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Lecture 8: Streaming and Sketching Algorithms II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

Recall that the kth moment of a stream S is defined as
∑n
j=1(fj)

k. In this lecture, we will continue
the analysis for estimating the zeroth moment of a stream, and show an algorithm that estimates the
kth moment of a stream, due to [AMS96]. We will see how Tricks 1 and 2 from the previous lecture can
be used to improve the estimation precision and amplify the success probabilities in our analysis.

Remark In this lecture, we will often upper-bound probabilities using the following fact: If event A
implies event B, then Pr[A] ≤ Pr[B]. One can visualize the probability space as follows:

A

B

1 Estimating the zeroth moment of a stream (Continued)

Recall the definition of pairwise independent hash functions and the algorithm presented at the end of
the last lecture (Algorithm 1 due to [FM85]). Let D be the number of distinct elements in the stream S.

Definition 1 (Family of pairwise independent hash functions). Hn,m is a family of pairwise independent
hash functions if

• (Hash definition): ∀h ∈ Hn,m, h : {1, . . . , n} → {1, . . . ,m}

• (Uniform hashing): ∀x ∈ {1, . . . , n}, Prh∈Hn,m [h(x) = i] = 1
m

• (Pairwise independent) ∀x, y ∈ {1, . . . , n}, x 6= y, Prh∈Hn,m [h(x) = i ∧ h(y) = j] = 1
m2

Algorithm 1 FM(S = {a1, . . . , am})
h← Random hash from Hn,n
Z ← 0
for ai ∈ S do . Items arrive in streaming fashion

Z = max{Z, zeros(h(ai))} . zeros(h(ai)) = # trailing zeroes in binary representation of h(ai)
end for
return 2Z ·

√
2 . Estimate of D

Since the hash h is deterministic after picking a random hash fromHn,n, h(ai) = h(aj),∀ai = aj ∈ [n].

Lemma 2. If X1, . . . , Xn are pairwise independent indicator random variables and X =
∑n
i=1Xi, then

Var(X) ≤ E[X].

Proof.

Var(X) =
∑n
i=1 Var(Xi) The Xi’s are pairwise independent

=
∑n
i=1(E[X2

i ]− (E[Xi])
2) Definition of variance

≤
∑n
i=1 E[X2

i ] Ignore negative part
=

∑n
i=1 E[Xi] X2

i = Xi since Xi’s are indicator random variables
= E[

∑n
i=1Xi] Linearity of expectation

= E[X] Definition of expectation
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Theorem 3. There exists a constant C > 0 such that Pr[D3 ≤ 2Z ·
√

2 ≤ 3D] > C.

Proof. We will prove Pr[(D3 > 2Z ·
√

2) or (2Z ·
√

2 > 3D)] ≤ 1−C by separately analyzing Pr[D3 ≥ 2Z ·
√

2]

and Pr[2Z ·
√

2 ≥ 3D], then applying union bound. Define indicator variables

Xi,r =

{
1 if zeros(h(ai)) ≥ r
0 otherwise

and Xr =
∑m
i=1Xi,r = |{ai ∈ S : zeros(h(ai)) ≥ r}|. Notice that Xn ≤ Xn−1 ≤ · · · ≤ X2 ≤ X1 since

zeros(h(ai)) ≥ r + 1⇒ zeros(h(ai)) ≥ r. Now,

E[Xr] = E[
∑m
i=1Xi,r] Since Xr =

∑m
i=1Xi,r

=
∑m
i=1 E[Xi,r] By linearity of expectation

=
∑m
i=1 Pr[Xi,r = 1] Since Xi,r are indicator variables

=
∑m
i=1

1
2r Since h is a uniform hash — r zeros in coin flips

= D
2r Since h hashes same elements to the same value

Denote τ1 as the smallest integer such that 2τ1 ·
√

2 > 3D, and τ2 as the largest integer such that
2τ2 ·

√
2 < D

3 . We see that if τ1 < Z < τ2, then 2Z ·
√

2 is a 3-approximation of D.

r 0

τ2 + 1 log2( D√
2
)

τ2 τ1

• If Z ≥ τ1, then 2Z ·
√

2 ≥ 2τ1 ·
√

2 > 3D

• If Z ≤ τ2, then 2Z ·
√

2 ≤ 2τ2 ·
√

2 < D
3

Pr[Z ≥ τ1] ≤ Pr[Xτ1 ≥ 1] Since Z ≥ τ1 ⇒ Xτ1 ≥ 1

≤ E[Xτ1 ]
1 By Markov’s inequality

= D
2τ1 Since E[Xr] = D

2r

≤
√
2
3 Since 2τ1 ·

√
2 > 3D

Pr[Z ≤ τ2] ≤ Pr[Xτ2+1 = 0] Since Z ≤ τ2 ⇒ Xτ2+1 = 0
≤ Pr[E[Xτ2+1]−Xτ2+1 ≥ E[Xτ2+1]] Implied
≤ Pr[|Xτ2+1 − E[Xτ2+1]| ≥ E[Xτ2+1]] Adding absolute sign

