1 Streaming and sketching algorithms

Thus far, we have been ensuring that our algorithms run fast. What if our system does not have sufficient memory to store all data to post-process it? For example, a router has relatively small amount of memory while tremendous amount of routing data flows through it. In a memory constrained setting, can one compute something meaningful, possible approximately, with limited amount of memory?

More formally, we now look at a slightly different class of algorithms where data elements from \([n] = \{1, \ldots, n\}\) arrive in one at a time, in a stream \(S = a_1, \ldots, a_m\), where \(a_i \in [n]\) arrives in the \(i^{th}\) time step. At each step, our algorithm performs some computation\(^1\) and discards the item \(a_i\). At the end of the stream\(^2\), the algorithm should give us a value that approximates some value of interest.

One class of interesting problems is computing moments of a given stream \(S\). For items \(j \in [n]\), define \(f_j\) as the number of times \(j\) appears in a stream \(S\). Then, the \(k^{th}\) moment of a stream \(S\) is defined as \(\sum_{j=1}^{n} (f_j)^k\). When \(k = 1\), the first moment \(\sum_{j=1}^{n} f_j = m\) is simply the number of elements in the stream \(S\). When \(k = 0\), by associating \(0^0 = 0\), the zeroth moment \(\sum_{j=1}^{n} (f_j)^0\) is the number of distinct elements in the stream \(S\). In this lecture, we will discuss methods to approximate the first and zeroth moments of a given stream \(S\).

1.1 Typical tricks

Before we begin, let us describe two typical tricks used to amplify success probabilities of randomized algorithms. Suppose we have a randomized algorithm \(A\) that returns an unbiased estimate of a quantity of interest \(X\) with probability \(p > 0.5\).

Trick 1: Reduce variance Run \(j\) independent copies of \(A\) on the same instance \(I\), and return the mean \(\frac{1}{j} \sum_{i=1}^{j} A(I)\). While \(\mathbb{E}(\frac{1}{j} \sum_{i=1}^{j} A(I)) = \mathbb{E}(A(I)) = X\), the variance drops by a factor of \(j\).

Trick 2: Improve success Run \(k\) independent copies of \(A\) on the same instance \(I\), and return the median. As each copy of \(A\) succeeds (independently) with probability \(p > 0.5\), the probability that more than half of them fails (and hence the median fails) drops exponential with respect to \(k\).

Let \(\epsilon > 0\) and \(\delta > 0\) denote the precision factor and error probabilities respectively. The above-mentioned two tricks can be combined with \(A\) (See Algorithm 1) to yield a \((1 \pm \epsilon)\)-approximation to \(X\) that succeeds with probability \(> 1 - \delta\).

\(\text{Algorithm 1 ROBUST}(A, I, \epsilon, \delta)\)

\[
\begin{align*}
C & \leftarrow \emptyset \quad \text{▷ Initialize candidate outputs} \\
\text{for } k = \mathcal{O}(\log \frac{1}{\delta}) \text{ times do} \\
& \quad \text{sum} \leftarrow 0 \\
& \quad \text{for } j = \mathcal{O}(\frac{1}{\epsilon^2}) \text{ times do} \\
& \quad \quad \text{sum} \leftarrow \text{sum} + A(I) \\
& \quad \text{end for} \\
& \quad \text{Add } \frac{\text{sum}}{j} \text{ to candidates } C \quad \text{▷ Include new sample of mean} \\
\text{end for} \\
\text{return \ Median of } C \quad \text{▷ Return median}
\end{align*}
\]

\(^1\)Usually this is constant time so we ignore the runtime.

\(^2\)In general, the length of the stream, \(m\), may not be known.
2 Warm up: Majority element

Definition 1 ("Majority in a stream" problem). Given a stream $S = \{a_1, \ldots, a_m\}$ of items from $[n] = \{1, \ldots, n\}$, with an element $j \in [n]$ that appears strictly more than $m/2$ times in S, find j.

Algorithm 2 MajorityStream($S = \{a_1, \ldots, a_m\}$)

1. $\text{guess} \leftarrow 0$
2. $\text{count} \leftarrow 0$
3. for $a_i \in S$ do
 (Items arrive in streaming fashion)
 1. if $a_i = \text{guess}$ then
 1. $\text{count} \leftarrow \text{count} + 1$
 2. else if $\text{count} > 1$ then
 1. $\text{count} \leftarrow \text{count} - 1$
 3. else
 1. $\text{guess} \leftarrow a_i$
 end if
4. end for
5. return guess

Example Consider a stream $S = \{1, 3, 3, 7, 5, 3, 2, 3\}$. The table below shows how guess and count are updated as each element arrives.

