Advanced Algorithms

27 November 2018

Lecture 11: Graph Sparsification II

Lecturer: Mohsen Ghaffari

Scribe: Davin Choo

In the previous lecture, we introduced graph sparsification as a way to obtain a subgraph with fewer edges but similar pairwise distances. In this lecture, we will look at *preserving cuts*.

1 Preserving cuts

Definition 1 (Cut and minimum cut). Consider a graph G = (V, E).

- For $S \subseteq V, S \neq \emptyset, S \neq V, C_G(S, V \setminus S) = \{(u, v) : u \in S, v \in V \setminus S\}$ is a non-trivial cut in G
- Define cut size $E_G(S, V \setminus S) = \sum_{e \in C_G(S, V \setminus S)} w(e)$ For unweighted G, w(e) = 1 for all $e \in E$, so $E_G(S, V \setminus S) = |C_G(S, V \setminus S)|$
- Minimum cut size of the graph G is denoted by $\mu(G) = \min_{S \subseteq V, S \neq \emptyset, S \neq V} E_G(S, V \setminus S)$
- A cut $C_G(S, V \setminus S)$ is said to be minimum if $E_G(S, V \setminus S) = \mu(G)$

Given an undirected graph G = (V, E), our goal in this lecture is to construct a weighted graph H = (V, E') with $E' \subseteq E$ and weight function $w : E' \to \mathbb{R}^+$ such that

$$(1-\epsilon) \cdot E_G(S, V \setminus S) \le E_H(S, V \setminus S) \le (1+\epsilon) \cdot E_G(S, V \setminus S)$$

for every $S \subseteq V, S \neq 0, S \neq V$. Recall Karger's random contraction algorithm [Kar93]¹:

Algorithm 1 RANDOMCONTRACTION $(G = (V, E))$	
while $ V > 2$ do	
$e \leftarrow \text{Pick}$ an edge uniformly at random from E	
$G \leftarrow G/e$	\triangleright Contract edge e
end while	
return The remaining cut	\triangleright This may be a multi-graph

Theorem 2. For a fixed minimum cut S^* in the graph, RANDOMCONTRACTION returns it with probability $\geq 1/\binom{n}{2}$.

Proof. Fix a minimum cut S^* in the graph. Suppose $|S^*| = k$. To successfully return S^* , none of the edges in S^* must be selected in the whole contraction process.

By construction, there will be n-i vertices in the graph at step i of RANDOMCONTRACTION. Since $\mu(G) = k$, each vertex has degree $\geq k$ (otherwise that vertex itself gives a cut smaller than k), so there are $\geq (n-i)k/2$ edges in the graph. Thus,

$$\Pr[\text{Success}] \geq (1 - \frac{k}{nk/2}) \cdot (1 - \frac{k}{(n-1)k/2}) \cdot (1 - \frac{k}{(n-2)k/2}) \cdots (1 - \frac{k}{4k/2}) \cdot (1 - \frac{k}{3k/2}) \\ = (1 - \frac{2}{n}) \cdot (1 - \frac{2}{n-1}) \cdot (1 - \frac{2}{n-2}) \cdots (1 - \frac{2}{4}) \cdot (1 - \frac{2}{3}) \\ = (\frac{n-2}{n}) \cdot (\frac{n-3}{n-1}) \cdot (\frac{n-4}{n-2}) \cdots (\frac{2}{4}) \cdot (\frac{1}{3}) \\ = \frac{2}{n(n-1)} \\ = 1/\binom{n}{2}$$

Corollary 3. There are $\leq \binom{n}{2}$ minimum cuts in a graph.

Proof. Since RANDOMCONTRACTION successfully produces any given minimum cut with probability $\geq 1/\binom{n}{2}$, there can be at most $\binom{n}{2}$ many minimum cuts.

¹Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm

Remark There exists (multi-)graphs with $\binom{n}{2}$ minimum cuts: Consider a cycle where there are $\frac{\mu(G)}{2}$ edges between every pair of adjacent vertices.

In general, we can bound the number of cuts that are of size at most $\alpha \cdot \mu(G)$ for $\alpha \geq 1$.

Theorem 4. In an undirected graph, the number of α -minimum cuts is less than $n^{2\alpha}$.