≤ Var[Xτ2+1]

(E[Xτ2+1])2
By Chebyshev’s inequality

≤ E[Xτ2+1]

(E[Xτ2+1])2
By Lemma 2

≤ 2τ2+1

D Since E[Xr] = D
2r

≤
√
2
3 Since 2τ2 ·

√
2 < D

3

Putting together,

Pr[(D3 > 2Z ·
√

2) or (2Z ·
√

2 > 3D)] ≤ Pr[D3 ≥ 2Z ·
√

2] + Pr[2Z ·
√

2 ≥ 3D] By union bound

≤ 2
√
2

3 From above

= 1− C For C = 1− 2
√
2

3 > 0

Although the analysis tells us that there is a small success probability (C = 1− 2
√
2

3 ≈ 0.0572), one

can use t independent hashes and output the mean 1
k

∑k
i=1(2Zi ·

√
2) (Recall Trick 1). With t hashes,

the variance drops by a factor of 1
t , improving the analysis for Pr[Z ≤ τ2]. When the success probability

C > 0.5, one can then call the routine k times independently and return the median (Recall Trick 2).
While Tricks 1 and 2 allows us to strength the success probability C, more work needs to be done

to improve the approximation factor from 3 to (1 + ε). To do this, we look at a slight modification of
Algorithm 1, due to [BYJK+02].
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Algorithm 2 FM+(S = {a1, . . . , am}, ε)
N ← n3

t← c
ε2 ∈ O( 1

ε2 ) . For some constant c ≥ 28
h← Random hash from Hn,N . Hash to a larger space
T ← ∅ . Maintain t smallest h(ai)’s
for ai ∈ S do . Items arrive in streaming fashion

T ← t smallest values from T ∪ {h(ai)} . If |T ∪ {h(ai)}| ≤ t, take everything
end for
Z = maxt∈T T
return tN

Z . Estimate of D

Remark For a cleaner analysis, we treat the integer interval [N ] as a continuous interval in Theorem
4. Note that there may be a rounding error of 1

N but this is relatively small and a suitable c can be
chosen to make the analysis still work.

Theorem 4. In FM+, for any given 0 < ε < 1
2 , Pr[| tNZ −D| ≤ εD] > 3

4 .

Proof. We first analyze Pr[ tNZ > (1+ ε)D] and Pr[ tNZ < (1− ε)D] separately. Then, taking union bounds
and negating yields the theorem’s statement.

If tN
Z > (1 + ε)D, then tN

(1+ε)D > Z = tth smallest hash value, implying that there are ≥ t hashes

smaller than tN
(1+ε)D . Since the hash uniformly distributes [n] over [N ], for each element ai,

Pr[h(ai) ≤
tN

(1 + ε)D
] =

tN
(1+ε)D

N
=

t

(1 + ε)D

Let d1, . . . , dD be the D distinct elements in the stream. Define indicator variables

Xi =

{
1 if h(di) ≤ tN

(1+ε)D

0 otherwise

and X =
∑D
i=1Xi is the number of hashes that are smaller than tN

(1+ε)D . From above, Pr[Xi = 1] =
t

(1+ε)D . By linearity of expectation, E[X] = t
(1+ε) . Then, by Lemma 2, Var(X) ≤ E[X]. Now,

Pr[ tNZ > (1 + ε)D] ≤ Pr[X ≥ t] Since the former implies the latter
= Pr[X − E[X] ≥ t− E[X]] Subtracting E[X] from both sides
≤ Pr[X − E[X] ≥ ε

2 t] Since E[X] = t
(1+ε) ≤ (1− ε

2 )t

≤ Pr[|X − E[X]| ≥ ε
2 t] Adding absolute sign

≤ Var(X)
(εt/2)2 By Chebyshev’s inequality

≤ E[X]
(εt/2)2 Since Var(X) ≤ E[X]

≤ 4(1−ε/2)t
ε2t2 Since E[X] = t

(1+ε) ≤ (1− ε
2 )t

≤ 4
c Simplifying with t = c

ε2 and (1− ε
2 ) < 1

Similarly, if tN
Z < (1− ε)D, then tN

(1−ε)D < Z = tth smallest hash value, implying that there are < t

hashes smaller than tN
(1−ε)D . Since the hash uniformly distributes [n] over [N ], for each element ai,

Pr[h(ai) ≤
tN

(1− ε)D
] =

tN
(1−ε)D

N
=

t

(1− ε)D

Let d1, . . . , dD be the D distinct elements in the stream. Define indicator variables

Yi =

{
1 if h(di) ≤ tN

(1−ε)D
0 otherwise
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and Y =
∑D
i=1 Yi is the number of hashes that are smaller than tN

(1−ε)D . From above, Pr[Yi = 1] = t
(1−ε)D .

