Recall that the $k^{t h}$ moment of a stream S is defined as $\sum_{j=1}^{n}\left(f_{j}\right)^{k}$. In this lecture, we will continue the analysis for estimating the zeroth moment of a stream, and show an algorithm that estimates the $k^{t h}$ moment of a stream, due to [AMS96]. We will see how Tricks 1 and 2 from the previous lecture can be used to improve the estimation precision and amplify the success probabilities in our analysis.

Remark In this lecture, we will often upper-bound probabilities using the following fact: If event A implies event B, then $\operatorname{Pr}[A] \leq \operatorname{Pr}[B]$. One can visualize the probability space as follows:

1 Estimating the zeroth moment of a stream (Continued)

Recall the definition of pairwise independent hash functions and the algorithm presented at the end of the last lecture (Algorithm 1 due to [FM85]). Let D be the number of distinct elements in the stream S.

Definition 1 (Family of pairwise independent hash functions). $\mathcal{H}_{n, m}$ is a family of pairwise independent hash functions if

- (Hash definition): $\forall h \in \mathcal{H}_{n, m}, h:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$
- (Uniform hashing): $\forall x \in\{1, \ldots, n\}, \operatorname{Pr}_{h \in \mathcal{H}_{n, m}}[h(x)=i]=\frac{1}{m}$
- (Pairwise independent) $\forall x, y \in\{1, \ldots, n\}, x \neq y, \operatorname{Pr}_{h \in \mathcal{H}_{n, m}}[h(x)=i \wedge h(y)=j]=\frac{1}{m^{2}}$

```
Algorithm \(1 \operatorname{FM}\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)\)
    \(h \leftarrow\) Random hash from \(\mathcal{H}_{n, n}\)
    \(Z \leftarrow 0\)
    for \(a_{i} \in S\) do \(\quad \triangleright\) Items arrive in streaming fashion
        \(Z=\max \left\{Z, \operatorname{ZEROS}\left(h\left(a_{i}\right)\right)\right\} \quad \triangleright \operatorname{ZEROS}\left(h\left(a_{i}\right)\right)=\#\) trailing zeroes in binary representation of \(h\left(a_{i}\right)\)
    end for
    return \(2^{Z} \cdot \sqrt{2} \quad \triangleright\) Estimate of \(D\)
```

Since the hash h is deterministic after picking a random hash from $\mathcal{H}_{n, n}, h\left(a_{i}\right)=h\left(a_{j}\right), \forall a_{i}=a_{j} \in[n]$.
Lemma 2. If X_{1}, \ldots, X_{n} are pairwise independent indicator random variables and $X=\sum_{i=1}^{n} X_{i}$, then $\operatorname{Var}(X) \leq \mathbb{E}[X]$.

Proof.

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) & & \text { The } X_{i}^{\prime} \text { 's are pairwise independent } \\
& =\sum_{i=1}^{n}\left(\mathbb{E}\left[X_{i}^{2}\right]-\left(\mathbb{E}\left[X_{i}\right]\right)^{2}\right) & & \text { Definition of variance } \\
& \leq \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right] & & \text { Ignore negative part } \\
& =\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] & & X_{i}^{2}=X_{i} \text { since } X_{i} \text { 's are indicator random variables } \\
& =\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] & & \text { Linearity of expectation } \\
& =\mathbb{E}[X] & & \text { Definition of expectation }
\end{aligned}
$$

Theorem 3. There exists a constant $C>0$ such that $\operatorname{Pr}\left[\frac{D}{3} \leq 2^{Z} \cdot \sqrt{2} \leq 3 D\right]>C$.
Proof. We will prove $\operatorname{Pr}\left[\left(\frac{D}{3}>2^{Z} \cdot \sqrt{2}\right)\right.$ or $\left.\left(2^{Z} \cdot \sqrt{2}>3 D\right)\right] \leq 1-C$ by separately analyzing $\operatorname{Pr}\left[\frac{D}{3} \geq 2^{Z} \cdot \sqrt{2}\right]$ and $\operatorname{Pr}\left[2^{Z} \cdot \sqrt{2} \geq 3 D\right]$, then applying union bound. Define indicator variables

$$
X_{i, r}= \begin{cases}1 & \text { if } \operatorname{zEROS}\left(h\left(a_{i}\right)\right) \geq r \\ 0 & \text { otherwise }\end{cases}
$$

and $X_{r}=\sum_{i=1}^{m} X_{i, r}=\left|\left\{a_{i} \in S: \operatorname{zeros}\left(h\left(a_{i}\right)\right) \geq r\right\}\right|$. Notice that $X_{n} \leq X_{n-1} \leq \cdots \leq X_{2} \leq X_{1}$ since $\operatorname{ZEROS}\left(h\left(a_{i}\right)\right) \geq r+1 \Rightarrow \operatorname{ZERos}\left(h\left(a_{i}\right)\right) \geq r$. Now,

$$
\begin{aligned}
\mathbb{E}\left[X_{r}\right] & =\mathbb{E}\left[\sum_{i=1}^{m} X_{i, r}\right] & & \text { Since } X_{r}=\sum_{i=1}^{m} X_{i, r} \\
& =\sum_{i=1}^{m} \mathbb{E}\left[X_{i, r}\right] & & \text { By linearity of expectation } \\
& =\sum_{i=1}^{m} \operatorname{Pr}\left[X_{i, r}=1\right] & & \text { Since } X_{i, r} \text { are indicator variables } \\
& =\sum_{i=1}^{m} \frac{1}{2^{r}} & & \text { Since } h \text { is a uniform hash }-r \text { zeros in coin flips } \\
& =\frac{D}{2^{r}} & & \text { Since } h \text { hashes same elements to the same value }
\end{aligned}
$$

