1 Streaming and sketching algorithms

Thus far, we have been ensuring that our algorithms run fast. What if our system does not have sufficient memory to store all data to post-process it? For example, a router has relatively small amount of memory while tremendous amount of routing data flows through it. In a memory constrained setting, can one compute something meaningful, possible approximately, with limited amount of memory?

More formally, we now look at a slightly different class of algorithms where data elements from $[n]=\{1, \ldots, n\}$ arrive in one at a time, in a stream $S=a_{1}, \ldots, a_{m}$, where $a_{i} \in[n]$ arrives in the $i^{t h}$ time step. At each step, our algorithm performs some computation ${ }^{1}$ and discards the item a_{i}. At the end of the stream ${ }^{2}$, the algorithm should give us a value that approximates some value of interest.

One class of interesting problems is computing moments of a given stream S. For items $j \in[n]$, define f_{j} as the number of times j appears in a stream S. Then, the $k^{t h}$ moment of a stream S is defined as $\sum_{j=1}^{n}\left(f_{j}\right)^{k}$. When $k=1$, the first moment $\sum_{j=1}^{n} f_{j}=m$ is simply the number of elements in the stream S. When $k=0$, by associating $0^{0}=0$, the zeroth moment $\sum_{j=1}^{n}\left(f_{j}\right)^{0}$ is the number of distinct elements in the stream S. In this lecture, we will discuss methods to approximate the first and zeroth moments of a given stream S.

1.1 Typical tricks

Before we begin, let us describe two typical tricks used to amplify success probabilities of randomized algorithms. Suppose we have a randomized algorithm A that returns an unbiased estimate of a quantity of interest X with probability $p>0.5$.

Trick 1: Reduce variance Run j independent copies of A on the same instance I, and return the mean $\frac{1}{j} \sum_{i=1}^{j} A(I)$. While $\mathbb{E}\left(\frac{1}{j} \sum_{i=1}^{j} A(I)\right)=\mathbb{E}(A(I))=X$, the variance drops by a factor of j.
Trick 2: Improve success Run k independent copies of A on the same instance I, and return the median. As each copy of A succeeds (independently) with probability $p>0.5$, the probability that more than half of them fails (and hence the median fails) drops exponential with respect to k.

Let $\epsilon>0$ and $\delta>0$ denote the precision factor and error probabilities respectively. The abovementioned two tricks can be combined with A (See Algorithm 1) to yield a ($1 \pm \epsilon$)-approximation to X that succeeds with probability $>1-\delta$.

```
Algorithm \(1 \operatorname{Robust}(A, I, \epsilon, \delta)\)
    \(C \leftarrow \emptyset \quad \triangleright\) Initialize candidate outputs
    for \(k=\mathcal{O}\left(\log \frac{1}{\delta}\right)\) times do
        sum \(\leftarrow 0\)
        for \(j=\mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)\) times do
            sum \(\leftarrow \operatorname{sum}+A(I)\)
        end for
        Add \(\frac{\text { sum }}{j}\) to candidates \(C \quad \triangleright\) Include new sample of mean
    end for
    return Median of \(C \quad \triangleright\) Return median
```

[^0]
2 Warm up: Majority element

Definition 1 ("Majority in a stream" problem). Given a stream $S=\left\{a_{1}, \ldots, a_{m}\right\}$ of items from $[n]=$ $\{1, \ldots, n\}$, with an element $j \in[n]$ that appears strictly more than $\frac{m}{2}$ times in S, find j.

```
Algorithm 2 MajorityStream \(\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)\)
    guess \(\leftarrow 0\)
    count \(\leftarrow 0\)
    for \(a_{i} \in S\) do \(\quad \triangleright\) Items arrive in streaming fashion
        if \(a_{i}=\) guess then
            count \(\leftarrow\) count +1
        else if count \(>1\) then
            count \(\leftarrow\) count -1
        else
            guess \(\leftarrow a_{i}\)
        end if
    end for
    return guess
```

Example Consider a stream $S=\{1,3,3,7,5,3,2,3\}$. The table below shows how guess and count are updated as each element arrives.

Stream elements	1	3	3	7	5	3	2	3
Guess	1	3	3	3	5	3	2	3
Count	1	1	2	1	1	1	1	1

One can verify that MajorityStream uses $\mathcal{O}(\log n+\log m)$ bits to store guess and counter.
Claim 2. MajorityStream correctly finds element $j \in[n]$ which appears $>\frac{m}{2}$ times in $S=\left\{a_{1}, \ldots, a_{m}\right\}$.
Proof. (Sketch) Match each other element in S with a distinct instance of j. Since j appears $>\frac{m}{2}$ times, at least one j is unmatched. As each matching cancels out count, only j could be the final guess.

Remark If no element appears $>\frac{m}{2}$ times, then MajorityStream is not guaranteed to return the most frequent element. For example, MajorityStream $(S=\{1,3,4,3,2\})$ returns 2 instead of 3.

