$$\forall i \in \{1, \ldots, l\}, diam(V_i) \leq \frac{D}{2}$$

(B) $\forall u, v \in V$, $\Pr[u \text{ and } v \text{ not in same partition}] \leq \alpha \cdot \frac{d_G(u,v)}{D}$, for some α

Using ball carving, Algorithm 1 recursively partitions the vertices of a given graph until there is only one vertex remaining. Figure 1 illustrates the process of building a tree T from a given graph G.

Lemma 2. For any two vertices $u, v \in V$, if T separates them at level i, then $\frac{2D}{2^i} \leq d_T(u, v) \leq \frac{4D}{2^i}$.

¹For a cycle G with n vertices, the excluded edge in a constructed tree will cause the stretch factor $c \ge n-1$.

²Theorem 8 in [Bar96]

³Theorem 9 in [Bar96]

Algorithm 1 CONSTRUCTT(G = (V, E) with diameter D)

Figure 1: Recursive ball carving with $\lceil \log_2(D) \rceil$ levels. Red vertices are auxiliary nodes that are not in the original graph G. Denoting the root as the 0^{th} level, edges from level i to level i + 1 have weight $\frac{D}{2^i}$.

Proof. If T splits u and v at level i, then $d_T(u, v)$ has to include two edges of length $\frac{D}{2^i}$, hence $d_T(u, v) \ge \frac{2D}{2^i}$. To be precise, $d_T(u, v) = 2 \cdot (\frac{D}{2^i} + \frac{D}{2^{i+1}} + \cdots) \le \frac{4D}{2^i}$. See picture.

Remark If $u, v \in V$ separate before level *i*, then $d_T(u, v)$ must still include the two edges of length $\frac{D}{2^i}$, hence $d_T(u, v) \geq \frac{2D}{2^i}$.

Claim 3. CONSTRUCTT(G) returns a tree T such that $d_G(u, v) \leq d_T(u, v)$.

Proof. Consider $u, v \in V$. Say $\frac{D}{2^i} \leq d_G(u, v) \leq \frac{D}{2^{i-1}}$ for some $i \in \mathbb{N}$. By property (A) of ball carving, T will separate them at, or before, level i. By Lemma 2, $d_T(u, v) \geq \frac{2D}{2^i} = \frac{D}{2^{i-1}} \geq d_G(u, v)$. \Box

Claim 4. CONSTRUCT T(G) returns a tree T such that $\mathbb{E}[d_T(u, v)] \leq 4\alpha \log(D) \cdot d_G(u, v)$.

Proof. Consider $u, v \in V$. Define \mathcal{E}_i as the event that "vertices u and v get separated at the i^{th} level", for $i \in \mathbb{N}$. By recursive nature of CONSTRUCTT, a graph at the i^{th} level has diameter $\leq \frac{D}{2^i}$. So, property (B) of ball carving tells us that $\Pr[\mathcal{E}_i] \leq \alpha \cdot \frac{d_G(u,v)}{D/2^i}$. Then,

$$\mathbb{E}[d_T(u,v)] = \sum_{i=0}^{\log(D)-1} \Pr[\mathcal{E}_i] \cdot [d_T(u,v), \text{ given } \mathcal{E}_i] \text{ Definition of expectation} \leq \sum_{i=0}^{\log(D)-1} \Pr[\mathcal{E}_i] \cdot \frac{4D}{2^i} \text{ By Lemma } 2 \leq \sum_{i=0}^{\log(D)-1} (\alpha \cdot \frac{d_G(u,v)}{D/2^i}) \cdot \frac{4D}{2^i} \text{ Property (B) of ball carving} = 4\alpha \log(D) \cdot d_G(u,v) \text{ Simplifying}$$

2.2 Ball carving construction

We now give a concrete construction of ball carving that satisfies properties (A) and (B) as defined.

