Lecture 10: Graph Sparsification I

Lecturer: Mohsen Ghaffari

In this lecture and the next, we will look at graph sparsification techniques. Given a simple, unweighted, undirected graph G with n vertices and m edges, can we sparsify G by ignoring some edges such that certain desirable properties still hold? In this lecture, we will look at preserving distances.

1 Preserving distances

We will consider simple, unweighted and undirected graphs G. For any pair of vertices $u, v \in G$, denote the shortest path between them by $P_{u, v}$. Then, the distance between u and v in graph G, denoted by $d_{G}(u, v)$, is simply the length of shortest path $P_{u, v}$ between them.

Definition $1((\alpha, \beta)$-spanners). Consider a graph $G=(V, E)$ with $|V|=n$ vertices and $|E|=m$ edges. For given $\alpha \geq 1$ and $\beta \geq 0$, an (α, β)-spanner is a subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G, where $E^{\prime} \subseteq E$, such that

$$
d_{G}(u, v) \leq d_{G^{\prime}}(u, v) \leq \alpha \cdot d_{G}(u, v)+\beta
$$

Remark The first inequality is because G^{\prime} has less edges than G. The second inequality upper bounds how much the distances "blow up" in the sparser graph G^{\prime}.

For an (α, β)-spanner, α is called the multiplicative stretch of the spanner and β is called the additive stretch of the spanner. One would then like to construct spanners with small $\left|E^{\prime}\right|$ and stretch factors. An $(\alpha, 0)$-spanner is called a α-multiplicative spanner, and a $(1, \beta)$-spanner is called a β-additive spanner. We shall first look at α-multiplicative spanners, then β-additive spanners in a systematic fashion:

1. State the result with respect to the number of edges and the stretch factor
2. Give the construction
3. Bound the total number of edges $\left|E^{\prime}\right|$
4. Prove that the stretch factor holds

Remark One way to prove the existence of an (α, β)-spanner is to use the probabilistic method: Instead of giving an explicit construction, one designs a random process and argues that the probability that the spanner existing is strictly larger than 0 . However, this may be somewhat unsatisfying as such proofs do not usually yield a usable construction. On the other hand, the randomized constructions shown later are explicit and will yield a spanner with high probability ${ }^{1}$.

1.1 α-multiplicative spanners

Let us first state a fact regarding the girth of a graph G. The girth of a graph G, denoted $g(G)$, is defined as the length of the shortest cycle in G. Suppose $g(G)>2 k$, then for any vertex v, the subgraph formed by the k-hop neighbourhood of v is a tree with distinct vertices. This is because the k-hop neighbourhood of v cannot have a cycle since $g(G)>2 k$.

[^0]

Theorem 2. $\left[A D D^{+} 93\right]$ For a fixed $k \geq 1$, every graph G on n vertices has a $(2 k-1)$-multiplicative spanner with $\mathcal{O}\left(n^{1+1 / k}\right)$ edges.

Proof.

Construction

1. Initialize $E^{\prime}=\emptyset$
2. For $e=(u, v) \in E$ (in arbitrary order):

If $d_{G^{\prime}}(u, v) \geq 2 k$ currently, add (u, v) into E^{\prime}.
Otherwise, ignore it.

Number of edges We claim that $\left|E^{\prime}\right| \in \mathcal{O}\left(n^{1+1 / k}\right)$. Suppose, for a contradiction, that $\left|E^{\prime}\right|>2 n^{1+1 / k}$. Let $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ be a graph obtained by iteratively removing vertices with degree $\leq n^{1 / k}$ from G^{\prime}. By construction, $\left|E^{\prime \prime}\right|>n^{1+1 / k}$ since at most $n \cdot n^{1 / k}$ edges are removed. Observe the following:

- $g\left(G^{\prime \prime}\right) \geq g\left(G^{\prime}\right) \geq 2 k+1$, since girth does not decrease with fewer edges.
- Every vertex in $G^{\prime \prime}$ has degree $\geq n^{1 / k}+1$, by construction.
- Pick an arbitrary vertex $v \in V^{\prime \prime}$ and look at its k-hop neighbourhood.

