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Lecture 10: Graph Sparsification I
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

In this lecture and the next, we will look at graph sparsification techniques. Given a simple, un-
weighted, undirected graph G with n vertices and m edges, can we sparsify G by ignoring some edges
such that certain desirable properties still hold? In this lecture, we will look at preserving distances.

1 Preserving distances

We will consider simple, unweighted and undirected graphs G. For any pair of vertices u, v ∈ G, denote
the shortest path between them by Pu,v. Then, the distance between u and v in graph G, denoted by
dG(u, v), is simply the length of shortest path Pu,v between them.

Definition 1 ((α, β)-spanners). Consider a graph G = (V,E) with |V | = n vertices and |E| = m edges.
For given α ≥ 1 and β ≥ 0, an (α, β)-spanner is a subgraph G′ = (V,E′) of G, where E′ ⊆ E, such that

dG(u, v) ≤ dG′(u, v) ≤ α · dG(u, v) + β

Remark The first inequality is because G′ has less edges than G. The second inequality upper bounds
how much the distances “blow up” in the sparser graph G′.

For an (α, β)-spanner, α is called the multiplicative stretch of the spanner and β is called the additive
stretch of the spanner. One would then like to construct spanners with small |E′| and stretch factors. An
(α, 0)-spanner is called a α-multiplicative spanner, and a (1, β)-spanner is called a β-additive spanner.
We shall first look at α-multiplicative spanners, then β-additive spanners in a systematic fashion:

1. State the result with respect to the number of edges and the stretch factor

2. Give the construction

3. Bound the total number of edges |E′|

4. Prove that the stretch factor holds

Remark One way to prove the existence of an (α, β)-spanner is to use the probabilistic method : Instead
of giving an explicit construction, one designs a random process and argues that the probability that the
spanner existing is strictly larger than 0. However, this may be somewhat unsatisfying as such proofs do
not usually yield a usable construction. On the other hand, the randomized constructions shown later
are explicit and will yield a spanner with high probability1.

1.1 α-multiplicative spanners

Let us first state a fact regarding the girth of a graph G. The girth of a graph G, denoted g(G), is defined
as the length of the shortest cycle in G. Suppose g(G) > 2k, then for any vertex v, the subgraph formed
by the k-hop neighbourhood of v is a tree with distinct vertices. This is because the k-hop neighbourhood
of v cannot have a cycle since g(G) > 2k.

1This is shown by invoking concentration bounds such as Chernoff.
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Theorem 2. [ADD+93] For a fixed k ≥ 1, every graph G on n vertices has a (2k − 1)-multiplicative
spanner with O(n1+1/k) edges.

Proof.
Construction

1. Initialize E′ = ∅

2. For e = (u, v) ∈ E (in arbitrary order):
If dG′(u, v) ≥ 2k currently, add (u, v) into E′.
Otherwise, ignore it.

Number of edges We claim that |E′| ∈ O(n1+1/k). Suppose, for a contradiction, that |E′| > 2n1+1/k.
Let G′′ = (V ′′, E′′) be a graph obtained by iteratively removing vertices with degree ≤ n1/k from G′.
By construction, |E′′| > n1+1/k since at most n · n1/k edges are removed. Observe the following:

• g(G′′) ≥ g(G′) ≥ 2k + 1, since girth does not decrease with fewer edges.

• Every vertex in G′′ has degree ≥ n1/k + 1, by construction.

• Pick an arbitrary vertex v ∈ V ′′ and look at its k-hop neighbourhood.

n ≥ |V ′′| By construction

≥ |{v}|+
∑k

i=1 |{u ∈ V ′′ : dG′′(u, v) = i}| If we only look at k-hop neighbourhood from v

≥ 1 +
∑k

i=1(n1/k + 1)(n1/k)i−1 Since vertices are distinct and have degree ≥ n1/k + 1

= 1 + (n1/k + 1) (n1/k)k−1
n1/k−1 Sum of geometric series

> 1 + (n− 1) Since (n1/k + 1) > (n1/k − 1)
= n

This is a contradiction since we showed n > n. Hence, |E′| ≤ 2n1+1/k ∈ O(n1+1/k).