Algorithm 2 BALLCARVING $(G = (V, E)$ with	diameter D)
if $ V = 1$ then	
$\mathbf{return} \ V$	
else	\triangleright Say there are <i>n</i> vertices, where $n > 1$
$\theta \leftarrow \text{Uniform random value from the range}$	$\operatorname{ge}\left[\frac{D}{8},\frac{D}{4}\right]$
Pick a random permutation π on V	\triangleright Denote π_i as the i^{th} vertex in π
for $i \in \{1, \dots, n\}$ do	
$V_i \leftarrow B(\pi_i, \theta) \setminus \bigcup_{i=1}^{i-1} B(\pi_j, \theta)$	\triangleright This ensures that V_1, \ldots, V_n is a partition of V
end for	
return Non-empty sets V_1, \ldots, V_l	$\triangleright V_i = \emptyset$ when vertices in $B(\pi_i, \theta)$ exist in earlier balls
end if	$\triangleright \text{ i.e. } V_i = \emptyset \iff \forall v \in B(\pi_i, \theta), [\exists j < i, v \in B(\pi_j, \theta)]$

Notation For vertex $v \in V$, let us denote $\pi(v)$ as v's position in π . That is, $v = \pi_{\pi(v)}$. **Claim 5.** BALLCARVING(G) returns partition V_1, \ldots, V_l such that $\forall i \in \{1, \ldots, l\}, diam(V_i) \leq \frac{D}{2}$ *Proof.* Since $\theta \in [\frac{D}{8}, \frac{D}{4}]$, all constructed balls have diameter smaller than $\frac{D}{2}$.

Definition 6 (Ball cut). A ball B(u,r) is cut if BALLCARVING puts the vertices in B(u,r) in different partitions of V_1, \ldots, V_l . We say V_i cuts B(u,r) if $i = \operatorname{argmin}_{i \in [l]}[V_i \cap B(u,r) \neq \emptyset$ and $B(u,r) \not\subseteq V_i]$.

Lemma 7. For any vertex $u \in V$ and radius $r \in \mathbb{R}^+$, $\Pr[B(u, r) \text{ is cut in BALLCARVING}] \leq \mathcal{O}(\log n) \cdot \frac{r}{D}$.

Proof. Let θ be the randomly chosen in BALLCARVING. Consider an ordering of vertices in increasing distance from $u: v_1, v_2, \ldots, v_n$, such that $d_G(u, v_1) \leq d_G(u, v_2) \leq \cdots \leq d_G(u, v_n)$. For j < i, since $d_G(u, v_j) \leq d_G(u, v_i)$, if $B(v_i, \theta) \cap B(u, r) \neq \emptyset$, then $B(v_j, \theta) \cap B(u, r) \neq \emptyset$. So,

$$\begin{aligned} \Pr[B(u,r) \text{ is cut}] &= \Pr[\bigcup_{i=1}^{n} \operatorname{Event} \operatorname{that} B(v_i,\theta) \operatorname{cuts} B(u,r)] \\ &\leq \sum_{i=1}^{n} \Pr[B(v_i,\theta) \operatorname{cuts} B(u,r)] \\ &= \sum_{i=1}^{n} \Pr[\pi(v_i) < \min_{j \in [i-1]} \{\pi(v_j)\}] \Pr[V_i \operatorname{cuts} B(u,r)] \\ &= \sum_{i=1}^{n} (1/i) \cdot \Pr[V_i \operatorname{cuts} B(u,r)] \\ &\leq \sum_{i=1}^{n} (1/i) \cdot \frac{2r}{D/8} \\ &= 16 \frac{r}{D} H_n \\ &\in \mathcal{O}(\log(n)) \cdot \frac{r}{D} \end{aligned}$$
Union bound
Require v_i to appear first By random permutation π $diam(B(u,r)) \leq 2r, \ \theta \in [\frac{D}{8}, \frac{D}{4}] \\ H_n = \sum_{i=1}^{n} \frac{1}{i} \end{aligned}$