3 Estimating the first moment of a stream

A trivial exact solution would be to use $\mathcal{O}(\log m)$ bits to maintain a counter, incrementing for each element observed. For some upper bound M, consider the sequence $(1+\epsilon),(1+\epsilon)^{2},(1+\epsilon)^{3}, \ldots,(1+\epsilon)^{\log _{1+\epsilon} M}$. For any stream length m, there exists $i \in \mathbb{N}$ such that $(1+\epsilon)^{i} \leq m \leq(1+\epsilon)^{i+1}$. Hence, to obtain a $(1+\epsilon)$-approximation of the first moment, it suffices to track the exponent i to estimate the length of m. For $\epsilon \in \Theta(1)$, this can be done in $\mathcal{O}(\log \log m)$ bits.

```
Algorithm \(3 \operatorname{Morris}\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)\)
    \(x \leftarrow 0\)
    for \(a_{i} \in S\) do \(\quad \triangleright\) Items arrive in streaming fashion
        \(r \leftarrow\) Random probability from \([0,1]\)
        if \(r \leq 2^{-x}\) then \(\quad \triangleright\) If not, \(x\) is unchanged.
            \(x \leftarrow x+1\)
        end if
    end for
    return \(2^{x}-1 \quad \triangleright\) Estimate \(m\) by \(2^{x}-1\)
```

Morris is due to [Mor78]. The intuition is that we increase the counter (and hence double the estimate) when we observe 2^{x} new items in expectation. For analysis, let us denote X_{m} as the value of counter x after exactly m items arrive.

Theorem 3. $\mathbb{E}\left[2^{X_{m}}-1\right]=m$. That is, Morris is an unbiased estimator for the length of the stream.
Proof. Equivalently, let us prove $\mathbb{E}\left[2^{X_{m}}\right]=m+1$, by induction on $m \in \mathbb{N} \backslash\{0\}$. On the first element $(m=1), x$ increments with probability 1 , so $\mathbb{E}\left[2^{X_{1}}\right]=2^{1}=m+1$. Suppose it holds for some $m \in \mathbb{N}$, then

$$
\mathbb{E}\left[2^{X_{m+1}}\right]=\sum_{j=1}^{m} \mathbb{E}\left[2^{X_{m+1}} \mid X_{m}=j\right] \operatorname{Pr}\left[X_{m}=j\right] \quad \text { Condition on previous value of } X_{m}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{m}\left(2^{j+1} \cdot 2^{-j}+2^{j} \cdot\left(1-2^{-j}\right)\right) \cdot \operatorname{Pr}\left[X_{m}=j\right] \\
& \left.=\sum_{j=1}^{m=1} 2^{j}+1\right) \cdot \operatorname{Pr}\left[X_{m}=j\right] \\
& =\sum_{j=1}^{m} 2^{j} \cdot \operatorname{Pr}\left[X_{m}=j\right]+\sum_{j=1}^{m} \operatorname{Pr}\left[X_{m}=j\right] \\
& =\mathbb{E}\left[2^{X_{m}}\right]+\sum_{j=1}^{m} \operatorname{Pr}\left[X_{m}=j\right] \\
& =\mathbb{E}\left[2^{X_{m}}\right]+1 \\
& =(m+1)+1 \\
& =m+2
\end{aligned}
$$

x increments with probability 2^{-j}
Simplifying
Splitting the sum
Definition of $\mathbb{E}\left[2^{X_{m}}\right]$
$\sum_{i=1}^{m} \operatorname{Pr}\left[X_{m}=j\right]=1$
Induction hypothesis

Note that we sum up to m because $x \in[1, m]$ after m items.
Claim 4. $\mathbb{E}\left[2^{2 X_{m}}\right]=\frac{3}{2} m^{2}+\frac{3}{2} m+1$
Proof. Exercise.
Claim 5. $\mathbb{E}\left[\left(2^{X_{m}}-1-m\right)^{2}\right] \leq \frac{m^{2}}{2}$
Proof. Exercise. Use the Claim 4.
Theorem 6. For $\epsilon>0, \operatorname{Pr}\left[\left|\left(2^{X_{m}}-1\right)-m\right|>\epsilon m\right] \leq \frac{1}{2 \epsilon^{2}}$
Proof.

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\left(2^{X_{m}}-1\right)-m\right|>\epsilon m\right] & =\operatorname{Pr}\left[\left(\left(2^{X_{m}}-1\right)-m\right)^{2}>(\epsilon m)^{2}\right] & & \text { Square both sides } \\
& \leq \frac{\mathbb{E}\left[\left(\left(2^{X_{m}}-1\right)-m\right)^{2}\right]}{(\epsilon m)^{2}} & & \text { Markov's inequality } \\
& \leq \frac{m^{2} / 2}{\epsilon_{1}^{2} m^{2}} & & \text { By Claim 5 } \\
& =\frac{1}{2^{2}} & &
\end{aligned}
$$

Remark Using the discussion in Section 1.1, we can run Morris multiple times to obtain a ($1 \pm \epsilon$)approximation of the first moment of a stream that succeeds with probability $>1-\delta$. For instance, repeating Morris $\frac{10}{\epsilon^{2}}$ times and reporting the mean $\widehat{m}, \operatorname{Pr}[|\widehat{m}-m|>\epsilon m] \leq \frac{1}{20}$.