By linearity of expectation, E[Y ] = t
(1−ε) . Then, by Lemma 2, Var(Y ) ≤ E[Y ]. Now,

Pr[ tNZ < (1− ε)D] ≤ Pr[Y ≤ t] Since the former implies the latter
= Pr[Y − E[Y ] ≤ t− E[Y ]] Subtracting E[Y ] from both sides
≤ Pr[Y − E[Y ] ≤ −εt] Since E[Y ] = t

(1−ε) ≥ (1 + ε)t

≤ Pr[−(Y − E[Y ]) ≥ εt] Swap sides
≤ Pr[|Y − E[Y ]| ≥ εt] Adding absolute sign

≤ Var(Y )
(εt)2 By Chebyshev’s inequality

≤ E[Y ]
(εt)2 Since Var(Y ) ≤ E[Y ]

≤ (1+2ε)t
ε2t2 Since E[Y ] = t

(1−ε) ≤ (1 + 2ε)t

≤ 3
c Simplifying with t = c

ε2 and (1 + 2ε) < 3

Putting together,

Pr[| tNZ −D| > εD]] ≤ Pr[ tNZ > (1 + ε)D]] + Pr[ tNZ < (1− ε)D]] By union bound
≤ 4/c+ 3/c From above
≤ 7/c Simplifying
≤ 1/4 For c ≥ 28

2 Estimating the kth moment of a stream

In this section, we describe algorithms from [AMS96] that estimates the kth moment of a stream, first
for k = 2, then for general k. Recall that the kth moment of a stream S is defined as Fk =

∑n
j=1(fj)

k.

2.1 k = 2

For each element i ∈ [n], we associate a random variable ri ∈u.a.r. {−1,+1}.

Algorithm 3 AMS-2(S = {a1, . . . , am})
For each i ∈ [n], assign ri ∈u.a.r. {−1,+1} . For now, this takes O(n) space
Z ← 0
for ai ∈ S do . Items arrive in streaming fashion

Z ← Z + ri . At the end, Z =
∑n
i=1 rifi

end for
return Z2 . Estimate of F2 =

∑n
i=1(fi)

2

Lemma 5. In AMS-2, if random variables {ri}i∈[n] are pairwise independent, then E[Z2] =
∑n
i=1 f

2
i =

F2. That is, AMS-2 is an unbiased estimator for the 2nd moment.

Proof.

E[Z2] = E[(
∑n
i=1 rifi)

2] Since Z =
∑n
i=1 rifi at the end

= E[
∑n
i=1 r

2
i f

2
i + 2

∑
1≤i<j≤n rirjfifj ] Expanding (

∑n
i=1 rifi)

2

=
∑n
i=1 E[r2i f

2
i ] + 2

∑
1≤i<j≤n E[rirjfifj ] Linearity of expectation

=
∑n
i=1 E[r2i ]f

2
i + 2

∑
1≤i<j≤n E[rirj ]fifj fi’s are (unknown) constants

=
∑n
i=1 f

2
i + 2

∑
1≤i<j≤n E[rirj ]fifj Since (ri)

2 = 1,∀i ∈ [n]

=
∑n
i=1 f

2
i + 2

∑
1≤i<j≤n E[ri]E[rj ]fifj Since {ri}i∈[n] are pairwise independent

=
∑n
i=1 f

2
i + 2

∑
1≤i<j≤n 0 · fifj Since E[ri] = 0,∀i ∈ [n]

=
∑n
i=1 f

2
i Simplifying

= F2 Since F2 =
∑n
i=1(fi)

2

Lemma 6. In AMS-2, if random variables {ri}i∈[n] are 4-wise independent, then Var[Z2] ≤ 2(E[Z2])2.
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Proof. As before, E[ri] = 0 and E[r2i ] = 1 for all i ∈ [n]. By 4-wise independence, the expectation
of any product of ≤ 4 different ri’s is the product of their expectation, which is zero. For instance,
E[rirjrkrl] = E[ri]E[rj ]E[rk]E[rl] = 0. Note that r2i = r4i = 1 and ri = r3i .