Denote τ_{1} as the smallest integer such that $2^{\tau_{1}} \cdot \sqrt{2}>3 D$, and τ_{2} as the largest integer such that $2^{\tau_{2}} \cdot \sqrt{2}<\frac{D}{3}$. We see that if $\tau_{1}<Z<\tau_{2}$, then $2^{Z} \cdot \sqrt{2}$ is a 3-approximation of D.

- If $Z \geq \tau_{1}$, then $2^{Z} \cdot \sqrt{2} \geq 2^{\tau_{1}} \cdot \sqrt{2}>3 D$
- If $Z \leq \tau_{2}$, then $2^{Z} \cdot \sqrt{2} \leq 2^{\tau_{2}} \cdot \sqrt{2}<\frac{D}{3}$

$$
\begin{array}{rlrl}
\operatorname{Pr}\left[Z \geq \tau_{1}\right] & \leq \operatorname{Pr}\left[X_{\tau_{1}} \geq 1\right] & & \text { Since } Z \geq \tau_{1} \Rightarrow X_{\tau_{1}} \geq 1 \\
& \leq \frac{\mathbb{E}\left[X_{\tau_{1}}\right]}{} & & \text { By Markov's inequality } \\
& =\frac{D}{2^{\tau_{1}}} & & \text { Since } \mathbb{E}\left[X_{r}\right]=\frac{D}{2^{r}} \\
& \leq \frac{\sqrt{2}}{3} & & \text { Since } 2^{\tau_{1}} \cdot \sqrt{2}>3 D \\
\operatorname{Pr}\left[Z \leq \tau_{2}\right] & \leq \operatorname{Pr}\left[X_{\tau_{2}+1}=0\right] & & \text { Since } Z \leq \tau_{2} \Rightarrow X_{\tau_{2}+1}=0 \\
& \leq \operatorname{Pr}\left[\mathbb{E}\left[X_{\tau_{2}+1}\right]-X_{\tau_{2}+1} \geq \mathbb{E}\left[X_{\tau_{2}+1}\right]\right] & & \text { Implied } \\
& \leq \operatorname{Pr}\left[\left|X_{\tau_{2}+1}-\mathbb{E}\left[X_{\tau_{2}+1}\right]\right| \geq \mathbb{E}\left[X_{\tau_{2}+1}\right]\right] & \text { Adding absolute sign } \\
& \leq \frac{\operatorname{ar}\left[X_{\left.\tau_{2}+1\right]}\right.}{\left(\mathbb{E} X_{\left.\tau_{2}+1\right]}\right)^{2}} & & \text { By Chebyshev's inequality } \\
& \leq \frac{\mathbb{E}\left[X_{\tau_{2}+1}\right]}{\left.\left(\mathbb{E} X_{\tau_{2}+1}\right]\right)^{2}} & & \text { By Lemma } 2 \\
& \leq \frac{\left.2^{\tau}+\right)^{2}}{D} & & \text { Since } \mathbb{E}\left[X_{r}\right]=\frac{D}{2^{r}} \\
& \leq \frac{\sqrt{2}}{3} & & \text { Since } 2^{\tau_{2}} \cdot \sqrt{2}<\frac{D}{3}
\end{array}
$$

Putting together,

$$
\begin{aligned}
\operatorname{Pr}\left[\left(\frac{D}{3}>2^{Z} \cdot \sqrt{2}\right) \text { or }\left(2^{Z} \cdot \sqrt{2}>3 D\right)\right] & \leq \operatorname{Pr}\left[\frac{D}{3} \geq 2^{Z} \cdot \sqrt{2}\right]+\operatorname{Pr}\left[2^{Z} \cdot \sqrt{2} \geq 3 D\right] & & \text { By union bound } \\
& \leq \frac{2 \sqrt{2}}{3} & & \text { From above } \\
& =1-C & & \text { For } C=1-\frac{2 \sqrt{2}}{3}>0
\end{aligned}
$$

Although the analysis tells us that there is a small success probability ($C=1-\frac{2 \sqrt{2}}{3} \approx 0.0572$), one can use t independent hashes and output the mean $\frac{1}{k} \sum_{i=1}^{k}\left(2^{Z_{i}} \cdot \sqrt{2}\right)$ (Recall Trick 1). With t hashes, the variance drops by a factor of $\frac{1}{t}$, improving the analysis for $\operatorname{Pr}\left[Z \leq \tau_{2}\right]$. When the success probability $C>0.5$, one can then call the routine k times independently and return the median (Recall Trick 2).