$$
\begin{aligned}
n & \geq\left|V^{\prime \prime}\right| & & \text { By construction } \\
& \geq|\{v\}|+\sum_{i=1}^{k}\left|\left\{u \in V^{\prime \prime}: d_{G^{\prime \prime}}(u, v)=i\right\}\right| & & \text { If we only look at } k \text {-hop neighbourhood from } v \\
& \geq 1+\sum_{i=1}^{k}\left(n^{1 / k}+1\right)\left(n^{1 / k}\right)^{i-1} & & \text { Since vertices are distinct and have degree } \geq n^{1 / k}+1 \\
& =1+\left(n^{1 / k}+1\right) \frac{\left(n^{1 / k}\right)^{k}-1}{n^{1 / k}-1} & & \text { Sum of geometric series } \\
& >1+(n-1) & & \text { Since }\left(n^{1 / k}+1\right)>\left(n^{1 / k}-1\right)
\end{aligned}
$$

$$
=n
$$

This is a contradiction since we showed $n>n$. Hence, $\left|E^{\prime}\right| \leq 2 n^{1+1 / k} \in \mathcal{O}\left(n^{1+1 / k}\right)$.
Stretch factor For $e=(u, v) \in E, d_{G^{\prime}}(u, v) \leq(2 k-1) \cdot d_{G}(u, v)$ since we only leave e out of E^{\prime} if the distance is at most the stretch factor at the point of considering e. For any $u, v \in V$, let $P_{u, v}$ be the shortest path between u and v in G. Say, $P_{u, v}=\left(u, w_{1}, \ldots, w_{k}, v\right)$. Then,

$$
\begin{aligned}
d_{G^{\prime}}(u, v) & \leq d_{G^{\prime}}\left(u, w_{1}\right)+\cdots+d_{G^{\prime}}\left(w_{k}, v\right) & & \text { Upper bounded by simulating } P_{u, v} \text { in } G^{\prime} \\
& \leq(2 k-1) \cdot d_{G}\left(u, w_{1}\right)+\cdots+(2 k-1) \cdot d_{G}\left(w_{k}, v\right) & & \text { Apply edge stretch to each edge } \\
& =(2 k-1) \cdot\left(d_{G}\left(u, w_{1}\right)+\cdots+d_{G}\left(w_{k}, v\right)\right) & & \text { Rearrange } \\
& =(2 k-1) \cdot d_{G}(u, v) & & \text { Definition of } P_{u, v}
\end{aligned}
$$

Conjecture 1. [Erd64] For a fixed $k \geq 1$, there exists a family of graphs on n vertices with girth at least $2 k+1$ and $\Omega\left(n^{1+1 / k}\right)$ edges.

If the conjecture is true, then the construction is optimal. Notably, the construction will not remove any edges for any graph that satisfies the conjecture.

1.2β-additive spanners

In this section, we will use a random process to select a subset of vertices by independently selecting vertices to join the subset. The following claim will be useful for analysis:

Claim 3. If one picks vertices independently with probability p to be in $S \subseteq V$, where $|V|=n$, then

1. $\mathbb{E}[|S|]=n p$
2. For any vertex v with degree $d(v)$ and neighbourhood $N(v)=\{u \in V:(u, v) \in E\}$,

- $\mathbb{E}[|N(v) \cap S|]=d(v) \cdot p$
- $\operatorname{Pr}[|N(v) \cap S|=0] \leq e^{-\frac{d(v) \cdot p}{2}}$

Proof. $\forall v \in V$, let X_{v} be the indicator whether $v \in S$. By construction, $\mathbb{E}\left[X_{v}\right]=\operatorname{Pr}\left[X_{v}=1\right]=p$.
1.

$$
\begin{aligned}
\mathbb{E}[|S|] & =\mathbb{E}\left[\sum_{v \in V} X_{v}\right] & & \text { By construction of } S \\
& =\sum_{v \in V} \mathbb{E}\left[X_{v}\right] & & \text { Linearity of expectation } \\
& =\sum_{v \in V} p & & \text { Since } \mathbb{E}\left[X_{v}\right]=\operatorname{Pr}\left[X_{v}=1\right]=p \\
& =n p & & \text { Since }|V|=n
\end{aligned}
$$

2.

$$
\begin{aligned}
\mathbb{E}[|N(v) \cap S|] & =\mathbb{E}\left[\sum_{v \in N(v)} X_{v}\right] & & \text { By definition of } N(v) \cap S \\
& =\sum_{v \in N(v)} \mathbb{E}\left[X_{v}\right] & & \text { Linearity of expectation } \\
& =\sum_{v \in N(v)} p & & \text { Since } \mathbb{E}\left[X_{v}\right]=\operatorname{Pr}\left[X_{v}=1\right]=p \\
& =d(v) \cdot p & & \text { Since }|N(v)|=d(v)
\end{aligned}
$$