In the last inequality: For V_i to cut B(u, r), we need $\theta \in (d_G(u, v_i) - r, d_G(u, v_i) + r)$, hence the numerator of $\leq 2r$; The denominator $\frac{D}{8}$ is because the range of values that θ is sampled from is $\frac{D}{4} - \frac{D}{8} = \frac{D}{8}$. \Box

Claim 8. BALLCARVING(G) returns partition V_1, \ldots, V_l such that

 $\forall u, v \in V, \Pr[u \text{ and } v \text{ not in same partition}] \leq \alpha \cdot \frac{d_G(u, v)}{D}$

Proof. Let $r = d_G(u, v)$, then v is on the boundary of B(u, r).

$$\begin{aligned} \Pr[u \text{ and } v \text{ not in same partition}] &\leq & \Pr[B(u, r) \text{ is cut in BALLCARVING}] \\ &\leq & \mathcal{O}(\log n) \cdot \frac{r}{D} & \text{By Lemma 7} \\ &= & \mathcal{O}(\log n) \cdot \frac{d_G(u, v)}{D} & \text{Since } r = d_G(u, v) \end{aligned}$$

e: $\alpha = \mathcal{O}(\log n). \end{aligned}$

Note: $\alpha = \mathcal{O}(\log n)$.

If we apply Claim 8 with Claim 4, we get $\mathbb{E}[d_T(u,v)] \leq \mathcal{O}(\log(n)\log(D)) \cdot d_G(u,v)$. To remove the $\log(D)$ factor, so that stretch factor $c = \mathcal{O}(\log n)$, a tighter analysis is needed by only considering vertices that may cut $B(u, d_G(u, v))$ instead of all n vertices. For details, see Theorem 16 in the appendix.

$\mathbf{2.3}$ Contraction of T

Notice in Figure 1 that we introduce auxiliary vertices in our tree construction and wonder if we can build a T without additional vertices (i.e. V(T) = V(G)). In this section, we look at CONTRACT which performs tree contractions to remove the auxiliary vertices. It remains to show that the produced tree that still preserves desirable properties of a tree embedding.

Algorithm 3 $CONTRACT(T)$
while T has an edge (u, w) such that $u \in V$ and w is an auxiliary node do
Contract edge (u, w) by merging subtree rooted at u into w , and identifying the new node as u
end while
Multiply weight of every edge by 4
return Modified T'

Claim 9. CONTRACT returns a tree T such that $d_T(u, v) \leq d_{T'}(u, v) \leq 4 \cdot d_T(u, v)$.

Proof. Suppose auxiliary node w, at level i, is the closest common ancestor for two arbitrary vertices $u, v \in V$ in the original tree T. Then, $d_T(u, v) = d_T(u, w) + d_T(w, v) = 2 \cdot (\sum_{j=i}^{\log D} \frac{D}{2^j}) \leq 4 \cdot \frac{D}{2^i}$. Since we do not contract actual vertices, at least one of the (u, w) or (v, w) edges of weight $\frac{D}{2^i}$ will remain. Multiplying the weights of all remaining edges by 4, we get $d_T(u, v) \leq 4 \cdot \frac{D}{2^i} = d_{T'}(u, v)$.

Suppose we only multiply the weights of $d_T(u, v)$ by 4, then $d_{T'}(u, v) = 4d_T(u, v)$. Since we contract edges, $d'_T(u, v)$ can only decrease, so $d_{T'}(u, v) \leq 4d_T(u, v)$.

Remark Claim 9 tells us that one can construct a tree T' without auxiliary variables by incurring an additional constant factor overhead.