While Tricks 1 and 2 allows us to strength the success probability C, more work needs to be done to improve the approximation factor from 3 to $(1+\epsilon)$. To do this, we look at a slight modification of Algorithm 1, due to [BYJK ${ }^{+}$02].

```
Algorithm \(2 \mathrm{FM}+\left(S=\left\{a_{1}, \ldots, a_{m}\right\}, \epsilon\right)\)
    \(N \leftarrow n^{3}\)
    \(t \leftarrow \frac{c}{\epsilon^{2}} \in \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right) \quad \triangleright\) For some constant \(c \geq 28\)
    \(t \leftarrow \frac{c}{\epsilon^{2}} \in \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)\)
\(h \leftarrow\) Random hash from \(\mathcal{H}_{n, N}\)
    \(T \leftarrow \emptyset \quad \triangleright\) Maintain \(t\) smallest \(h\left(a_{i}\right)\) 's
    for \(a_{i} \in S\) do \(\quad \triangleright\) Items arrive in streaming fashion
        \(T \leftarrow t\) smallest values from \(T \cup\left\{h\left(a_{i}\right)\right\}\)
    end for
    \(Z=\max _{t \in T} T\)
    return \(\frac{t N}{Z}\)
                        \(\triangleright\) Hash to a larger space
    \(\triangleright\) Items arrive in streaming fashion
If \(\left|T \cup\left\{h\left(a_{i}\right)\right\}\right| \leq t\), take everything
    \(\triangleright\) If \(\left|T \cup\left\{h\left(a_{i}\right)\right\}\right| \leq t\), take everything

Remark For a cleaner analysis, we treat the integer interval \([N]\) as a continuous interval in Theorem 4. Note that there may be a rounding error of \(\frac{1}{N}\) but this is relatively small and a suitable \(c\) can be chosen to make the analysis still work.

Theorem 4. In \(\mathrm{FM}+\), for any given \(0<\epsilon<\frac{1}{2}, \operatorname{Pr}\left[\left|\frac{t N}{Z}-D\right| \leq \epsilon D\right]>\frac{3}{4}\).
Proof. We first analyze \(\operatorname{Pr}\left[\frac{t N}{Z}>(1+\epsilon) D\right]\) and \(\operatorname{Pr}\left[\frac{t N}{Z}<(1-\epsilon) D\right]\) separately. Then, taking union bounds and negating yields the theorem's statement.

If \(\frac{t N}{Z}>(1+\epsilon) D\), then \(\frac{t N}{(1+\epsilon) D}>Z=t^{t h}\) smallest hash value, implying that there are \(\geq t\) hashes smaller than \(\frac{t N}{(1+\epsilon) D}\). Since the hash uniformly distributes \([n]\) over \([N]\), for each element \(a_{i}\),
\[
\operatorname{Pr}\left[h\left(a_{i}\right) \leq \frac{t N}{(1+\epsilon) D}\right]=\frac{\frac{t N}{(1+\epsilon) D}}{N}=\frac{t}{(1+\epsilon) D}
\]

Let \(d_{1}, \ldots, d_{D}\) be the \(D\) distinct elements in the stream. Define indicator variables
\[
X_{i}= \begin{cases}1 & \text { if } h\left(d_{i}\right) \leq \frac{t N}{(1+\epsilon) D} \\ 0 & \text { otherwise }\end{cases}
\]
and \(X=\sum_{i=1}^{D} X_{i}\) is the number of hashes that are smaller than \(\frac{t N}{(1+\epsilon) D}\). From above, \(\operatorname{Pr}\left[X_{i}=1\right]=\) \(\frac{t}{(1+\epsilon) D}\). By linearity of expectation, \(\mathbb{E}[X]=\frac{t}{(1+\epsilon)}\). Then, by Lemma \(2, \operatorname{Var}(X) \leq \mathbb{E}[X]\). Now,
\[
\begin{array}{rlrl}
\operatorname{Pr}\left[\frac{t N}{Z}>(1+\epsilon) D\right] & \leq \operatorname{Pr}[X \geq t] & & \text { Since the former implies the latter } \\
& =\operatorname{Pr}[X-\mathbb{E}[X] \geq t-\mathbb{E}[X]] & \text { Subtracting } \mathbb{E}[X] \text { from both sides } \\
& \leq \operatorname{Pr}\left[X-\mathbb{E}[X] \geq \frac{\epsilon}{2} t\right] & & \text { Since } \mathbb{E}[X]=\frac{t}{(1+\epsilon)} \leq\left(1-\frac{\epsilon}{2}\right) t \\