By one-sided Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}[|N(v) \cap S|=0] & =\operatorname{Pr}[|N(v) \cap S| \leq(1-1) \cdot \mathbb{E}[|N(v) \cap S|]] \\
& \leq e^{-\frac{\mathbb{E \| N (v) \cap S |]}}{2}} \\
& =e^{-\frac{d(v) \cdot p}{2}}
\end{aligned}
$$

Remark As a reminder, $\widetilde{\mathcal{O}}$ hides logarithmic factors. For example, $\mathcal{O}\left(n \log ^{1000} n\right) \subseteq \widetilde{\mathcal{O}}(n)$.
Theorem 4. [ACIM99] For a fixed $k \geq 1$, every graph G on n vertices has a 2-additive spanner with $\widetilde{\mathcal{O}}\left(n^{3 / 2}\right)$ edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices H, where

$$
L=\left\{v \in V: \operatorname{deg}(v) \leq n^{1 / 2}\right\} \text { and } H=\left\{v \in V: \operatorname{deg}(v)>n^{1 / 2}\right\}
$$

1. Let E_{1}^{\prime} be the set of all edges incident to some vertex in L.
2. Initialize $E_{2}^{\prime}=\emptyset$.

- Choose $S \subseteq V$ by independently putting each vertex into S with probability $10 n^{-1 / 2} \log n$.
- For each $s \in S$, add a Breadth-First-Search (BFS) tree rooted at s to E_{2}^{\prime}

Select edges in spanner to be $E^{\prime}=E_{1}^{\prime} \cup E_{2}^{\prime}$.

Number of edges

1. Since there are at most n light vertices, $\left|E_{1}^{\prime}\right| \leq n \cdot n^{1 / 2}=n^{3 / 2}$.
2. By Claim 3 with $p=10 n^{-1 / 2} \log n, \mathbb{E}[|S|]=n \cdot 10 n^{-1 / 2} \log n=10 n^{1 / 2} \log n$. Then, since every BFS tree has $n-1$ edges $^{2},\left|E_{2}^{\prime}\right| \leq n \cdot|S|$, thus

$$
\mathbb{E}\left[\left|E^{\prime}\right|\right]=\mathbb{E}\left[\left|E_{1}^{\prime} \cup E_{2}^{\prime}\right|\right] \leq \mathbb{E}\left[\left|E_{1}^{\prime}\right|+\left|E_{2}^{\prime}\right|\right]=\mathbb{E}\left[\left|E_{1}^{\prime}\right|\right]+\mathbb{E}\left[\left|E_{2}^{\prime}\right|\right] \leq n^{3 / 2}+n \cdot 10 n^{1 / 2} \log n \in \widetilde{\mathcal{O}}\left(n^{3 / 2}\right)
$$

[^1]Stretch factor Consider two arbitrary vertices u and v with the shortest path $P_{u, v}$ in G. Let h be the number of heavy vertices in $P_{u, v}$. We split the analysis into two cases: (i) $h \leq 1$; (ii) $h \geq 2$. Recall that a heavy vertex has degree at least $n^{1 / 2}$.

Case (i) All edges in $P_{u, v}$ are adjacent to a light vertex and are thus in E_{1}^{\prime}. Hence, $d_{G^{\prime}}(u, v)=d_{G}(u, v)$, with additive stretch 0 .

Case (ii)

Claim 5. Suppose there exists a vertex $w \in P_{u, v}$ such that $(w, s) \in E$ for some $s \in S$, then $d_{G^{\prime}}(u, v) \leq d_{G}(u, v)+2$.

Proof.

$$
\begin{aligned}
d_{G^{\prime}}(u, v) & \leq d_{G^{\prime}}(u, s)+d_{G^{\prime}}(s, v) & & \text { By triangle inequality } \\
& =d_{G}(u, s)+d_{G}(s, v) & & \text { Since we add the BFS tree rooted at } s \\
& \leq d_{G}(u, w)+d_{G}(w, s)+d_{G}(s, w)+d_{G}(w, v) & & \text { By triangle inequality } \\
& \leq d_{G}(u, w)+1+1+d_{G}(w, v) & & \text { Since }(s, w) \in E, d_{G}(w, s)=d_{G}(s, w)= \\
& \leq d_{G}(u, v)+2 & & \text { Since } u, w, v \text { lie on } P_{u, v}
\end{aligned}
$$