<table>
<thead>
<tr>
<th>Stream elements</th>
<th>1</th>
<th>3</th>
<th>3</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

One can verify that MajorityStream uses $O(\log n + \log m)$ bits to store guess and count.

Claim 2. MajorityStream correctly finds element $j \in [n]$ which appears $> m/2$ times in $S = \{a_1, \ldots, a_m\}$.

Proof. (Sketch) Match each other element in S with a distinct instance of j. Since j appears $> m/2$ times, at least one j is unmatched. As each matching cancels out count, only j could be the final guess. \qed

Remark If no element appears $> m/2$ times, then MajorityStream is not guaranteed to return the most frequent element. For example, MajorityStream($S = \{1, 3, 4, 3, 2\}$) returns 2 instead of 3.

3 Estimating the first moment of a stream

A trivial exact solution would be to use $O(\log m)$ bits to maintain a counter, incrementing for each element observed. For some upper bound M, consider the sequence $(1 + \epsilon), (1 + \epsilon)^2, (1 + \epsilon)^3, \ldots, (1 + \epsilon)^{\log_2 M}$. For any stream length m, there exists $i \in \mathbb{N}$ such that $(1 + \epsilon)^i \leq m \leq (1 + \epsilon)^{i+1}$. Hence, to obtain a $(1 + \epsilon)$-approximation of the first moment, it suffices to track the exponent i to estimate the length of m. For $\epsilon \in \Theta(1)$, this can be done in $O(\log \log m)$ bits.

Algorithm 3 Morris($S = \{a_1, \ldots, a_m\}$)

1. $x \leftarrow 0$
2. for $a_i \in S$ do
 (Items arrive in streaming fashion)
 1. $r \leftarrow \text{Random probability from [0, 1] if } r \leq 2^{-x} \text{ then}$
 1. $x \leftarrow x + 1$
 end if
3. end for
4. return $2^x - 1$ (Estimate m by $2^x - 1$)

Morris is due to [Mor78]. The intuition is that we increase the counter (and hence double the estimate) when we observe 2^x new items in expectation. For analysis, let us denote X_m as the value of counter x after exactly m items arrive.
Theorem 3. \(\mathbb{E}[2^{X_m} - 1] = m \). That is, MORRIS is an unbiased estimator for the length of the stream.

Proof. Equivalently, let us prove \(\mathbb{E}[2^{X_m}] = m + 1 \), by induction on \(m \in \mathbb{N} \setminus \{0\} \). On the first element \((m = 1)\), \(x \) increments with probability 1, so \(\mathbb{E}[2^{X_1}] = 2^1 = m + 1 \). Suppose it holds for some \(m \in \mathbb{N} \), then

\[
\mathbb{E}[2^{X_{m+1}}] = \sum_{j=1}^{m+1} \mathbb{E}[2^{X_{m+1}} | X_m = j] \Pr[X_m = j]
\]

Condition on previous value of \(X_m \)

\[
= \sum_{j=1}^{m+1} (2^j + 1) \cdot \Pr[X_m = j]
\]

Simplifying

\[
= \sum_{j=1}^{m+1} 2^j \cdot \Pr[X_m = j]
\]

Splitting the sum

\[
= \mathbb{E}[2^{X_m}] + \sum_{j=1}^{m+1} \Pr[X_m = j]
\]

Definition of \(\mathbb{E}[2^{X_m}] \)

\[
= \mathbb{E}[2^{X_m}] + 1
\]

Induction hypothesis

\[
= m + 2
\]

Note that we sum up to \(m \) because \(x \in [1, m] \) after \(m \) items.

\[
\square
\]

Claim 4. \(\mathbb{E}[2^{2X_m}] = \frac{3}{2} m^2 + \frac{3}{2} m + 1 \)

Proof. Exercise.

\[
\square
\]

Claim 5. \(\mathbb{E}[(2^{X_m} - 1 - m)^2] \leq \frac{m^2}{2} \)

\[
\square
\]

Theorem 6. For \(\epsilon > 0 \), \(\Pr[|2^{X_m} - 1 - m| > \epsilon m] \leq \frac{1}{2^\epsilon^2} \)

Proof.

\[
\Pr[|2^{X_m} - 1 - m| > \epsilon m] = \Pr[((2^{X_m} - 1) - m)^2 > (\epsilon m)^2] \leq \frac{m^2}{(\epsilon m)^2} \leq \frac{m^2}{2^{\epsilon^2} m^2} = \frac{1}{2^\epsilon^2}
\]

By Claim 5

\[
\square
\]

Remark Using the discussion in Section 1.1, we can run MORRIS multiple times to obtain a \((1 \pm \epsilon)\)-approximation of the first moment of a stream that succeeds with probability \(> 1 - \delta \). For instance, repeating MORRIS \(\frac{10}{\epsilon^2} \) times and reporting the mean \(\widehat{m} \), \(\Pr[|\widehat{m} - m| > \epsilon m] \leq \frac{1}{20} \).