& \leq \operatorname{Pr}\left[|X-\mathbb{E}[X]| \geq \frac{\epsilon}{2} t\right] & & \text { Adding absolute sign } \\
& \leq \frac{\operatorname{Var}(X)}{\left((t+/ 2)^{2}\right.} & \text { By Chebyshev's inequality } \\
& \leq \frac{\mathbb{E}}{(\epsilon t / 2)^{2}} & \text { Since } \operatorname{Var}(X) \leq \mathbb{E}[X] \\
& \leq \frac{4(1-\epsilon / 2) t}{\epsilon^{2} t^{2}} & & \text { Since } \mathbb{E}[X]=\frac{t}{(1+\epsilon)} \leq\left(1-\frac{\epsilon}{2}\right) t \\
& \leq \frac{4}{c} & \text { Simplifying with } t=\frac{c}{\epsilon^{2}} \text { and }\left(1-\frac{\epsilon}{2}\right)<1
\end{array}
\]

Similarly, if \(\frac{t N}{Z}<(1-\epsilon) D\), then \(\frac{t N}{(1-\epsilon) D}<Z=t^{t h}\) smallest hash value, implying that there are \(<t\) hashes smaller than \(\frac{t N}{(1-\epsilon) D}\). Since the hash uniformly distributes \([n]\) over \([N]\), for each element \(a_{i}\),
\[
\operatorname{Pr}\left[h\left(a_{i}\right) \leq \frac{t N}{(1-\epsilon) D}\right]=\frac{\frac{t N}{(1-\epsilon) D}}{N}=\frac{t}{(1-\epsilon) D}
\]

Let \(d_{1}, \ldots, d_{D}\) be the \(D\) distinct elements in the stream. Define indicator variables
\[
Y_{i}= \begin{cases}1 & \text { if } h\left(d_{i}\right) \leq \frac{t N}{(1-\epsilon) D} \\ 0 & \text { otherwise }\end{cases}
\]
and \(Y=\sum_{i=1}^{D} Y_{i}\) is the number of hashes that are smaller than \(\frac{t N}{(1-\epsilon) D}\). From above, \(\operatorname{Pr}\left[Y_{i}=1\right]=\frac{t}{(1-\epsilon) D}\). By linearity of expectation, \(\mathbb{E}[Y]=\frac{t}{(1-\epsilon)}\). Then, by Lemma 2, \(\operatorname{Var}(Y) \leq \mathbb{E}[Y]\). Now,
\[
\begin{aligned}
\operatorname{Pr}\left[\frac{t N}{Z}<(1-\epsilon) D\right] & \leq \operatorname{Pr}[Y \leq t] & & \text { Since the former implies the latter } \\
& =\operatorname{Pr}[Y-\mathbb{E}[Y] \leq t-\mathbb{E}[Y]] & & \text { Subtracting } \mathbb{E}[Y] \text { from both sides } \\
& \leq \operatorname{Pr}[Y-\mathbb{E}[Y] \leq-\epsilon t] & & \text { Since } \mathbb{E}[Y]=\frac{t}{(1-\epsilon)} \geq(1+\epsilon) t \\
& \leq \operatorname{Pr}[-(Y-\mathbb{E}[Y]) \geq \epsilon t] & & \text { Swap sides } \\
& \leq \operatorname{Pr}[|Y-\mathbb{E}[Y]| \geq \epsilon t] & & \text { Adding absolute sign } \\
& \leq \frac{\operatorname{Var}(Y)}{(\epsilon)^{2}} & & \text { By Chebyshev's inequality } \\
& \leq \frac{\mathbb{E}(Y]}{(\epsilon t)^{2}} & & \text { Since } \operatorname{Var}(Y) \leq \mathbb{E}[Y] \\
& \leq \frac{(1+2 \epsilon) t}{\epsilon^{2} t^{2}} & & \text { Since } \mathbb{E}[Y]=\frac{t}{(1-\epsilon)} \leq(1+2 \epsilon) t \\
& \leq \frac{3}{c} & & \text { Simplifying with } t=\frac{c}{\epsilon^{2}} \text { and }(1+2 \epsilon)<3
\end{aligned}
\]

Putting together,
\[
\begin{array}{rll}
\left.\operatorname{Pr}\left[\left|\frac{t N}{Z}-D\right|>\epsilon D\right]\right] & \left.\left.\leq \operatorname{Pr}\left[\frac{t N}{Z}>(1+\epsilon) D\right]\right]+\operatorname{Pr}\left[\frac{t N}{Z}<(1-\epsilon) D\right]\right] & \text { By union bound } \\
& \leq 4 / c+3 / c & \text { From above } \\
& \leq 7 / c & \text { Simplifying } \\
& \leq 1 / 4 & \text { For } c \geq 28
\end{array}
\]

\section*{2 Estimating the \(k^{\text {th }}\) moment of a stream}

In this section, we describe algorithms from [AMS96] that estimates the \(k^{t h}\) moment of a stream, first for \(k=2\), then for general \(k\). Recall that the \(k^{t h}\) moment of a stream \(S\) is defined as \(F_{k}=\sum_{j=1}^{n}\left(f_{j}\right)^{k}\).

\section*{\(2.1 k=2\)}

For each element \(i \in[n]\), we associate a random variable \(r_{i} \in_{\text {u.a.r. }}\{-1,+1\}\).
```