Stretch factor For e = (u, v) ∈ E, dG′(u, v) ≤ (2k − 1) · dG(u, v) since we only leave e out of E′ if the
distance is at most the stretch factor at the point of considering e. For any u, v ∈ V , let Pu,v be the
shortest path between u and v in G. Say, Pu,v = (u,w1, . . . , wk, v). Then,

dG′(u, v) ≤ dG′(u,w1) + · · ·+ dG′(wk, v) Upper bounded by simulating Pu,v in G′

≤ (2k − 1) · dG(u,w1) + · · ·+ (2k − 1) · dG(wk, v) Apply edge stretch to each edge
= (2k − 1) · (dG(u,w1) + · · ·+ dG(wk, v)) Rearrange
= (2k − 1) · dG(u, v) Definition of Pu,v

Conjecture 1. [Erd64] For a fixed k ≥ 1, there exists a family of graphs on n vertices with girth at least
2k + 1 and Ω(n1+1/k) edges.

If the conjecture is true, then the construction is optimal. Notably, the construction will not remove
any edges for any graph that satisfies the conjecture.
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1.2 β-additive spanners

In this section, we will use a random process to select a subset of vertices by independently selecting
vertices to join the subset. The following claim will be useful for analysis:

Claim 3. If one picks vertices independently with probability p to be in S ⊆ V , where |V | = n, then

1. E[|S|] = np

2. For any vertex v with degree d(v) and neighbourhood N(v) = {u ∈ V : (u, v) ∈ E},

• E[|N(v) ∩ S|] = d(v) · p

• Pr[|N(v) ∩ S| = 0] ≤ e−
d(v)·p

2

Proof. ∀v ∈ V , let Xv be the indicator whether v ∈ S. By construction, E[Xv] = Pr[Xv = 1] = p.

1.
E[|S|] = E[

∑
v∈V Xv] By construction of S

=
∑

v∈V E[Xv] Linearity of expectation
=

∑
v∈V p Since E[Xv] = Pr[Xv = 1] = p

= np Since |V | = n

2.
E[|N(v) ∩ S|] = E[

∑
v∈N(v)Xv] By definition of N(v) ∩ S

=
∑

v∈N(v) E[Xv] Linearity of expectation

=
∑

v∈N(v) p Since E[Xv] = Pr[Xv = 1] = p

= d(v) · p Since |N(v)| = d(v)

By one-sided Chernoff bound,

Pr[|N(v) ∩ S| = 0] = Pr[|N(v) ∩ S| ≤ (1− 1) · E[|N(v) ∩ S|]]
≤ e−

E[|N(v)∩S|]
2

= e−
d(v)·p

2

Remark As a reminder, Õ hides logarithmic factors. For example, O(n log1000 n) ⊆ Õ(n).

Theorem 4. [ACIM99] For a fixed k ≥ 1, every graph G on n vertices has a 2-additive spanner with

Õ(n3/2) edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices H, where

L = {v ∈ V : deg(v) ≤ n1/2} and H = {v ∈ V : deg(v) > n1/2}

1. Let E′1 be the set of all edges incident to some vertex in L.

2. Initialize E′2 = ∅.

• Choose S ⊆ V by independently putting each vertex into S with probability 10n−1/2 log n.

• For each s ∈ S, add a Breadth-First-Search (BFS) tree rooted at s to E′2

Select edges in spanner to be E′ = E′1 ∪ E′2.
Number of edges

1. Since there are at most n light vertices, |E′1| ≤ n · n1/2 = n3/2.

2. By Claim 3 with p = 10n−1/2 log n, E[|S|] = n · 10n−1/2 log n = 10n1/2 log n. Then, since every
BFS tree has n− 1 edges2, |E′2| ≤ n · |S|, thus

E[|E′|] = E[|E′1 ∪ E′2|] ≤ E[|E′1|+ |E′2|] = E[|E′1|] + E[|E′2|] ≤ n3/2 + n · 10n1/2 log n ∈ Õ(n3/2)

2Though we may have repeated edges
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Stretch factor Consider two arbitrary vertices u and v with the shortest path Pu,v in G. Let h be the
number of heavy vertices in Pu,v. We split the analysis into two cases: (i) h ≤ 1; (ii) h ≥ 2. Recall that
a heavy vertex has degree at least n1/2.

Case (i) All edges in Pu,v are adjacent to a light vertex and are thus in E′1. Hence, dG′(u, v) = dG(u, v),
with additive stretch 0.

Case (ii)

Claim 5. Suppose there exists a vertex w ∈ Pu,v such that (w, s) ∈ E for some s ∈ S, then
dG′(u, v) ≤ dG(u, v) + 2.

u w v

s ∈ S

. . . . . .