4 Estimating the zeroth moment of a stream

Trivial exact solutions would be to either use \(O(n) \) bits to track if element exists, or use \(O(m \log n) \) bits to remember the whole stream. Suppose there are \(D \) distinct items in the whole stream. In this section, we show that one can in fact make do with only \(O(\log n) \) bits to obtain an approximation of \(D \).

4.1 An idealized algorithm

Consider the following algorithm sketch:

1. Take a uniformly random hash function \(h : \{1, \ldots, m\} \rightarrow [0, 1] \)
2. As items \(a_i \in S \) arrive, track \(z = \min\{h(a_i)\} \)
3. In the end, output \(\frac{1}{z} - 1 \)

Since we are randomly hashing elements into the range \([0, 1]\), we expect the minimum hash output to be \(\frac{1}{z} \leq \frac{1}{D} \), so \(\mathbb{E}[\frac{1}{z} - 1] = D \). Unfortunately, storing a uniformly random hash function that maps to the interval \([0, 1]\) is infeasible. As storing real numbers is memory intensive, one possible fix is to discretize the interval \([0, 1]\), using \(O(\log n) \) bits per hash output. However, storing this hash function would still require \(O(n \log n) \) space.

\[3\text{See } \text{https://en.wikipedia.org/wiki/Order_statistic} \]
4.2 An actual algorithm for estimating the zeroth moment

Instead of a uniformly random hash function that maps to the interval $[0, 1]$, we randomly select a hash from a family of pairwise independent hash functions.

Definition 7 (Family of pairwise independent hash functions). $\mathcal{H}_{n,m}$ is a family of pairwise independent hash functions if

- (Hash definition): $\forall h \in \mathcal{H}_{n,m}, h : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$
- (Uniform hashing): $\forall x \in \{1, \ldots, n\}, \Pr_{h \in \mathcal{H}_{n,m}}[h(x) = i] = \frac{1}{m}$
- (Pairwise independent) $\forall x, y \in \{1, \ldots, n\}, x \neq y, \Pr_{h \in \mathcal{H}_{n,m}}[h(x) = i \land h(y) = j] = \frac{1}{m^2}$

Remark For this section, we care only about $m = n$, and write $\mathcal{H}_{n,n}$ as \mathcal{H}_n.

Claim 8. Let n be a prime number. Then, $\mathcal{H}_n = \{h_{a,b} : h(x) = ax + b \mod n, \forall a, b \in \mathbb{Z}_n\}$ is a family of pairwise independent hash functions.

Proof. (Sketch) For any given a, b,

- There is a unique value of $h(x) \mod n$, out of n possibilities.
- The system $\{ax + b = i \mod n, ay + b = j \mod n\}$ has a unique solution for (x, y), out of n^2 possibilities.

Remark If n is not a prime, we know there exists a prime p such that $n \leq p < 2n$, so we round n up to p. Storing a random hash from \mathcal{H}_n is then storing the numbers a and b in $O(\log n)$ bits.

We now present an algorithm [FM85] which estimates the zeroth moment of a stream and defer the analysis to the next lecture. In FM, zeros refer to the number of trailing zeroes in the binary representation of $h(a_i)$. For example, if $h(a_i) = 20 = (...10100)_2$, then ZEROS($h(a_i)$) = 2.

Algorithm 4 FM ($S = \{a_1, \ldots, a_m\}$)

$\begin{align*}
h & \leftarrow \text{Random hash from } \mathcal{H}_{n,n} \\
n & \leftarrow 0 \\
\text{for } a_i \in S & \text{ do} \quad \triangleright \text{Items arrive in streaming fashion} \\
& \quad Z = \max\{Z, \text{ZEROS}(h(a_i))\} \quad \triangleright \text{ZEROS}(h(a_i)) = \# \text{trailing zeroes in binary representation of } h(a_i) \\
\text{end for} \\
\text{return } 2^n \times \sqrt{2} & \quad \triangleright \text{Estimate of } D
\end{align*}$

References