Algorithm 3 AMS-2 $\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)$
For each $i \in[n]$, assign $r_{i} \in_{\text {u.a.r. }}\{-1,+1\} \quad \triangleright$ For now, this takes $\mathcal{O}(n)$ space
$Z \leftarrow 0$
for $a_{i} \in S$ do $\quad \triangleright$ Items arrive in streaming fashion
$Z \leftarrow Z+r_{i} \quad \triangleright$ At the end, $Z=\sum_{i=1}^{n} r_{i} f_{i}$
end for
return $Z^{2} \quad \triangleright$ Estimate of $F_{2}=\sum_{i=1}^{n}\left(f_{i}\right)^{2}$

```

Lemma 5. In AMS-2, if random variables \(\left\{r_{i}\right\}_{i \in[n]}\) are pairwise independent, then \(\mathbb{E}\left[Z^{2}\right]=\sum_{i=1}^{n} f_{i}^{2}=\) \(F_{2}\). That is, AMS-2 is an unbiased estimator for the \(2^{\text {nd }}\) moment.

\section*{Proof.}
\[
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} r_{i} f_{i}\right)^{2}\right] & & \text { Since } Z=\sum_{i=1}^{n} r_{i} f_{i} \text { at the end } \\
& =\mathbb{E}\left[\sum_{i=1}^{n} r_{i}^{2} f_{i}^{2}+2 \sum_{1 \leq i<j \leq n} r_{i} r_{j} f_{i} f_{j}\right] & & \text { Expanding }\left(\sum_{i=1}^{n} r_{i} f_{i}\right)^{2} \\
& =\sum_{i=1}^{n} \mathbb{E}\left[r_{i}^{2} f_{i}^{2}\right]+2 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i} r_{j} f_{i} f_{j}\right] & & \text { Linearity of expectation } \\
& =\sum_{i=1}^{n} \mathbb{E}\left[r_{i}^{2}\right] f_{i}^{2}+2 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i} r_{j}\right] f_{i} f_{j} & & f_{i}^{\prime} \text { s are (unknown) constants } \\
& =\sum_{i=1}^{n} f_{i}^{2}+2 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i} r_{j}\right] f_{i} f_{j} & & \text { Since }\left(r_{i}\right)^{2}=1, \forall i \in[n] \\
& =\sum_{i=1}^{n} f_{i}^{2}+2 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right] f_{i} f_{j} & & \text { Since }\left\{r_{i}\right\}_{i \in[n]} \text { are pairwise independent } \\
& =\sum_{i=1}^{n} f_{i}^{2}+2 \sum_{1 \leq i<j \leq n} 0 \cdot f_{i} f_{j} & & \text { Since } \mathbb{E}\left[r_{i}\right]=0, \forall i \in[n] \\
& =\sum_{i=1}^{n} f_{i}^{2} & & \text { Simplifying } \\
& =F_{2} & & \text { Since } F_{2}=\sum_{i=1}^{n}\left(f_{i}\right)^{2}
\end{aligned}
\]

Lemma 6. In AMS-2, if random variables \(\left\{r_{i}\right\}_{i \in[n]}\) are 4-wise independent, then \(\operatorname{Var}\left[Z^{2}\right] \leq 2\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}\).

Proof. As before, \(\mathbb{E}\left[r_{i}\right]=0\) and \(\mathbb{E}\left[r_{i}^{2}\right]=1\) for all \(i \in[n]\). By 4 -wise independence, the expectation of any product of \(\leq 4\) different \(r_{i}\) 's is the product of their expectation, which is zero. For instance, \(\mathbb{E}\left[r_{i} r_{j} r_{k} r_{l}\right]=\mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right] \mathbb{E}\left[r_{k}\right] \mathbb{E}\left[r_{l}\right]=0\). Note that \(r_{i}^{2}=r_{i}^{4}=1\) and \(r_{i}=r_{i}^{3}\).
\[
\begin{aligned}
\mathbb{E}\left[Z^{4}\right] & =\mathbb{E}\left[\left(\sum_{i=1}^{n} r_{i} f_{i}\right)^{4}\right] & & \text { Since } Z=\sum_{i=1}^{n} r_{i} f_{i} \text { at the end } \\
& =\sum_{i=1}^{n} \mathbb{E}\left[r_{i}^{4}\right] f_{i}^{4}+6 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i}^{2} r_{j}^{2}\right] f_{i}^{2} f_{j}^{2} & & \text { Linearity of expectation and 4-wise independence } \\
& =\sum_{i=1}^{n} f_{i}^{4}+6 \sum_{1 \leq i<j \leq n} f_{i}^{2} f_{j}^{2} & & \text { Since } \mathbb{E}\left[r_{i}^{4}\right]=\mathbb{E}\left[r_{i}^{2}\right]=1, \forall i \in[n]
\end{aligned}
\]

The coefficient of \(\sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i}^{2} r_{j}^{2}\right] f_{i}^{2} f_{j}^{2}\) is \(\binom{4}{2}\binom{2}{2}=6\). All other terms besides \(\sum_{i=1}^{n} \mathbb{E}\left[r_{i}^{4}\right] f_{i}^{4}\) and \(6 \sum_{1 \leq i<j \leq n} \mathbb{E}\left[r_{i}^{2} r_{j}^{2}\right] f_{i}^{2} \overline{f_{j}^{2}}\) evaluate to 0 because of 4 -wise independence.
\[
\begin{aligned}