. . . ...

Proof.

dG′(u, v) ≤ dG′(u, s) + dG′(s, v) By triangle inequality
= dG(u, s) + dG(s, v) Since we add the BFS tree rooted at s
≤ dG(u,w) + dG(w, s) + dG(s, w) + dG(w, v) By triangle inequality
≤ dG(u,w) + 1 + 1 + dG(w, v) Since (s, w) ∈ E, dG(w, s) = dG(s, w) = 1
≤ dG(u, v) + 2 Since u,w, v lie on Pu,v

Let w be a heavy vertex in Pu,v with degree d(w) > n1/2. By Claim 3 with p = 10n−1/2 log n,

Pr[|N(w)∩S| = 0] ≤ e−
10 log n

2 = n−5. Taking union bound over all possible pairs of vertices u and
v,

Pr[∃u, v ∈ V, Pu,v has no neighbour in S] ≤
(
n

2

)
n−5 ≤ n−3

Then, Claim 5 tells us that the additive stretch factor is at most 2 with probability ≥ 1− 1
n3 .

Therefore, with high probability (≥ 1− 1
n3 ), the construction yields a 2-additive spanner.

Theorem 6. [Che13] For a fixed k ≥ 1, every graph G on n vertices has a 4-additive spanner with

Õ(n7/5) edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices H, where

L = {v ∈ V : deg(v) ≤ n2/5} and H = {v ∈ V : deg(v) > n2/5}

1. Let E′1 be the set of all edges incident to some vertex in L.

2. Initialize E′2 = ∅.

• Choose S ⊆ V by independently putting each vertex into S with probability 30n−3/5 log n.

• For each s ∈ S, add a Breadth-First-Search (BFS) tree rooted at s to E′2

3. Initialize E′3 = ∅.

• Choose S′ ⊆ V by independently putting each vertex into S′ with probability 10n−2/5 log n.

• For each heavy vertex w ∈ H, if there exists edge (w, s′) for some s′ ∈ S′, add (w, s′) to E′3.

• ∀s, s′ ∈ S′, add the shortest path between s and s′ with ≤ n1/5 internal heavy vertices to E′3.
Note: If all paths between s and s′ contain > n1/5 heavy vertices, do not add any edge to E′3.
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Select edges in spanner to be E′ = E′1 ∪ E′2 ∪ E′3.

Number of edges

• Since there are at most n light vertices, |E′1| ≤ n · n2/5 = n7/5.

• By Claim 3 with p = 30n−3/5 log n, E[|S|] = n · 30n−3/5 log n = 30n2/5 log n. Then, since every

BFS tree has n− 1 edges3, |E′2| ≤ n · |S| = 30n7/5 log n ∈ Õ(n7/5).

• Since there are ≤ n heavy vertices, ≤ n edges of the form (v, s′) for v ∈ H, s′ ∈ S′ will be added to
E′3. Then, for shortest s− s′ paths with ≤ n1/5 heavy internal vertices, only edges adjacent to the
heavy vertices need to be counted because those adjacent to light vertices are already accounted
for in E′1. By Claim 3 with p = 10n−2/5 log n, E[|S′|] = n · 10n−2/5 log n = 10n3/5 log n. So, E′3
contributes ≤ n+

(|S′|
2

)
· n1/5 ≤ n+ (10n3/5 log n)2 · n1/5 ∈ Õ(n7/5) edges to the count of |E′|.

Stretch factor Consider two arbitrary vertices u and v with the shortest path Pu,v in G. Let h be the
number of heavy vertices in Pu,v. We split the analysis into three cases: (i) h ≤ 1; (ii) 2 ≤ h ≤ n1/5; (iii)
h > n1/5. Recall that a heavy vertex has degree at least n2/5.

Case (i) All edges in Pu,v are adjacent to a light vertex and are thus in E′1. Hence, dG′(u, v) = dG(u, v),
with additive stretch 0.

Case (ii) Denote the first and last heavy vertices in Pu,v as w and w′ respectively. Recall that in Case
(ii), including w and w′, there are at most n1/5 heavy vertices between w and w′. By Claim 3,

with p = 10n−2/5 log n, Pr[|N(w) ∩ S′| = 0] = Pr[|N(w′) ∩ S′| = 0] ≤ e−
n2/5·10n−2/5 log n

2 = n−5.