Let w be a heavy vertex in $P_{u, v}$ with degree $d(w)>n^{1 / 2}$. By Claim 3 with $p=10 n^{-1 / 2} \log n$, $\operatorname{Pr}[|N(w) \cap S|=0] \leq e^{-\frac{10 \log n}{2}}=n^{-5}$. Taking union bound over all possible pairs of vertices u and v,

$$
\operatorname{Pr}\left[\exists u, v \in V, P_{u, v} \text { has no neighbour in } S\right] \leq\binom{ n}{2} n^{-5} \leq n^{-3}
$$

Then, Claim 5 tells us that the additive stretch factor is at most 2 with probability $\geq 1-\frac{1}{n^{3}}$.
Therefore, with high probability $\left(\geq 1-\frac{1}{n^{3}}\right)$, the construction yields a 2 -additive spanner.
Theorem 6. [Che13] For a fixed $k \geq 1$, every graph G on n vertices has a 4-additive spanner with $\widetilde{\mathcal{O}}\left(n^{7 / 5}\right)$ edges.

Proof.
Construction Partition vertex set V into light vertices L and heavy vertices H, where

$$
L=\left\{v \in V: \operatorname{deg}(v) \leq n^{2 / 5}\right\} \text { and } H=\left\{v \in V: \operatorname{deg}(v)>n^{2 / 5}\right\}
$$

1. Let E_{1}^{\prime} be the set of all edges incident to some vertex in L.
2. Initialize $E_{2}^{\prime}=\emptyset$.

- Choose $S \subseteq V$ by independently putting each vertex into S with probability $30 n^{-3 / 5} \log n$.
- For each $s \in S$, add a Breadth-First-Search (BFS) tree rooted at s to E_{2}^{\prime}

3. Initialize $E_{3}^{\prime}=\emptyset$.

- Choose $S^{\prime} \subseteq V$ by independently putting each vertex into S^{\prime} with probability $10 n^{-2 / 5} \log n$.
- For each heavy vertex $w \in H$, if there exists edge $\left(w, s^{\prime}\right)$ for some $s^{\prime} \in S^{\prime}$, add $\left(w, s^{\prime}\right)$ to E_{3}^{\prime}.
- $\forall s, s^{\prime} \in S^{\prime}$, add the shortest path between s and s^{\prime} with $\leq n^{1 / 5}$ internal heavy vertices to E_{3}^{\prime}. Note: If all paths between s and s^{\prime} contain $>n^{1 / 5}$ heavy vertices, do not add any edge to E_{3}^{\prime}.

Select edges in spanner to be $E^{\prime}=E_{1}^{\prime} \cup E_{2}^{\prime} \cup E_{3}^{\prime}$.

Number of edges

- Since there are at most n light vertices, $\left|E_{1}^{\prime}\right| \leq n \cdot n^{2 / 5}=n^{7 / 5}$.
- By Claim 3 with $p=30 n^{-3 / 5} \log n, \mathbb{E}[|S|]=n \cdot 30 n^{-3 / 5} \log n=30 n^{2 / 5} \log n$. Then, since every BFS tree has $n-1$ edges $^{3},\left|E_{2}^{\prime}\right| \leq n \cdot|S|=30 n^{7 / 5} \log n \in \widetilde{\mathcal{O}}\left(n^{7 / 5}\right)$.
- Since there are $\leq n$ heavy vertices, $\leq n$ edges of the form $\left(v, s^{\prime}\right)$ for $v \in H, s^{\prime} \in S^{\prime}$ will be added to E_{3}^{\prime}. Then, for shortest $s-s^{\prime}$ paths with $\leq n^{1 / 5}$ heavy internal vertices, only edges adjacent to the heavy vertices need to be counted because those adjacent to light vertices are already accounted for in E_{1}^{\prime}. By Claim 3 with $p=10 n^{-2 / 5} \log n, \mathbb{E}\left[\left|S^{\prime}\right|\right]=n \cdot 10 n^{-2 / 5} \log n=10 n^{3 / 5} \log n$. So, E_{3}^{\prime} contributes $\leq n+\binom{\left|S^{\prime}\right|}{2} \cdot n^{1 / 5} \leq n+\left(10 n^{3 / 5} \log n\right)^{2} \cdot n^{1 / 5} \in \widetilde{\mathcal{O}}\left(n^{7 / 5}\right)$ edges to the count of $\left|E^{\prime}\right|$.

