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Lecture 11: Graph Sparsification II
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

In the previous lecture, we introduced graph sparsification as a way to obtain a subgraph with fewer
edges but similar pairwise distances. In this lecture, we will look at preserving cuts.

1 Preserving cuts

Definition 1 (Cut and minimum cut). Consider a graph G = (V,E).

• For S ⊆ V, S 6= ∅, S 6= V , CG(S, V \ S) = {(u, v) : u ∈ S, v ∈ V \ S} is a non-trivial cut in G

• Define cut size EG(S, V \ S) =
∑
e∈CG(S,V \S) w(e)

For unweighted G, w(e) = 1 for all e ∈ E, so EG(S, V \ S) = |CG(S, V \ S)|

• Minimum cut size of the graph G is denoted by µ(G) = minS⊆V,S 6=∅,S 6=V EG(S, V \ S)

• A cut CG(S, V \ S) is said to be minimum if EG(S, V \ S) = µ(G)

Given an undirected graph G = (V,E), our goal in this lecture is to construct a weighted graph
H = (V,E′) with E′ ⊆ E and weight function w : E′ → R+ such that

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

for every S ⊆ V, S 6= 0, S 6= V . Recall Karger’s random contraction algorithm [Kar93]1:

Algorithm 1 RandomContraction(G = (V,E))

while |V | > 2 do
e← Pick an edge uniformly at random from E
G← G/e . Contract edge e

end while
return The remaining cut . This may be a multi-graph

Theorem 2. For a fixed minimum cut S∗ in the graph, RandomContraction returns it with proba-
bility ≥ 1/

(
n
2

)
.

Proof. Fix a minimum cut S∗ in the graph. Suppose |S∗| = k. To successfully return S∗, none of the
edges in S∗ must be selected in the whole contraction process.

By construction, there will be n− i vertices in the graph at step i of RandomContraction. Since
µ(G) = k, each vertex has degree ≥ k (otherwise that vertex itself gives a cut smaller than k), so there
are ≥ (n− i)k/2 edges in the graph. Thus,

Pr[Success] ≥ (1− k
nk/2 ) · (1− k

(n−1)k/2 ) · (1− k
(n−2)k/2 ) · · · · · (1− k

4k/2 ) · (1− k
3k/2 )

= (1− 2
n ) · (1− 2

n−1 ) · (1− 2
n−2 ) · · · · · (1− 2

4 ) · (1− 2
3 )

= (n−2n ) · (n−3n−1 ) · (n−4n−2 ) · · · · · ( 2
4 ) · ( 1

3 )

= 2
n(n−1)

= 1/
(
n
2

)

Corollary 3. There are ≤
(
n
2

)
minimum cuts in a graph.

Proof. Since RandomContraction successfully produces any given minimum cut with probability
≥ 1/

(
n
2

)
, there can be at most

(
n
2

)
many minimum cuts.

1Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm
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Remark There exists (multi-)graphs with
(
n
2

)
minimum cuts: Consider a cycle where there are µ(G)

2
edges between every pair of adjacent vertices.

. . .

µ(G)

In general, we can bound the number of cuts that are of size at most α · µ(G) for α ≥ 1.

Theorem 4. In an undirected graph, the number of α-minimum cuts is less than n2α.

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version2 of [Kar99].

1.1 Warm up: G = Kn

Consider the following procedure to construct H:

1. Let p = Ω( logn
n )

2. Independently put each edge e ∈ E into E′ with probability p

3. Define w(e) = 1
p for each edge e ∈ E′

One can check3 that this suffices for G = Kn.

1.2 Uniform edge sampling

For a graph G with minimum cut size µ(G) = k, consider the following procedure to construct H:

1. Set p = c logn
ε2k for some constant c

2. Independently put each edge e ∈ E into E′ with probability p

3. Define w(e) = 1
p for each edge e ∈ E′

Theorem 5. With high probability, for every S ⊆ V, S 6= ∅, S 6= V ,

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

Proof. Fix an arbitrary cut (S, V \ S). Suppose EG(S, V \ S) = k′ = α · k for some α ≥ 1.

S V \ S

k′

Let Xe be the indicator for the edge e ∈ CG(S, V \S) being selected into E′. By construction, E[Xi] =
Pr[Xi = 1] = p. Then, by linearity of expectation, E[|CH(S, V \ S)|] =

∑
e∈CG(S,V \S) E[Xi] = k′p. As

we put 1/p weight on each edge in E′, E[EH(S, V \S)] = k′. Using Chernoff bound, for sufficiently large
c, we get:

Pr[Cut (S, V \ S) is badly estimated in H]
= Pr[|EH(S, V \ S)− E[EH(S, V \ S)]| > ε · k′] What it means to be badly estimated

≤ 2e−
ε2k′p

3 Chernoff bound

= 2e−
ε2αkp

3 Since k′ = αk
≤ n−10α For sufficiently large c

2Version available at: http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps
3Fix a cut, analyze, then take union bound.
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Using Theorem 4 and union bound over all possible cuts in G,

Pr[Any cut is badly estimated in H]
≤

∫∞
1
n2α · 1

n−10α dα From Theorem 4 and above
≤ n−5 Loose upper bound

Theorem 6. [Kar94] For a graph G, consider sampling every edge independently with probability pe
into E′, and assign weights 1/pe to each edge e ∈ E′. Let H = (V,E′) be the sampled graph and
suppose µ(H) ≥ c logn

ε2 , for some constant c. Then, with high probability, every weighted cut size in H is
(well-estimated) within (1± ε) of the original cut size in G.