\operatorname{Var}\left[Z^{2}\right] & =\mathbb{E}\left[\left(Z^{2}\right)^{2}\right]-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2} & & \text { Definition of variance } \\
& =\sum_{i=1}^{n} f_{i}^{4}+6 \sum_{1 \leq i<j \leq n} f_{i}^{2} f_{j}^{2}-\left(\mathbb{E}\left[Z^{2}\right]\right)^{2} & & \text { From above } \\
& =\sum_{i=1}^{n} f_{i}^{4}+6 \sum_{1 \leq i<j \leq n} f_{i}^{2} f_{j}^{2}-\left(\sum_{i=1}^{n} f_{i}^{2}\right)^{2} & & \text { By Lemma } 5 \text { since 4-wise ind. } \Rightarrow \text { pairwise ind. } \\
& =4 \sum_{1 \leq i<j \leq n} f_{i}^{2} f_{j}^{2} & & \text { Expand and simplify } \\
& \leq 2\left(\sum_{i=1}^{n} f_{i}^{2}\right)^{2} & & \text { Upper bound } \\
& =2\left(\mathbb{E}\left[Z^{2}\right]\right)^{2} & & \text { By Lemma } 5
\end{aligned}
\]

Theorem 7. In AMS-2, if \(\left\{r_{i}\right\}_{i \in[n]}\) are 4-wise independent, \(\operatorname{Pr}\left[\left|Z^{2}-F_{2}\right|>\epsilon F_{2}\right] \leq \frac{2}{\epsilon^{2}}\) for any \(\epsilon>0\).
Proof.
\[
\begin{aligned}
\operatorname{Pr}\left[\left|Z^{2}-F_{2}\right|>\epsilon F_{2}\right] & =\operatorname{Pr}\left[\left|Z^{2}-\mathbb{E}\left[Z^{2}\right]\right|>\epsilon \mathbb{E}\left[Z^{2}\right]\right] & & \text { By Lemma } 5 \\
& \leq \frac{\operatorname{Var}\left(Z^{2}\right)}{\left(\epsilon \mathbb{E}\left[Z^{2}\right]\right)^{2}} & & \text { By Chebyshev's inequality } \\
& \leq \frac{2\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}}{\left(\epsilon \mathbb{E}\left[Z^{2}\right]\right)^{2}} & & \text { By Lemma } 6
\end{aligned}
\]

Claim 8. \(\mathcal{O}(k \log n)\) bits of randomness suffices to obtain a set of \(k\)-wise independent random variables.
Proof. Recall the definition of hash family \(\mathcal{H}_{n, m}\). In a similar fashion \({ }^{1}\), we consider hashes from the family (for prime \(p\) ):
\[
\begin{aligned}
\left\{h_{a_{k-1}, a_{k-2}, \ldots, a_{1}, a_{0}}: h(x)=\right. & \sum_{i=1}^{k-1} a_{i} x^{i} \quad \bmod p \\
= & a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots+a_{1} x+a_{0} \quad \bmod p, \\
& \left.\forall a_{k-1}, a_{k-2}, \ldots, a_{1}, a_{0} \in \mathbb{Z}_{p}\right\}
\end{aligned}
\]

This requires \(k\) random coefficients, which can be stored with \(\mathcal{O}(k \log n)\) bits.
Observe that the above analysis only require \(\left\{r_{i}\right\}_{i \in[n]}\) to be 4 -wise independent. Claim 8 implies that AMS-2 only needs \(\mathcal{O}(4 \log n)\) bits to represent \(\left\{r_{i}\right\}_{i \in[n]}\).

Although the failure probability \(\frac{2}{\epsilon^{2}}\) is large for small \(\epsilon\), one can repeat \(t\) times and output the mean (Recall Trick 1). With \(t \in \mathcal{O}\left(\frac{1}{\epsilon^{2}}\right)\) samples, the failure probability drops to \(\frac{2}{t \epsilon^{2}} \in \mathcal{O}(1)\). When the failure probability is \(<0.5\), one can then call the routine \(k\) times independently, and return the median (Recall Trick 2). On the whole, for any given \(\epsilon>0\) and \(\delta>0, \mathcal{O}\left(\frac{\log (n) \log (1 / \delta)}{\epsilon^{2}}\right)\) space suffices to yield a \((1 \pm \epsilon)\)-approximation algorithm that succeeds with probability \(>1-\delta\).

\subsection*{2.2 General \(k\)}

The assumption of known \(m\) in AMS-k can be removed via reservoir sampling \({ }^{2}\). The idea is as follows: Initially, initialize stream length and \(J\) as both 0 . When \(a_{i}\) arrives, choose to replace \(J\) with \(i\) with probability \(\frac{1}{i}\). If \(J\) is replaced, reset \(r\) to 0 and start counting from this stream suffix onwards. It can be shown that the choice of \(J\) is uniform over current stream length.

Lemma 9. In AMS-K, \(\mathbb{E}[Z]=\sum_{i=1}^{n} f_{i}^{k}=F_{k}\). That is, AMS-K is an unbiased estimator for the \(k^{t h}\) moment.

\footnotetext{
\({ }^{1}\) See https://en.wikipedia.org/wiki/K-independent_hashing
\({ }^{2}\) See https://en.wikipedia.org/wiki/Reservoir_sampling
}
```