3 Application: Buy-at-bulk network design

Definition 10 (Buy-at-bulk network design problem). Consider a graph G = (V, E) with edge lengths l_e for $e \in E$. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a sub-additive cost function. That is, $f(x+y) \leq f(x) + f(y)$. Given k commodity triplets (s_i, t_i, d_i) , where $s_i \in V$ is the source, $t_i \in V$ is the target, and $d_i \geq 0$ is the demand for the i^{th} commodity, find a capacity assignment on edges $c_e(\forall e \in E)$ such that

- $\sum_{e \in E} f(c_e) \cdot l_e$ is minimized
- $\forall e \in E, c_e \geq Total flow passing through it$
- Flow conservation is satisfied and every commodity's demand is met

Algorithm 4 NETWORKDESIGN $(G = (V, E))$	
$c_e = 0, \forall e \in E$	▷ Initialize capacities
$T \leftarrow \text{ConstructT}(G)$	\triangleright Build probabilistic tree embedding T of G
$T \leftarrow \text{Contract}(T)$	$\triangleright V(T) = V(G)$ after contraction
for $i \in \{1, \dots, k\}$ do	\triangleright Solve problem on T
$P_{s_i,t_i}^T \leftarrow \text{Find shortest } s_i - t_i \text{ path in } T$	\triangleright It is unique in a tree
for Edge (u, v) of P_{s_i, t_i}^T in T do	
$P_{u,v}^G \leftarrow$ Find shortest $u - v$ path in G	
$c_e \leftarrow c_e + d_i$, for each edge in $e \in P_{u,v}^G$	
end for	
end for	
return $\{e \in E : c_e\}$	

Remark If f is linear (e.g. f(x + y) = f(x) + f(y)), one can obtain an optimum solution by finding the shortest path $s_i \to t_i$ for each commodity i, then summing up the required capacities for each edge.

Let us denote $I = (G, f, \{s_i, t_i, d_i\}_{i=1}^k)$ as the given instance. Let $OPT_G(I)$ be the optimal solution on G and $A_T(I)$ be the solution produced by NETWORKDESIGN. Denote the costs as $|OPT_G(I)|$ and $|A_T(I)|$ respectively. We now compare the solutions $OPT_G(I)$ and $A_T(I)$ by comparing edge costs $(u, v) \in E$ in G and tree embedding T.

Claim 11. $|A_T(I)|$ using edges in $G \leq |A_T(I)|$ using edges in T.

Proof. (Sketch) For any pair of vertices $u, v \in V$, $d_G(u, v) \leq d_T(u, v)$.

Claim 12. $|A_T(I)|$ using edges in $T \leq |OPT_G(I)|$ using edges in T.

Proof. (Sketch) Since shortest path in a tree is unique, $A_T(I)$ is optimum for T. So, any other flow assignment has to incur higher edge capacities.

Claim 13. $\mathbb{E}[|OPT_G(I)| \text{ using edges in } T] \leq \mathcal{O}(\log n) \cdot |OPT_G(I)|$

Proof. (Sketch) T stretches edges by at most a factor of $\mathcal{O}(\log n)$.

By the three claims above, NETWORKDESIGN gives a $\mathcal{O}(\log n)$ -approximation to the buy-at-bulk network design problem, in expectation. For details, refer to Section 8.6 in [WS11].

References

- [Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 184–193. IEEE, 1996.
- [FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 448–455. ACM, 2003.
- [WS11] David P Williamson and David B Shmoys. *The design of approximation algorithms*. Cambridge university press, 2011.

A Ball carving with $O(\log n)$ stretch factor

If we apply Claim 8 with Claim 4, we get $\mathbb{E}[d_T(u,v)] \leq \mathcal{O}(\log(n)\log(D)) \cdot d_G(u,v)$. To remove the $\log(D)$ factor, so that stretch factor $c = \mathcal{O}(\log n)$, a tighter analysis is needed by only considering vertices that may cut $B(u, d_G(u, v))$ instead of all n vertices.