Let s, s′ ∈ S′ be adjacent vertices to w and w′ respectively. Observe that s−w−w′ − s′ is a path
between s and s′ with at most n1/5 internal heavy vertices. Let P ∗s,s′ be the shortest path of length

l∗ from s to s′ with at most n1/5 internal heavy vertices. By construction, we have added P ∗s,s′ to
E′3. Observe:

• By definition of P ∗s,s′ , l
∗ ≤ dG(s, w) + dG(w,w′) + dG(w′, s′) = dG(w,w′) + 2.

• Since there are no internal heavy vertices between u − w and w′ − v, Case (i) tells us that
dG′(u,w) = dG(u,w) and dG′(w

′, v) = dG(w′, v).

Thus,

dG′(u, v)
= dG′(u,w) + dG′(w,w

′) + dG′(w
′, v) Decomposing Pu,v in G′

≤ dG′(u,w) + dG′(w, s) + dG′(s, s
′) + dG′(s

′, w′) + dG′(w
′, v) Triangle inequality

= dG′(u,w) + dG′(w, s) + l∗ + dG′(s
′, w′) + dG′(w

′, v) P ∗s,s′ is added to E′3
≤ dG′(u,w) + dG′(w, s) + dG(w,w′) + 2 + dG′(s

′, w′) + dG′(w
′, v) Since l∗ ≤ dG(w,w′) + 2

= dG′(u,w) + 1 + dG(w,w′) + 2 + 1 + dG′(w
′, v) Since (w, s) ∈ E′ and (s′, w′) ∈ E′

dG′(w, s) = dG′(s
′, w′) = 1

= dG(u,w) + 1 + dG(w,w′) + 2 + 1 + dG(w′, v) Since dG′(u,w) = dG(u,w) and
dG′(w

′, v) = dG(w′, v)
≤ dG(u, v) + 4 By definition of Pu,v

u w
First heavy vertex

w′

Last heavy vertex
v

s ∈ S′ s′ ∈ S′

. . . . . . . . .

. . .
P ∗s,s′ of length l∗

Case (iii)

3Though we may have repeated edges
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Claim 7. There cannot be a vertex y that is a common neighbour to more than 3 heavy vertices
in Pu,v.

Proof. Suppose, for a contradiction, that y is adjacent to w1, w2, w3, w4 ∈ Pu,v as shown in the
picture. Then u − w1 − y − w4 − v is a shorter u − v path than Pu,v, contradicting the fact that
Pu,v is the shortest u− v path.

u w1 w2 w3 w4 v

y

. . . . . . . . . . . . . . .

Note that if y is on Pu,v, it immediately contradicts that Pu,v was the shortest path involving all
of {y, w1, w2, w3, w4}.

Claim 7 tells us that |
⋃

w∈HeavyN(w)| ≥
∑

w∈Heavy |N(w)| · 13 . Let

Nu,v = {x ∈ V : (x,w) ∈ Pu,v for some w ∈ Pu,v}

Applying Claim 3 with p = 30 · n−3/5 · log n and Claim 7, we get

E[|Nu,v ∩ S|] ≥ n1/5 · n2/5 ·
1

3
· 30 · n−3/5 · log n = 10 log n

and
Pr[|N(v) ∩ S| = 0] ≤ e−

10 log n
2 = n−5

Taking union bound over all possible pairs of vertices u and v,

Pr[∃u, v ∈ V, Pu,v has no neighbour in S] ≤
(
n

2

)
n−5 ≤ n−3

Then, Claim 5 tells us that the additive stretch factor is at most 4 with probability ≥ 1− 1
n3 .

Therefore, with high probability (≥ 1− 1
n3 ), the construction yields a 4-additive spanner.

Remark Suppose the shortest u−v path Pu,v contains a vertex from S, say s. Then, Pu,v is contained
in E′ since we include the BFS tree rooted at s because it is the shortest u− s path and shortest s− v
path by definition. In other words, the triangle inequality between u, s, v becomes tight.

Concluding remarks

Additive stretch factor β Number of edges Remarks

[ACIM99] 2 Õ(n3/2) Tight [Woo06]

[Che13] 4 Õ(n7/5) Open: Is Õ(n4/3) possible?

[BKMP05] ≥ 6 Õ(n4/3) Tight [AB17]

The additive stretch factors appear to be in even numbers because current constructions “leave”
the shortest path, then “re-enter” it later, introducing an even number of extra edges. Regardless, a
k-additive spanner is also a (k − 1)-additive spanner.
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