Stretch factor Consider two arbitrary vertices u and v with the shortest path $P_{u, v}$ in G. Let h be the number of heavy vertices in $P_{u, v}$. We split the analysis into three cases: (i) $h \leq 1$; (ii) $2 \leq h \leq n^{1 / 5}$; (iii) $h>n^{1 / 5}$. Recall that a heavy vertex has degree at least $n^{2 / 5}$.

Case (i) All edges in $P_{u, v}$ are adjacent to a light vertex and are thus in E_{1}^{\prime}. Hence, $d_{G^{\prime}}(u, v)=d_{G}(u, v)$, with additive stretch 0 .

Case (ii) Denote the first and last heavy vertices in $P_{u, v}$ as w and w^{\prime} respectively. Recall that in Case (ii), including w and w^{\prime}, there are at most $n^{1 / 5}$ heavy vertices between w and w^{\prime}. By Claim 3, with $p=10 n^{-2 / 5} \log n, \operatorname{Pr}\left[\left|N(w) \cap S^{\prime}\right|=0\right]=\operatorname{Pr}\left[\left|N\left(w^{\prime}\right) \cap S^{\prime}\right|=0\right] \leq e^{-\frac{n^{2 / 5} \cdot 10 n-2 / 5}{2} \log n}=n^{-5}$.
Let $s, s^{\prime} \in S^{\prime}$ be adjacent vertices to w and w^{\prime} respectively. Observe that $s-w-w^{\prime}-s^{\prime}$ is a path between s and s^{\prime} with at most $n^{1 / 5}$ internal heavy vertices. Let $P_{s, s^{\prime}}^{*}$ be the shortest path of length l^{*} from s to s^{\prime} with at most $n^{1 / 5}$ internal heavy vertices. By construction, we have added $P_{s, s^{\prime}}^{*}$ to E_{3}^{\prime}. Observe:

- By definition of $P_{s, s^{\prime}}^{*}, l^{*} \leq d_{G}(s, w)+d_{G}\left(w, w^{\prime}\right)+d_{G}\left(w^{\prime}, s^{\prime}\right)=d_{G}\left(w, w^{\prime}\right)+2$.
- Since there are no internal heavy vertices between $u-w$ and $w^{\prime}-v$, Case (i) tells us that $d_{G^{\prime}}(u, w)=d_{G}(u, w)$ and $d_{G^{\prime}}\left(w^{\prime}, v\right)=d_{G}\left(w^{\prime}, v\right)$.

Thus,

$$
\begin{aligned}
& d_{G^{\prime}}(u, v) \\
= & d_{G^{\prime}}(u, w)+d_{G^{\prime}}\left(w, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right) \\
\leq & d_{G^{\prime}}(u, w)+d_{G^{\prime}}(w, s)+d_{G^{\prime}}\left(s, s^{\prime}\right)+d_{G^{\prime}}\left(s^{\prime}, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right) \\
= & d_{G^{\prime}}(u, w)+d_{G^{\prime}}(w, s)+l^{*}+d_{G^{\prime}}\left(s^{\prime}, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right) \\
\leq & d_{G^{\prime}}(u, w)+d_{G^{\prime}}(w, s)+d_{G}\left(w, w^{\prime}\right)+2+d_{G^{\prime}}\left(s^{\prime}, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right) \\
= & d_{G^{\prime}}(u, w)+1+d_{G}\left(w, w^{\prime}\right)+2+1+d_{G^{\prime}}\left(w^{\prime}, v\right) \\
= & d_{G}(u, w)+1+d_{G}\left(w, w^{\prime}\right)+2+1+d_{G}\left(w^{\prime}, v\right) \\
\leq & d_{G}(u, v)+4
\end{aligned}
$$

Decomposing $P_{u, v}$ in G^{\prime}
Triangle inequality
$P_{s, s^{\prime}}^{*}$ is added to E_{3}^{\prime}
Since $l^{*} \leq d_{G}\left(w, w^{\prime}\right)+2$
Since $(w, s) \in E^{\prime}$ and $\left(s^{\prime}, w^{\prime}\right) \in E^{\prime}$
$d_{G^{\prime}}(w, s)=d_{G^{\prime}}\left(s^{\prime}, w^{\prime}\right)=1$
Since $d_{G^{\prime}}(u, w)=d_{G}(u, w)$ and $d_{G^{\prime}}\left(w^{\prime}, v\right)=d_{G}\left(w^{\prime}, v\right)$
By definition of $P_{u, v}$

Case (iii)

[^2]Claim 7. There cannot be a vertex y that is a common neighbour to more than 3 heavy vertices in $P_{u, v}$.

