
Advanced Algorithms 30 October 2018

Lecture 7: Streaming and Sketching Algorithms I
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Streaming and sketching algorithms

Thus far, we have been ensuring that our algorithms run fast. What if our system does not have sufficient
memory to store all data to post-process it? For example, a router has relatively small amount of memory
while tremendous amount of routing data flows through it. In a memory constrained setting, can one
compute something meaningful, possible approximately, with limited amount of memory?

More formally, we now look at a slightly different class of algorithms where data elements from
[n] = {1, . . . , n} arrive in one at a time, in a stream S = a1, . . . , am, where ai ∈ [n] arrives in the ith

time step. At each step, our algorithm performs some computation1 and discards the item ai. At the
end of the stream2, the algorithm should give us a value that approximates some value of interest.

One class of interesting problems is computing moments of a given stream S. For items j ∈ [n], define
fj as the number of times j appears in a stream S. Then, the kth moment of a stream S is defined as∑n
j=1(fj)

k. When k = 1, the first moment
∑n
j=1 fj = m is simply the number of elements in the stream

S. When k = 0, by associating 00 = 0, the zeroth moment
∑n
j=1(fj)

0 is the number of distinct elements
in the stream S. In this lecture, we will discuss methods to approximate the first and zeroth moments
of a given stream S.

1.1 Typical tricks

Before we begin, let us describe two typical tricks used to amplify success probabilities of randomized
algorithms. Suppose we have a randomized algorithm A that returns an unbiased estimate of a quantity
of interest X with probability p > 0.5.

Trick 1: Reduce variance Run j independent copies of A on the same instance I, and return the
mean 1

j

∑j
i=1A(I). While E(1

j

∑j
i=1A(I)) = E(A(I)) = X, the variance drops by a factor of j.

Trick 2: Improve success Run k independent copies of A on the same instance I, and return the
median. As each copy of A succeeds (independently) with probability p > 0.5, the probability that
more than half of them fails (and hence the median fails) drops exponential with respect to k.

Let ε > 0 and δ > 0 denote the precision factor and error probabilities respectively. The above-
mentioned two tricks can be combined with A (See Algorithm 1) to yield a (1± ε)-approximation to X
that succeeds with probability > 1− δ.

Algorithm 1 Robust(A, I, ε, δ)

C ← ∅ . Initialize candidate outputs
for k = O(log 1

δ) times do
sum← 0
for j = O(1

ε2) times do
sum← sum+A(I)

end for
Add sum

j to candidates C . Include new sample of mean
end for
return Median of C . Return median

1Usually this is constant time so we ignore the runtime.
2In general, the length of the stream, m, may not be known.

1

2 Warm up: Majority element

Definition 1 (“Majority in a stream” problem). Given a stream S = {a1, . . . , am} of items from [n] =
{1, . . . , n}, with an element j ∈ [n] that appears strictly more than m

2 times in S, find j.

Algorithm 2 MajorityStream(S = {a1, . . . , am})
guess← 0
count← 0
for ai ∈ S do . Items arrive in streaming fashion

if ai = guess then
count← count+ 1

else if count > 1 then
count← count− 1

else
guess← ai

end if
end for
return guess

Example Consider a stream S = {1, 3, 3, 7, 5, 3, 2, 3}. The table below shows how guess and count are
updated as each element arrives.

Stream elements 1 3 3 7 5 3 2 3

Guess 1 3 3 3 5 3 2 3
Count 1 1 2 1 1 1 1 1

One can verify that MajorityStream uses O(log n+ logm) bits to store guess and counter.

Claim 2. MajorityStream correctly finds element j ∈ [n] which appears > m
2 times in S = {a1, . . . , am}.

Proof. (Sketch) Match each other element in S with a distinct instance of j. Since j appears > m
2 times,

at least one j is unmatched. As each matching cancels out count, only j could be the final guess.

Remark If no element appears > m
2 times, then MajorityStream is not guaranteed to return the

most frequent element. For example, MajorityStream(S = {1, 3, 4, 3, 2}) returns 2 instead of 3.

3 Estimating the first moment of a stream

A trivial exact solution would be to useO(logm) bits to maintain a counter, incrementing for each element
observed. For some upper bound M , consider the sequence (1 + ε), (1 + ε)2, (1 + ε)3, . . . , (1 + ε)log1+εM .
For any stream length m, there exists i ∈ N such that (1 + ε)i ≤ m ≤ (1 + ε)i+1. Hence, to obtain a
(1 + ε)-approximation of the first moment, it suffices to track the exponent i to estimate the length of
m. For ε ∈ Θ(1), this can be done in O(log logm) bits.

Algorithm 3 Morris(S = {a1, . . . , am})
x← 0
for ai ∈ S do . Items arrive in streaming fashion

r ← Random probability from [0, 1]
if r ≤ 2−x then . If not, x is unchanged.

x← x+ 1
end if

end for
return 2x − 1 . Estimate m by 2x − 1

Morris is due to [Mor78]. The intuition is that we increase the counter (and hence double the
estimate) when we observe 2x new items in expectation. For analysis, let us denote Xm as the value of
counter x after exactly m items arrive.

2

Theorem 3. E[2Xm − 1] = m. That is, Morris is an unbiased estimator for the length of the stream.