Algorithm 4 AMS-K $\left(S=\left\{a_{1}, \ldots, a_{m}\right\}\right)$
$m \leftarrow|S| \quad \triangleright$ For now, assume we know $m=|S|$
$J \in_{\text {u.a.r. }}[m] \quad \triangleright$ Pick a random index
$r \leftarrow 0$
for $a_{i} \in S$ do $\quad \triangleright$ Items arrive in streaming fashion
if $i \geq J$ and $a_{i}=a_{J}$ then
$r \leftarrow r+1 \quad \triangleright$ At the end, $r=\mid\left\{i \in[m]: i \geq J\right.$ and $\left.a_{i}=a_{J}\right\} \mid=\# a_{J}$ in suffix of stream
end if
end for
$Z \leftarrow m\left(r^{k}-(r-1)^{k}\right)$
return $Z \quad \triangleright$ Estimate of $F_{k}=\sum_{i=1}^{n}\left(f_{i}\right)^{k}$

```

Proof. When \(J=i\), there are \(f_{i}\) choices for \(J\). By telescoping sums, we have:
\[
\begin{aligned}
& \mathbb{E}[Z \mid J=i]=\frac{1}{f_{i}}\left[m\left(f_{i}^{k}-\left(f_{i}-1\right)^{k}\right)\right]+\frac{1}{f_{i}}\left[m\left(\left(f_{i}-1\right)^{k}-\left(f_{i}-2\right)^{k}\right)\right]+\cdots+\frac{1}{f_{i}}\left[m\left(1^{k}+0^{k}\right)\right] \\
& =\frac{m}{f_{i}}\left[\left(f_{i}^{k}-\left(f_{i}-1\right)^{k}\right)+\left(\left(f_{i}-1\right)^{k}-\left(f_{i}-2\right)^{k}\right)+\cdots+\left(1^{k}+0^{k}\right)\right] \\
& =\frac{m}{f_{i}} f_{i}^{k} \\
& \mathbb{E}[Z]=\sum_{i=1}^{n} \mathbb{E}[Z \mid J=i] \cdot \operatorname{Pr}[J=i] \\
& \text { Condition on the choice of } J \\
& =\sum_{i=1}^{n} \mathbb{E}[Z \mid J=i] \cdot \frac{f_{i}}{m} \\
& =\sum_{i=1}^{n=\frac{m}{f}} f_{i}^{k} \cdot \frac{f_{i}}{m} \quad \text { From above } \\
& =\sum_{i=1}^{i=1} f_{i}^{k} \quad m \quad \text { Simplifying } \\
& =F_{k}^{i=1} f_{i} \quad \text { Since } F_{k}=\sum_{i=1}^{n} f_{i}^{k}
\end{aligned}
\]

Lemma 10. For every \(n\) positive reals \(f_{1}, f_{2}, \ldots, f_{n}\),
\[
\left(\sum_{i=1}^{n} f_{i}\right)\left(\sum_{i=1}^{n} f_{i}^{2 k-1}\right) \leq n^{1-1 / k}\left(\sum_{i=1}^{k} f_{i}^{k}\right)^{2}
\]

Proof. Let \(M=\max _{i \in[n]} f_{i}\), then \(f_{i} \leq M\) for any \(i \in[n]\) and \(M^{k} \leq \sum_{i=1}^{n} f_{i}^{k}\). Hence,
\[
\begin{aligned}
\left(\sum_{i=1}^{n} f_{i}\right)\left(\sum_{i=1}^{n} f_{i}^{2 k-1}\right) & \leq\left(\sum_{i=1}^{n} f_{i}\right)\left(M^{k-1} \sum_{i=1}^{n} f_{i}^{k}\right) \\
& \leq\left(\sum_{i=1}^{n} f_{i}\right)\left(\sum_{i=1}^{n} f_{i}^{k}\right)^{(k-1) / k}\left(\sum_{i=1}^{n} f_{i}^{k}\right) \\
& =\left(\sum_{i=1}^{n} f_{i}\right)\left(\sum_{i=1}^{n} f_{i}^{k}\right)^{(2 k-1) / k} \\
& \leq n^{1-1 / k}\left(\sum_{i=1}^{n} f_{i}^{k}\right)^{1 / k}\left(\sum_{i=1}^{n} f_{i}^{k}\right)^{(2 k-1) / k} \\
& =n^{1-1 / k}\left(\sum_{i=1}^{n} f_{i}\right)^{2}
\end{aligned}
\]

Pulling out a \(M^{k-1}\) factor
Since \(M^{k} \leq \sum_{i=1}^{n} f_{i}^{k}\)
Merging the last two terms
Fact: \(\left(\sum_{i=1}^{n} f_{i}\right) / n \leq\left(\sum_{i=1}^{n} f_{i}^{k} / n\right)^{1 / k}\)
Merging the last two terms

Remark \(f_{1}=n^{1 / k}, f_{2}=\cdots=f_{n}=1\) is a tight example for Lemma 10 , up to a constant factor.
Theorem 11. In AMS-K, \(\operatorname{Var}(Z) \leq k n^{1-\frac{1}{k}}(\mathbb{E}[Z])^{2}\)
Proof. Let us first analyze \(\mathbb{E}\left[Z^{2}\right]\).
\[
\begin{align*}