Proof. Suppose, for a contradiction, that y is adjacent to $w_{1}, w_{2}, w_{3}, w_{4} \in P_{u, v}$ as shown in the picture. Then $u-w_{1}-y-w_{4}-v$ is a shorter $u-v$ path than $P_{u, v}$, contradicting the fact that $P_{u, v}$ is the shortest $u-v$ path.

Note that if y is on $P_{u, v}$, it immediately contradicts that $P_{u, v}$ was the shortest path involving all of $\left\{y, w_{1}, w_{2}, w_{3}, w_{4}\right\}$.

Claim 7 tells us that $\left|\bigcup_{w \in \text { Heavy }} N(w)\right| \geq \sum_{w \in \text { Heavy }}|N(w)| \cdot \frac{1}{3}$. Let

$$
N_{u, v}=\left\{x \in V:(x, w) \in P_{u, v} \text { for some } w \in P_{u, v}\right\}
$$

Applying Claim 3 with $p=30 \cdot n^{-3 / 5} \cdot \log n$ and Claim 7, we get

$$
\mathbb{E}\left[\left|N_{u, v} \cap S\right|\right] \geq n^{1 / 5} \cdot n^{2 / 5} \cdot \frac{1}{3} \cdot 30 \cdot n^{-3 / 5} \cdot \log n=10 \log n
$$

and

$$
\operatorname{Pr}[|N(v) \cap S|=0] \leq e^{-\frac{10 \log n}{2}}=n^{-5}
$$

Taking union bound over all possible pairs of vertices u and v,

$$
\operatorname{Pr}\left[\exists u, v \in V, P_{u, v} \text { has no neighbour in } S\right] \leq\binom{ n}{2} n^{-5} \leq n^{-3}
$$

Then, Claim 5 tells us that the additive stretch factor is at most 4 with probability $\geq 1-\frac{1}{n^{3}}$. Therefore, with high probability ($\geq 1-\frac{1}{n^{3}}$), the construction yields a 4 -additive spanner.

Remark Suppose the shortest $u-v$ path $P_{u, v}$ contains a vertex from S, say s. Then, $P_{u, v}$ is contained in E^{\prime} since we include the BFS tree rooted at s because it is the shortest $u-s$ path and shortest $s-v$ path by definition. In other words, the triangle inequality between u, s, v becomes tight.

Concluding remarks

	Additive stretch factor β	Number of edges	Remarks
[ACIM99]	2	$\widetilde{\mathcal{O}}\left(n^{3 / 2}\right)$	Tight [Woo06]
[Che13]	4	$\widetilde{\mathcal{O}}\left(n^{7 / 5}\right)$	Open: Is $\widetilde{\mathcal{O}}\left(n^{4 / 3}\right)$ possible?
[BKMP05]	≥ 6	$\widetilde{\mathcal{O}}\left(n^{4 / 3}\right)$	Tight [AB17]

The additive stretch factors appear to be in even numbers because current constructions "leave" the shortest path, then "re-enter" it later, introducing an even number of extra edges. Regardless, a k-additive spanner is also a $(k-1)$-additive spanner.

References

[AB17] Amir Abboud and Greg Bodwin. The \&frac; 43 additive spanner exponent is tight. Journal of the ACM (JACM), 64(4):28, 2017.
[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167-1181, 1999.
[ADD $\left.{ }^{+} 93\right]$ Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discrete \& Computational Geometry, 9(1):81-100, 1993.
[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New constructions of (α, β)-spanners and purely additive spanners. In Proceedings of the sixteenth annual ACMSIAM symposium on Discrete algorithms, pages 672-681. Society for Industrial and Applied Mathematics, 2005.
[Che13] Shiri Chechik. New additive spanners. In Proceedings of the twenty-fourth annual ACMSIAM symposium on Discrete algorithms, pages 498-512. Society for Industrial and Applied Mathematics, 2013.
[Erd64] P. Erds. Extremal problems in graph theory. In IN THEORY OF GRAPHS AND ITS APPLICATIONS, PROC. SYMPOS. SMOLENICE, pages 29-36, 1964.
[Woo06] David P Woodruff. Lower bounds for additive spanners, emulators, and more. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on, pages 389-398. IEEE, 2006.

[^0]: ${ }^{1}$ This is shown by invoking concentration bounds such as Chernoff.

[^1]: ${ }^{2}$ Though we may have repeated edges

[^2]: ${ }^{3}$ Though we may have repeated edges