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version² of [Kar99]. \Box

1.1 Warm up: $G = K_n$

Consider the following procedure to construct H:

- 1. Let $p = \Omega(\frac{\log n}{n})$
- 2. Independently put each edge $e \in E$ into E' with probability p
- 3. Define $w(e) = \frac{1}{n}$ for each edge $e \in E'$

One can check³ that this suffices for $G = K_n$.

1.2 Uniform edge sampling

For a graph G with minimum cut size $\mu(G) = k$, consider the following procedure to construct H:

- 1. Set $p = \frac{c \log n}{\epsilon^2 k}$ for some constant c
- 2. Independently put each edge $e \in E$ into E' with probability p
- 3. Define $w(e) = \frac{1}{p}$ for each edge $e \in E'$

Theorem 5. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,

$$(1-\epsilon) \cdot E_G(S, V \setminus S) \le E_H(S, V \setminus S) \le (1+\epsilon) \cdot E_G(S, V \setminus S)$$

Proof. Fix an arbitrary cut $(S, V \setminus S)$. Suppose $E_G(S, V \setminus S) = k' = \alpha \cdot k$ for some $\alpha \ge 1$.

Let X_e be the indicator for the edge $e \in C_G(S, V \setminus S)$ being selected into E'. By construction, $\mathbb{E}[X_i] = \Pr[X_i = 1] = p$. Then, by linearity of expectation, $\mathbb{E}[|C_H(S, V \setminus S)|] = \sum_{e \in C_G(S, V \setminus S)} \mathbb{E}[X_i] = k'p$. As we put 1/p weight on each edge in E', $\mathbb{E}[E_H(S, V \setminus S)] = k'$. Using Chernoff bound, for sufficiently large c, we get:

	$\Pr[\operatorname{Cut}(S, V \setminus S) \text{ is badly estimated in } H]$	
	$\Pr[E_H(S, V \setminus S) - \mathbb{E}[E_H(S, V \setminus S)] > \epsilon \cdot k']$	What it means to be badly estimated
	$2e^{-\frac{\epsilon^2 k'p}{3}}$	Chernoff bound
=	$2e^{-\frac{\epsilon^2 \alpha k p}{3}}$	Since $k' = \alpha k$
\leq	$n^{-10lpha}$	For sufficiently large c

²Version available at: http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps ³Fix a cut, analyze, then take union bound.

Using Theorem 4 and union bound over all possible cuts in G,

Theorem 6. [Kar94] For a graph G, consider sampling every edge independently with probability p_e into E', and assign weights $1/p_e$ to each edge $e \in E'$. Let H = (V, E') be the sampled graph and suppose $\mu(H) \geq \frac{c \log n}{\epsilon^2}$, for some constant c. Then, with high probability, every weighted cut size in H is (well-estimated) within $(1 \pm \epsilon)$ of the original cut size in G.

Theorem 6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem 2.1 of [Kar94].

1.3Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut.

Running the uniform edge sampling will not sparsify the above dumbbell graph as $\mu(G) = 1$ leads to large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first define k-strong components.

Definition 7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.

Definition 8 (k-strong component). A k-strong component is a maximal k-connected vertex-induced subgraph. For an edge e, define its strong connectivity / strength k_e as the maximum k such that e is in a k-strong component. We say an edge is k-strong if $k_e \geq k$.

Remark The (standard) connectivity of an edge *e* is the minimum cut size that separates its endpoints. In particular, an edge's strong connectivity is no more than the edge's (standard) connectivity since a cut size of k implies there is no k-connected component containing both endpoints.

Lemma 9. The following holds for k-strong components:

- 1. k_e is uniquely defined for every edge e
- 2. For any k, the k-strong components are disjoint.
- 3. For any 2 values k_1, k_2 ($k_1 < k_2$), k_2 -strong components are a refinement of k_1 -string components
- 4. $\sum_{e \in E} \frac{1}{k_e} \le n 1$ Intuition: If there are a lot of edges, then many of them have high strength.

Proof.