E[Z4] = E[(
∑n
i=1 rifi)

4] Since Z =
∑n
i=1 rifi at the end

=
∑n
i=1 E[r4i ]f

4
i + 6

∑
1≤i<j≤n E[r2i r

2
j ]f

2
i f

2
j Linearity of expectation and 4-wise independence

=
∑n
i=1 f

4
i + 6

∑
1≤i<j≤n f

2
i f

2
j Since E[r4i ] = E[r2i ] = 1,∀i ∈ [n]

The coefficient of
∑

1≤i<j≤n E[r2i r
2
j ]f

2
i f

2
j is

(
4
2

)(
2
2

)
= 6. All other terms besides

∑n
i=1 E[r4i ]f

4
i and

6
∑

1≤i<j≤n E[r2i r
2
j ]f

2
i f

2
j evaluate to 0 because of 4-wise independence.

Var[Z2] = E[(Z2)2]− (E[Z2])2 Definition of variance
=

∑n
i=1 f

4
i + 6

∑
1≤i<j≤n f

2
i f

2
j − (E[Z2])2 From above

=
∑n
i=1 f

4
i + 6

∑
1≤i<j≤n f

2
i f

2
j − (

∑n
i=1 f

2
i )2 By Lemma 5 since 4-wise ind. ⇒ pairwise ind.

= 4
∑

1≤i<j≤n f
2
i f

2
j Expand and simplify

≤ 2(
∑n
i=1 f

2
i )2 Upper bound

= 2(E[Z2])2 By Lemma 5

Theorem 7. In AMS-2, if {ri}i∈[n] are 4-wise independent, Pr[|Z2 − F2| > εF2] ≤ 2
ε2 for any ε > 0.

Proof.

Pr[|Z2 − F2| > εF2] = Pr[|Z2 − E[Z2]| > εE[Z2]] By Lemma 5

≤ Var(Z2)
(εE[Z2])2 By Chebyshev’s inequality

≤ 2(E[Z2])2

(εE[Z2])2 By Lemma 6

= 2
ε2

Claim 8. O(k log n) bits of randomness suffices to obtain a set of k-wise independent random variables.

Proof. Recall the definition of hash family Hn,m. In a similar fashion1, we consider hashes from the
family (for prime p):

{hak−1,ak−2,...,a1,a0 : h(x) =
∑k−1
i=1 aix

i mod p
= ak−1x

k−1 + ak−2x
k−2 + · · ·+ a1x+ a0 mod p,

∀ak−1, ak−2, . . . , a1, a0 ∈ Zp}

This requires k random coefficients, which can be stored with O(k log n) bits.

Observe that the above analysis only require {ri}i∈[n] to be 4-wise independent. Claim 8 implies that
AMS-2 only needs O(4 log n) bits to represent {ri}i∈[n].

Although the failure probability 2
ε2 is large for small ε, one can repeat t times and output the mean

(Recall Trick 1). With t ∈ O( 1
ε2 ) samples, the failure probability drops to 2

tε2 ∈ O(1). When the
failure probability is < 0.5, one can then call the routine k times independently, and return the median

(Recall Trick 2). On the whole, for any given ε > 0 and δ > 0, O( log(n) log(1/δ)
ε2 ) space suffices to yield a

(1± ε)-approximation algorithm that succeeds with probability > 1− δ.

2.2 General k

The assumption of known m in AMS-k can be removed via reservoir sampling2. The idea is as follows:
Initially, initialize stream length and J as both 0. When ai arrives, choose to replace J with i with
probability 1

i . If J is replaced, reset r to 0 and start counting from this stream suffix onwards. It can
be shown that the choice of J is uniform over current stream length.

Lemma 9. In AMS-k, E[Z] =
∑n
i=1 f

k
i = Fk. That is, AMS-k is an unbiased estimator for the kth

moment.

1See https://en.wikipedia.org/wiki/K-independent_hashing
2See https://en.wikipedia.org/wiki/Reservoir_sampling
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Algorithm 4 AMS-k(S = {a1, . . . , am})
m← |S| . For now, assume we know m = |S|
J ∈u.a.r. [m] . Pick a random index
r ← 0
for ai ∈ S do . Items arrive in streaming fashion

if i ≥ J and ai = aJ then
r ← r + 1 . At the end, r = |{i ∈ [m] : i ≥ J and ai = aJ}| = # aJ in suffix of stream

end if
end for
Z ← m(rk − (r − 1)k)
return Z . Estimate of Fk =

∑n
i=1(fi)

k

Proof. When J = i, there are fi choices for J . By telescoping sums, we have:

E[Z | J = i] = 1
fi

[m(fki − (fi − 1)k)] + 1
fi

[m((fi − 1)k − (fi − 2)k)] + · · ·+ 1
fi

[m(1k + 0k)]

= m
fi

[(fki − (fi − 1)k) + ((fi − 1)k − (fi − 2)k) + · · ·+ (1k + 0k)]

= m
fi
fki

E[Z] =
∑n
i=1 E[Z | J = i] · Pr[J = i] Condition on the choice of J

=
∑n
i=1 E[Z | J = i] · fim Since choice of J is uniform at random

=
∑n
i=1

m
fi
fki ·

fi
m From above

=
∑n
i=1 f

k
i Simplifying

= Fk Since Fk =
∑n
i=1 f

k
i

Lemma 10. For every n positive reals f1, f2, . . . , fn,

(

n∑
i=1

fi)(

n∑
i=1

f2k−1i ) ≤ n1−1/k(

k∑
i=1

fki )2

Proof. Let M = maxi∈[n] fi, then fi ≤M for any i ∈ [n] and Mk ≤
∑n
i=1 f

k
i . Hence,

(
∑n
i=1 fi)(

∑n
i=1 f

2k−1
i ) ≤ (

∑n
i=1 fi)(M

k−1∑n
i=1 f

k
i ) Pulling out a Mk−1 factor

≤ (
∑n
i=1 fi)(

∑n
i=1 f

k
i )(k−1)/k(

∑n
i=1 f

k
i ) Since Mk ≤

∑n
i=1 f

k
i

= (
∑n
i=1 fi)(

∑n
i=1 f

k
i )(2k−1)/k Merging the last two terms

≤ n1−1/k(
∑n
i=1 f

k
i )1/k(

∑n
i=1 f

k
i )(2k−1)/k Fact: (

∑n
i=1 fi)/n ≤ (

∑n
i=1 f

k
i /n)1/k

= n1−1/k(
∑n
i=1 fi)

2 Merging the last two terms

Remark f1 = n1/k, f2 = · · · = fn = 1 is a tight example for Lemma 10, up to a constant factor.

Theorem 11. In AMS-k, Var(Z) ≤ kn1− 1
k (E[Z])2

Proof. Let us first analyze E[Z2].

E[Z2] = m
m [(1k − 0k)2 + (2k − 1k)2 + · · ·+ (fk1 − (f1 − 1)k)2 (A)
+ (1k − 0k)2 + (2k − 1k)2 + · · ·+ (fk2 − (f2 − 1)k)2

+ . . .
+ (1k − 0k)2 + (2k − 1k)2 + · · ·+ (fkn − (fn − 1)k)2]

≤ m[k · 1k−1(1k − 0k) + k · 2k−1 · (2k − 1k) + · · ·+ k · fk−11 · (fk1 − (f1 − 1)k) (B)

+ k · 1k−1(1k − 0k) + k · 2k−1 · (2k − 1k) + · · ·+ k · fk−12 · (fk2 − (f2 − 1)k)
+ . . .
+ k · 1k−1(1k − 0k) + k · 2k−1 · (2k − 1k) + · · ·+ k · fk−1n · (fkn − (fn − 1)k)]

≤ m[k · f2k−11 + k · f2k−12 + · · ·+ k · f2k−1n ] (C)
= k ·m · F2k−1 (D)
= k · F1 · F2k−1 (E)
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(A) By definition of E[Z2] (condition on J and expand in the same style as the proof of Theorem 9).

(B) ∀0 < b < a, ak − bk = (a− b)(ak−1 + ak−2b+ · · ·+ abk−2 + bk−1) ≤ (a− b)kak−1, with a = b+ 1

(C) Telescope each row, then ignore remaining negative terms

(D) F2k−1 =
∑n
i=1 f

2k−1
i

(E) F1 =
∑n
i=1 fi = m

Then,
Var(Z) = E[Z2]− (E[Z])2 Definition of variance

≤ E[Z2] Ignore negative part
≤ k · F1 · F2k−1 From above
≤ kn1−1/kF 2

k By Lemma 10
= kn1−1/k(E[Z])2 By Theorem 9

Remark Proofs for Lemma 10 and Theorem 11 were omitted in class. The above proofs are presented
in a style consistent with the rest of the scribe notes. Interested readers can refer to [AMS96] for details.

Remark One can apply an analysis similar to the case when k = 2, then use Tricks 1 and 2.

Claim 12. For k > 2, a lower bound of Θ̃(n1−
2
k ) is known.

Proof. Theorem 3.1 in [BYJKS04] gives the lower bound. See [IW05] for algorithm that achieves it.
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