Proof. Equivalently, let us prove E[2Xm] = m + 1, by induction on m ∈ N \ {0}. On the first element
(m = 1), x increments with probability 1, so E[2X1] = 21 = m + 1. Suppose it holds for some m ∈ N,
then

E[2Xm+1] =
∑m
j=1 E[2Xm+1 |Xm = j] Pr[Xm = j] Condition on previous value of Xm

=
∑m
j=1(2j+1 · 2−j + 2j · (1− 2−j)) · Pr[Xm = j] x increments with probability 2−j

=
∑m
j=1(2j + 1) · Pr[Xm = j] Simplifying

=
∑m
j=1 2j · Pr[Xm = j] +

∑m
j=1 Pr[Xm = j] Splitting the sum

= E[2Xm] +
∑m
j=1 Pr[Xm = j] Definition of E[2Xm]

= E[2Xm] + 1
∑m
i=1 Pr[Xm = j] = 1

= (m+ 1) + 1 Induction hypothesis
= m+ 2

Note that we sum up to m because x ∈ [1,m] after m items.

Claim 4. E[22Xm] = 3
2m

2 + 3
2m+ 1

Proof. Exercise.

Claim 5. E[(2Xm − 1−m)2] ≤ m2

2

Proof. Exercise. Use the Claim 4.

Theorem 6. For ε > 0, Pr[|(2Xm − 1)−m| > εm] ≤ 1
2ε2

Proof.

Pr[|(2Xm − 1)−m| > εm] = Pr[((2Xm − 1)−m)2 > (εm)2] Square both sides

≤ E[((2Xm−1)−m)2]
(εm)2 Markov’s inequality

≤ m2/2
ε2m2 By Claim 5

= 1
2ε2

Remark Using the discussion in Section 1.1, we can run Morris multiple times to obtain a (1 ± ε)-
approximation of the first moment of a stream that succeeds with probability > 1 − δ. For instance,
repeating Morris 10

ε2 times and reporting the mean m̂, Pr[|m̂−m| > εm] ≤ 1
20 .

4 Estimating the zeroth moment of a stream

Trivial exact solutions would be to either use O(n) bits to track if element exists, or use O(m log n) bits
to remember the whole stream. Suppose there are D distinct items in the whole stream. In this section,
we show that one can in fact make do with only O(log n) bits to obtain an approximation of D.

4.1 An idealized algorithm

Consider the following algorithm sketch:

1. Take a uniformly random hash function h : {1, . . . ,m} → [0, 1]

2. As items ai ∈ S arrive, track z = min{h(ai)}

3. In the end, output 1
z − 1

Since we are randomly hashing elements into the range [0, 1], we expect the minimum hash output to
be 1

D+1
3, so E[1z − 1] = D. Unfortunately, storing a uniformly random hash function that maps to the

interval [0, 1] is infeasible. As storing real numbers is memory intensive, one possible fix is to discretize
the interval [0, 1], using O(log n) bits per hash output. However, storing this hash function would still
require O(n log n) space.

3See https://en.wikipedia.org/wiki/Order_statistic

3

https://en.wikipedia.org/wiki/Order_statistic

4.2 An actual algorithm for estimating the zeroth moment

Instead of a uniformly random hash function that maps to the interval [0, 1], we randomly select a hash
from a family of pairwise independent hash functions.

Definition 7 (Family of pairwise independent hash functions). Hn,m is a family of pairwise independent
hash functions if

• (Hash definition): ∀h ∈ Hn,m, h : {1, . . . , n} → {1, . . . ,m}

• (Uniform hashing): ∀x ∈ {1, . . . , n}, Prh∈Hn,m [h(x) = i] = 1
m

• (Pairwise independent) ∀x, y ∈ {1, . . . , n}, x 6= y, Prh∈Hn,m [h(x) = i ∧ h(y) = j] = 1
m2

Remark For this section, we care only about m = n, and write Hn,n as Hn.

Claim 8. Let n be a prime number. Then, Hn = {ha,b : h(x) = ax + b mod n, ∀a, b ∈ Zn} is a family
of pairwise independent hash functions.

Proof. (Sketch) For any given a, b,

• There is a unique value of h(x) mod n, out of n possibilities.

• The system {ax + b = i mod n, ay + b = j mod n} has a unique solution for (x, y), out of n2

possibilities.

Remark If n is not a prime, we know there exists a prime p such that n ≤ p ≤ 2n, so we round n up
to p. Storing a random hash from Hn is then storing the numbers a and b in O(log n) bits.

We now present an algorithm [FM85] which estimates the zeroth moment of a stream and defer
the analysis to the next lecture. In FM, zeros refer to the number of trailing zeroes in the binary
representation of h(ai). For example, if h(ai) = 20 = (...10100)2, then zeros(h(ai)) = 2.

Algorithm 4 FM(S = {a1, . . . , am})
h← Random hash from Hn,n
Z ← 0
for ai ∈ S do . Items arrive in streaming fashion

Z = max{Z, zeros(h(ai))} . zeros(h(ai)) = # trailing zeroes in binary representation of h(ai)
end for
return 2Z ·

√
2 . Estimate of D

References

[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applica-
tions. Journal of computer and system sciences, 31(2):182–209, 1985.

[Mor78] Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

4

	Streaming and sketching algorithms
	Typical tricks

	Warm up: Majority element
	Estimating the first moment of a stream
	Estimating the zeroth moment of a stream
	An idealized algorithm
	An actual algorithm for estimating the zeroth moment