A.1 Tighter analysis of ball carving

Fix arbitrary vertices u and v. Let $r = d_G(u, v)$. Recall that θ is chosen uniformly at random from the range $[\frac{D}{8}, \frac{D}{4}]$. A ball $B(v_i, \theta)$ can cut B(u, r) only when $d_G(u, v_i) - r \le \theta \le d_G(u, v_i) + r$. In other words, one only needs to consider vertices v_i such that $\frac{D}{8} - r \le \theta - r \le d_G(u, v_i) \le \theta + r \le \frac{D}{4} + r$.

Lemma 14. For $i \in \mathbb{N}$, if $r > \frac{D}{16}$, then $\Pr[B(u, r) \text{ is } cut] \leq \frac{16r}{D}$

Proof. If $r > \frac{D}{16}$, then $\frac{16r}{D} > 1$. As $\Pr[B(u, r)$ is cut at level i] is a probability ≤ 1 , the claim holds. \Box

Remark Although lemma 14 is not a very useful inequality per se (since any probability ≤ 1), we use it to partition the value range of r so that we can say something stronger in the next lemma.

Lemma 15. For $i \in \mathbb{N}$, if $r \leq \frac{D}{16}$, then

$$\Pr[B(u,r) \text{ is } cut] \le \frac{r}{D} \mathcal{O}(\log(\frac{|B(u,D/2)|}{|B(u,D/16)|}))$$

Proof. Since $B(v_i, \theta)$ cuts B(u, r) only if $\frac{D}{8} - r \le d_G(u, v_i) \le \frac{D}{4} + r$, we have $d_G(u, v_i) \in [\frac{D}{16}, \frac{5D}{16}] \subseteq [\frac{D}{16}, \frac{D}{2}]$.

Suppose we arrange the vertices in ascending order of distance from $u: u = v_1, v_2, \ldots, v_n$. Denote:

- $j-1 = |B(u, \frac{D}{16})|$ as the number of nodes that have distance $\leq \frac{D}{16}$ from u
- $k = |B(u, \frac{D}{2})|$ as the number of nodes that have distance $\leq \frac{D}{2}$ from u

We see that only vertices $v_j, v_{j+1}, \ldots, v_k$ have distances from u in the range $\left[\frac{D}{16}, \frac{D}{2}\right]$. Pictorially, only vertices in the shaded region could possibly cut B(u, r). As before, let $\pi(v)$ be the ordering in which vertex v appears in random permutation π . Then,

$$\begin{aligned} & \Pr[B(u,r) \text{ is cut}] \\ &= & \Pr[\bigcup_{i=j}^{k} \text{ Event that } B(v_i,\theta) \text{ cuts } B(u,r)] & \text{Only } v_j, v_{j+1}, \dots, v_k \text{ can cut} \\ &\leq & \sum_{i=j}^{k} \Pr[\pi(v_i) < \min_{z < [i-1]} \{\pi(v_z\}] \cdot \Pr[v_i \text{ cuts } B(u,r)] & \text{Union bound} \\ &= & \sum_{i=j}^{k} \frac{1}{i} \cdot \Pr[B(v_i,\theta) \text{ cuts } B(u,r)] & \text{By random permutation } \pi \\ &\leq & \sum_{i=j}^{k} \frac{1}{i} \cdot \frac{2r}{D/8} & diam(B(u,r)) \leq 2r, \theta \in [\frac{D}{8}, \frac{D}{4}] \\ &= & \frac{r}{D}(H_k - H_j) & \text{where } H_k = \sum_{i=1}^{k} \frac{1}{i} \\ &\in & \frac{r}{D}\mathcal{O}(\log(\frac{|B(u,D/2)|}{|B(u,D/16)|})) & \text{since } H_k \in \Theta(\log(k)) \end{aligned}$$

A.2 Plugging into ConstructT

Recall that CONSTRUCTT is a recursive algorithm which handles graphs of diameter $\leq \frac{D}{2^i}$ at each level. For a given pair of vertices u and v, there exists $i^* \in \mathbb{N}$ such that $\frac{D}{2^{i^*}} \leq r = d_G(u, v) \leq \frac{D}{2^{i^*-1}}$. In other words, $\frac{D}{2^{i^*-4}} \frac{1}{16} \leq r \leq \frac{D}{2^{i^*-5}} \frac{1}{16}$. So, lemma 15 applies for levels $i \in [0, i^* - 5]$ and lemma 14 applies for levels $i \in [i^* - 4, \log(D) - 1]$.