Theorem 6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem
2.1 of [Kar94].

1.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut.

Kn Kn

Running the uniform edge sampling will not sparsify the above dumbbell graph as µ(G) = 1 leads to
large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first define k-strong components.

Definition 7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.

Definition 8 (k-strong component). A k-strong component is a maximal k-connected vertex-induced
subgraph. For an edge e, define its strong connectivity / strength ke as the maximum k such that e is in
a k-strong component. We say an edge is k-strong if ke ≥ k.

Remark The (standard) connectivity of an edge e is the minimum cut size that separates its endpoints.
In particular, an edge’s strong connectivity is no more than the edge’s (standard) connectivity since a
cut size of k implies there is no k-connected component containing both endpoints.

Lemma 9. The following holds for k-strong components:

1. ke is uniquely defined for every edge e

2. For any k, the k-strong components are disjoint.

3. For any 2 values k1, k2 (k1 < k2), k2-strong components are a refinement of k1-string components

4.
∑
e∈E

1
ke
≤ n− 1

Intuition: If there are a lot of edges, then many of them have high strength.

Proof.

G

k1-strong components

k2-strong components
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1. By definition of maximum

2. Suppose, for a contradiction, there are two intersecting k-strong components. Since their union is
also k-strong, this contradicts the fact that they were maximal.

3. For k1 < k2, a k2-strong component is also k1-strong, so it is a subset of some k1-strong component.

4. Consider a minimum cut CG(S, V \S). Since ke ≥ µ(G),∀e ∈ CG(S, V \S), these edges contribute
≤ µ(G) · 1

ke
≤ µ(G) · 1

µ(G) = 1 to the summation. Remove these edges from G and repeat the

argument on any remaining connected components. Since each cut removal contributes at most 1
to the summation and the process stops when we reach n components,

∑
e∈E

1
ke
≤ n− 1.

For a graph G with minimum cut size µ(G) = k, consider the following procedure to construct H:

1. Set q = c logn
ε2 for some constant c

2. Independently put each edge e ∈ E into E′ with probability pe = q
ke

3. Define w(e) = 1
pe

= ke
q for each edge e ∈ E′

Lemma 10. E[|E′|] ≤ O(n logn
ε2 )

Proof. Let Xe be the indicator whether edge e was selected into E′. By construction, E[Xe] = Pr[Xe =
1] = pe. Then,

E[|E′|] = E[
∑
e∈E Xe] By definition

=
∑
e∈E E[Xe] Linearity of expectation

=
∑
e∈E pe Since E[Xe] = Pr[Xe = 1] = pe

=
∑
e∈E

q
ke

Since pe = q
ke

= q(n− 1) Since
∑
e∈E

1
ke
≤ n− 1

∈ O(n logn
ε2 ) Since q = c logn

ε2 for some constant c

Remark One can apply Chernoff bounds to argue that |E′| is highly concentrated around its expec-
tation.

Theorem 11. With high probability, for every S ⊆ V, S 6= ∅, S 6= V ,

(1− ε) · EG(S, V \ S) ≤ EH(S, V \ S) ≤ (1 + ε) · EG(S, V \ S)

Proof. Let k1 < k2 < · · · < ks be all possible strength values in the graph. Consider G as a weighted
graph with edge weights ke

q for each edge e ∈ E, and a family of unweighted graphs F1, . . . , Fs where

Fi = (V,Ei) where Ei = {e ∈ E : ke ≥ ki}. Observe that:

• s ≤ |E| since each edge has only 1 strength value

• By construction of Fi’s, if an edge e has strength i in Fi, ke = i in G

• F1 = G

• For each i, Fi+1 is a subgraph of Fi

• By defining k0 = 0, one can write G =
∑s
i=1

ki−ki−1

q Fi. This is because an edge with strength ki

will appear in Fi, Fi−1, . . . , F1 and the terms will telescope to yield a weight of ki
q .

The sampling process in G directly translates to a sampling process in each graph in {Fi}i∈[s] —
When we add an edge e into E′, we also add it to the edge sets of Fke , . . . , Fs. For each i ∈ [s], Theorem
6 tells us that every cut in Fi is well-estimated with high probability. Then, a union bound over {Fi}i∈[s]
will tell us that any cut in G is well-estimated with high probability.
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