- 1. By definition of maximum
- 2. Suppose, for a contradiction, there are two intersecting k-strong components. Since their union is also k-strong, this contradicts the fact that they were maximal.
- 3. For $k_1 < k_2$, a k_2 -strong component is also k_1 -strong, so it is a subset of some k_1 -strong component.
- 4. Consider a minimum cut $C_G(S, V \setminus S)$. Since $k_e \ge \mu(G), \forall e \in C_G(S, V \setminus S)$, these edges contribute $\le \mu(G) \cdot \frac{1}{k_e} \le \mu(G) \cdot \frac{1}{\mu(G)} = 1$ to the summation. Remove these edges from G and repeat the argument on any remaining connected components. Since each cut removal contributes at most 1 to the summation and the process stops when we reach n components, $\sum_{e \in E} \frac{1}{k_e} \le n 1$.

For a graph G with minimum cut size $\mu(G) = k$, consider the following procedure to construct H:

- 1. Set $q = \frac{c \log n}{\epsilon^2}$ for some constant c
- 2. Independently put each edge $e \in E$ into E' with probability $p_e = \frac{q}{k_e}$
- 3. Define $w(e) = \frac{1}{p_e} = \frac{k_e}{q}$ for each edge $e \in E'$

Lemma 10. $\mathbb{E}[|E'|] \leq \mathcal{O}(\frac{n \log n}{\epsilon^2})$

Proof. Let X_e be the indicator whether edge e was selected into E'. By construction, $\mathbb{E}[X_e] = \Pr[X_e = 1] = p_e$. Then,

$$\mathbb{E}[|E'|] = \mathbb{E}[\sum_{e \in E} X_e] \quad \text{By definition} \\ = \sum_{e \in E} \mathbb{E}[X_e] \quad \text{Linearity of expectation} \\ = \sum_{e \in E} p_e \quad \text{Since } \mathbb{E}[X_e] = \Pr[X_e = 1] = p_e \\ = \sum_{e \in E} \frac{q}{k_e} \quad \text{Since } p_e = \frac{q}{k_e} \\ = q(n-1) \quad \text{Since } \sum_{e \in E} \frac{1}{k_e} \le n-1 \\ \in \mathcal{O}(\frac{n \log n}{\epsilon^2}) \quad \text{Since } q = \frac{c \log n}{\epsilon^2} \text{ for some constant } c \\ \end{bmatrix}$$

Remark One can apply Chernoff bounds to argue that |E'| is highly concentrated around its expectation.

Theorem 11. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,

$$(1-\epsilon) \cdot E_G(S, V \setminus S) \le E_H(S, V \setminus S) \le (1+\epsilon) \cdot E_G(S, V \setminus S)$$

Proof. Let $k_1 < k_2 < \cdots < k_s$ be all possible strength values in the graph. Consider G as a weighted graph with edge weights $\frac{k_e}{q}$ for each edge $e \in E$, and a family of unweighted graphs F_1, \ldots, F_s where $F_i = (V, E_i)$ where $E_i = \{e \in E : k_e \ge k_i\}$. Observe that:

- $s \leq |E|$ since each edge has only 1 strength value
- By construction of F_i 's, if an edge e has strength i in F_i , $k_e = i$ in G
- $F_1 = G$
- For each i, F_{i+1} is a subgraph of F_i
- By defining $k_0 = 0$, one can write $G = \sum_{i=1}^{s} \frac{k_i k_{i-1}}{q} F_i$. This is because an edge with strength k_i will appear in $F_i, F_{i-1}, \ldots, F_1$ and the terms will telescope to yield a weight of $\frac{k_i}{q}$.

The sampling process in G directly translates to a sampling process in each graph in $\{F_i\}_{i \in [s]}$ — When we add an edge e into E', we also add it to the edge sets of F_{k_e}, \ldots, F_s . For each $i \in [s]$, Theorem 6 tells us that every cut in F_i is well-estimated with high probability. Then, a union bound over $\{F_i\}_{i \in [s]}$ will tell us that any cut in G is well-estimated with high probability.

References

- [BK96] András A Benczúr and David R Karger. Approximating st minimum cuts in õ (n 2) time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 47–55. ACM, 1996.
- [Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In SODA, volume 93, pages 21–30, 1993.
- [Kar94] David R Karger. Random sampling in cut, flow, and network design problems. In Proc. of the Symp. on Theory of Comp. (STOC), pages 648–657, 1994.
- [Kar99] David R Karger. Random sampling in cut, flow, and network design problems. *Mathematics of Operations Research*, 24(2):383–413, 1999.