Theorem 16. $\mathbb{E}[d_T(u,v)] \in \mathcal{O}(\log n) \cdot d_G(u,v)$

Proof. As before, let \mathcal{E}_i be the event that "vertices u and v get separated at the i^{th} level". For \mathcal{E}_i to happen, the ball $B(u, r) = B(u, d_G(u, v))$ must be cut at level i, so $\Pr[\mathcal{E}_i] \leq \Pr[B(u, r)$ is cut at level i].

$$\begin{split} \mathbb{E}[d_{T}(u,v)] &= \sum_{i=0}^{\log(D)-1} \Pr[\mathcal{E}_{i}] \cdot [d_{T}(u,v), \text{ given } \mathcal{E}_{i}] & \text{Definition} \\ &\leq \sum_{i=0}^{\log(D)-1} \Pr[\mathcal{E}_{i}] \cdot \frac{4D}{2^{i}} & \text{By Lemm} \\ &= \sum_{i=0}^{i^{*}-5} \Pr[\mathcal{E}_{i}] \cdot \frac{4D}{2^{i}} + \sum_{i=i^{*}-4}^{\log(D)-1} \Pr[\mathcal{E}_{i}] \cdot \frac{4D}{2^{i}} & \text{Split into} \\ &\leq \sum_{i=0}^{i^{*}-5} \frac{r}{D/2^{i}} \mathcal{O}(\log(\frac{|B(u,D/2^{i+1})|}{|B(u,D/2^{i+4})|})) \cdot \frac{4D}{2^{i}} + \sum_{i=i^{*}-4}^{\log(D)-1} \Pr[\mathcal{E}_{i}] \cdot \frac{4D}{2^{i}} & \text{By Lemm} \\ &\leq \sum_{i=0}^{i^{*}-5} \frac{r}{D/2^{i}} \mathcal{O}(\log(\frac{|B(u,D/2^{i+1})|}{|B(u,D/2^{i+4})|})) \cdot \frac{4D}{2^{i}} + \sum_{i=i^{*}-4}^{\log(D)-1} \frac{16r}{D/2^{i^{*}-4}} \cdot \frac{4D}{2^{i}} & \text{By Lemm} \\ &= 4r \sum_{i=0}^{i^{*}-5} \mathcal{O}(\log(\frac{|B(u,D/2^{i+1})|}{|B(u,D/2^{i+4})|})) + \sum_{i=i^{*}-4}^{\log(D)-1} 4 \cdot 2^{i^{*}-i} \cdot r & \text{Simplifying} \\ &\leq 4r \sum_{i=0}^{i^{*}-5} \mathcal{O}(\log(\frac{|B(u,D/2^{i+1})|}{|B(u,D/2^{i+4})|})) + 2^{7}r & \text{Since } \sum_{i}^{l_{i}} \\ &= 4r \mathcal{O}(\log(n)) + 2^{7}r & \log(\frac{x}{y}) = \\ &\in \mathcal{O}(\log n)r \end{split}$$

Definition of expectation
By Lemma 2
Split into cases:
$$\frac{D}{2^{i^*-4}} \frac{1}{16} \le r \le \frac{D}{2^{i^*-5}} \frac{1}{16}$$

By Lemma 15
By Lemma 14 with respect to $D/2^{i^*-4}$
Simplifying
Since $\sum_{i=i^*-4}^{\log(D)-1} 2^{i^*-i} \le 2^5$
 $\log(\frac{x}{y}) = \log(x) - \log(y)$ and $|B(u,\infty)| \le n$