4 Estimating the zeroth moment of a stream

Trivial exact solutions would be to either use $\mathcal{O}(n)$ bits to track if element exists, or use $\mathcal{O}(m \log n)$ bits to remember the whole stream. Suppose there are D distinct items in the whole stream. In this section, we show that one can in fact make do with only $\mathcal{O}(\log n)$ bits to obtain an approximation of D.

4.1 An idealized algorithm

Consider the following algorithm sketch:

1. Take a uniformly random hash function $h:\{1, \ldots, m\} \rightarrow[0,1]$
2. As items $a_{i} \in S$ arrive, track $z=\min \left\{h\left(a_{i}\right)\right\}$
3. In the end, output $\frac{1}{z}-1$

Since we are randomly hashing elements into the range [0, 1], we expect the minimum hash output to be $\frac{1}{D+1}^{3}$, so $\mathbb{E}\left[\frac{1}{z}-1\right]=D$. Unfortunately, storing a uniformly random hash function that maps to the interval $[0,1]$ is infeasible. As storing real numbers is memory intensive, one possible fix is to discretize the interval $[0,1]$, using $\mathcal{O}(\log n)$ bits per hash output. However, storing this hash function would still require $\mathcal{O}(n \log n)$ space.

[^1]
4.2 An actual algorithm for estimating the zeroth moment

Instead of a uniformly random hash function that maps to the interval $[0,1]$, we randomly select a hash from a family of pairwise independent hash functions.

Definition 7 (Family of pairwise independent hash functions). $\mathcal{H}_{n, m}$ is a family of pairwise independent hash functions if

- (Hash definition): $\forall h \in \mathcal{H}_{n, m}, h:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$
- (Uniform hashing): $\forall x \in\{1, \ldots, n\}, \operatorname{Pr}_{h \in \mathcal{H}_{n, m}}[h(x)=i]=\frac{1}{m}$
- (Pairwise independent) $\forall x, y \in\{1, \ldots, n\}, x \neq y, \operatorname{Pr}_{h \in \mathcal{H}_{n, m}}[h(x)=i \wedge h(y)=j]=\frac{1}{m^{2}}$

Remark For this section, we care only about $m=n$, and write $\mathcal{H}_{n, n}$ as \mathcal{H}_{n}.
Claim 8. Let n be a prime number. Then, $\mathcal{H}_{n}=\left\{h_{a, b}: h(x)=a x+b \bmod n, \forall a, b \in \mathbb{Z}_{n}\right\}$ is a family of pairwise independent hash functions.

Proof. (Sketch) For any given a, b,

- There is a unique value of $h(x) \bmod n$, out of n possibilities.
- The system $\{a x+b=i \bmod n, a y+b=j \bmod n\}$ has a unique solution for (x, y), out of n^{2} possibilities.

Remark If n is not a prime, we know there exists a prime p such that $n \leq p \leq 2 n$, so we round n up to p. Storing a random hash from \mathcal{H}_{n} is then storing the numbers a and b in $\mathcal{O}(\log n)$ bits.

We now present an algorithm [FM85] which estimates the zeroth moment of a stream and defer the analysis to the next lecture. In FM, zEROS refer to the number of trailing zeroes in the binary representation of $h\left(a_{i}\right)$. For example, if $h\left(a_{i}\right)=20=(\ldots 10100)_{2}$, then $\operatorname{zeros}\left(h\left(a_{i}\right)\right)=2$.

```
Algorithm \(4 \operatorname{FM}\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)\)
    \(h \leftarrow\) Random hash from \(\mathcal{H}_{n, n}\)
    \(Z \leftarrow 0\)
    for \(a_{i} \in S\) do \(\quad \triangleright\) Items arrive in streaming fashion
        \(Z=\max \left\{Z, \operatorname{ZEROS}\left(h\left(a_{i}\right)\right)\right\} \quad \triangleright \operatorname{ZEROS}\left(h\left(a_{i}\right)\right)=\#\) trailing zeroes in binary representation of \(h\left(a_{i}\right)\)
    end for
    return \(2^{Z} \cdot \sqrt{2} \quad \triangleright\) Estimate of \(D\)
```


References

[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of computer and system sciences, 31(2):182-209, 1985.
[Mor78] Robert Morris. Counting large numbers of events in small registers. Communications of the ACM, 21(10):840-842, 1978.

[^0]: ${ }^{1}$ Usually this is constant time so we ignore the runtime.
 ${ }^{2}$ In general, the length of the stream, m, may not be known.

[^1]: ${ }^{3}$ See https://en.wikipedia.org/wiki/Order_statistic