\mathbb{E}\left[Z^{2}\right]= & \frac{m}{m}\left[\left(1^{k}-0^{k}\right)^{2}+\left(2^{k}-1^{k}\right)^{2}+\cdots+\left(f_{1}^{k}-\left(f_{1}-1\right)^{k}\right)^{2}\right.  \tag{A}\\
& +\left(1^{k}-0^{k}\right)^{2}+\left(2^{k}-1^{k}\right)^{2}+\cdots+\left(f_{2}^{k}-\left(f_{2}-1\right)^{k}\right)^{2} \\
& +\ldots \\
& \left.+\left(1^{k}-0^{k}\right)^{2}+\left(2^{k}-1^{k}\right)^{2}+\cdots+\left(f_{n}^{k}-\left(f_{n}-1\right)^{k}\right)^{2}\right] \\
\leq & m\left[k \cdot 1^{k-1}\left(1^{k}-0^{k}\right)+k \cdot 2^{k-1} \cdot\left(2^{k}-1^{k}\right)+\cdots+k \cdot f_{1}^{k-1} \cdot\left(f_{1}^{k}-\left(f_{1}-1\right)^{k}\right)\right.  \tag{B}\\
& +k \cdot 1^{k-1}\left(1^{k}-0^{k}\right)+k \cdot 2^{k-1} \cdot\left(2^{k}-1^{k}\right)+\cdots+k \cdot f_{2}^{k-1} \cdot\left(f_{2}^{k}-\left(f_{2}-1\right)^{k}\right) \\
& +\cdots \\
& \left.+k \cdot 1^{k-1}\left(1^{k}-0^{k}\right)+k \cdot 2^{k-1} \cdot\left(2^{k}-1^{k}\right)+\cdots+k \cdot f_{n}^{k-1} \cdot\left(f_{n}^{k}-\left(f_{n}-1\right)^{k}\right)\right] \\
\leq & m\left[k \cdot f_{1}^{2 k-1}+k \cdot f_{2}^{2 k-1}+\cdots+k \cdot f_{n}^{2 k-1}\right]  \tag{C}\\
= & k \cdot m \cdot F_{2 k-1}  \tag{D}\\
= & k \cdot F_{1} \cdot F_{2 k-1} \tag{E}
\end{align*}
\]
(A) By definition of \(\mathbb{E}\left[Z^{2}\right]\) (condition on \(J\) and expand in the same style as the proof of Theorem 9).
(B) \(\forall 0<b<a, a^{k}-b^{k}=(a-b)\left(a^{k-1}+a^{k-2} b+\cdots+a b^{k-2}+b^{k-1}\right) \leq(a-b) k a^{k-1}\), with \(a=b+1\)
(C) Telescope each row, then ignore remaining negative terms
(D) \(F_{2 k-1}=\sum_{i=1}^{n} f_{i}^{2 k-1}\)
(E) \(F_{1}=\sum_{i=1}^{n} f_{i}=m\)

Then,
\[
\begin{aligned}
\operatorname{Var}(Z) & =\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2} & & \text { Definition of variance } \\
& \leq \mathbb{E}\left[Z^{2}\right] & & \text { Ignore negative part } \\
& \leq k \cdot F_{1} \cdot F_{2 k-1} & & \text { From above } \\
& \leq k n^{1-1 / k} F_{k}^{2} & & \text { By Lemma } 10 \\
& =k n^{1-1 / k}(\mathbb{E}[Z])^{2} & & \text { By Theorem } 9
\end{aligned}
\]

Remark Proofs for Lemma 10 and Theorem 11 were omitted in class. The above proofs are presented in a style consistent with the rest of the scribe notes. Interested readers can refer to [AMS96] for details.

Remark One can apply an analysis similar to the case when \(k=2\), then use Tricks 1 and 2 .
Claim 12. For \(k>2\), a lower bound of \(\widetilde{\Theta}\left(n^{1-\frac{2}{k}}\right)\) is known.
Proof. Theorem 3.1 in [BYJKS04] gives the lower bound. See [IW05] for algorithm that achieves it.

\section*{References}
[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 20-29. ACM, 1996.
[BYJK+ 02] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct elements in a data stream. In International Workshop on Randomization and Approximation Techniques in Computer Science, pages 1-10. Springer, 2002.
[BYJKS04] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics approach to data stream and communication complexity. Journal of Computer and System Sciences, 68(4):702-732, 2004.
[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of computer and system sciences, 31(2):182-209, 1985.
[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of data streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 202-208. ACM, 2005.```

