In the previous lecture, we introduced graph sparsification as a way to obtain a subgraph with fewer edges but similar pairwise distances. In this lecture, we will look at preserving cuts.

1 Preserving cuts

Definition 1 (Cut and minimum cut). Consider a graph $G = (V, E)$.

- For $S \subseteq V, S \neq \emptyset, S \neq V$, $C_G(S, V \setminus S) = \{(u, v) : u \in S, v \in V \setminus S\}$ is a non-trivial cut in G.
- Define cut size $E_G(S, V \setminus S) = \sum_{e \in C_G(S, V \setminus S)} w(e)$.
- For unweighted G, $w(e) = 1$ for all $e \in E$, so $E_G(S, V \setminus S) = |C_G(S, V \setminus S)|$.
- Minimum cut size of the graph G is denoted by $\mu(G) = \min_{S \subseteq V, S \neq \emptyset, S \neq V} E_G(S, V \setminus S)$.
- A cut $C_G(S, V \setminus S)$ is said to be minimum if $E_G(S, V \setminus S) = \mu(G)$.

Given an undirected graph $G = (V, E)$, our goal in this lecture is to construct a weighted graph $H = (V, E')$ with $E' \subseteq E$ and weight function $w : E' \rightarrow \mathbb{R}^+$ such that

$$(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)$$

for every $S \subseteq V, S \neq 0, S \neq V$. Recall Karger’s random contraction algorithm [Kar93]:

Algorithm 1 RandomContraction($G = (V, E)$)

```
while $|V| > 2$
    $e \leftarrow$ Pick an edge uniformly at random from $E$
    $G \leftarrow G/e$
    \(\triangleright\) Contract edge $e$
end while
return The remaining cut
\(\triangleright\) This may be a multi-graph
```

Theorem 2. For a fixed minimum cut S^* in the graph, RandomContraction returns it with probability $\geq 1/(n^2)$.

Proof. Fix a minimum cut S^* in the graph. Suppose $|S^*| = k$. To successfully return S^*, none of the edges in S^* must be selected in the whole contraction process.

By construction, there will be $n - i$ vertices in the graph at step i of RandomContraction. Since $\mu(G) = k$, each vertex has degree $\geq k$ (otherwise that vertex itself gives a cut smaller than k), so there are $\geq (n - i)k/2$ edges in the graph. Thus,

$$\Pr[\text{Success}] \geq \frac{(1 - \frac{k}{n+1}) \cdot (1 - \frac{k}{n+2}) \cdot \ldots \cdot (1 - \frac{k}{n-k})}{n}$$

$$= \frac{(1 - \frac{k}{n+1}) \cdot (1 - \frac{k}{n+2}) \cdot \ldots \cdot (1 - \frac{k}{n-k})}{n}$$

$$= \frac{(\frac{k}{n+1}) \cdot (\frac{k}{n+2}) \cdot \ldots \cdot (\frac{k}{n-k})}{n}$$

$$= \frac{1}{(n^2)}$$

Corollary 3. There are $\leq \binom{n}{2}$ minimum cuts in a graph.

Proof. Since RandomContraction successfully produces any given minimum cut with probability $\geq 1/(n^2)$, there can be at most $\binom{n}{2}$ minimum cuts.

\[\square\]

\[1\text{Also, see https://en.wikipedia.org/wiki/Karger%27s_algorithm}\]
Remark. There exists (multi-)graphs with \(\binom{n}{2} \) minimum cuts: Consider a cycle where there are \(\mu(G) \) edges between every pair of adjacent vertices.

In general, we can bound the number of cuts that are of size at most \(\alpha \cdot \mu(G) \) for \(\alpha \geq 1 \).

Theorem 4. In an undirected graph, the number of \(\alpha \)-minimum cuts is less than \(n^{2\alpha} \).

Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version\(^2\) of [Kar99].

1.1 Warm up: \(G = K_n \)

Consider the following procedure to construct \(H \):

1. Let \(p = \Omega(\frac{\log n}{n}) \)
2. Independently put each edge \(e \in E \) into \(E' \) with probability \(p \)
3. Define \(w(e) = \frac{1}{p} \) for each edge \(e \in E' \)

One can check\(^3\) that this suffices for \(G = K_n \).

1.2 Uniform edge sampling

For a graph \(G \) with minimum cut size \(\mu(G) = k \), consider the following procedure to construct \(H \):

1. Set \(p = \frac{c \log n}{\epsilon k^2} \) for some constant \(c \)
2. Independently put each edge \(e \in E \) into \(E' \) with probability \(p \)
3. Define \(w(e) = \frac{1}{p} \) for each edge \(e \in E' \)

Theorem 5. With high probability, for every \(S \subseteq V \), \(S \neq \emptyset \), \(S \neq V \),

\[
(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)
\]

Proof. Fix an arbitrary cut \((S, V \setminus S) \). Suppose \(E_G(S, V \setminus S) = k' = \alpha \cdot k \) for some \(\alpha \geq 1 \).

Let \(X_e \) be the indicator for the edge \(e \in C_G(S, V \setminus S) \) being selected into \(E' \). By construction, \(\mathbb{E}[X_i] = \Pr[X_i = 1] = p \). Then, by linearity of expectation, \(\mathbb{E}[|C_G(S, V \setminus S)|] = \sum_{e \in C_G(S, V \setminus S)} \mathbb{E}[X_i] = k'p \). As we put \(1/p \) weight on each edge in \(E' \), \(\mathbb{E}[E_H(S, V \setminus S)] = k' \). Using Chernoff bound, for sufficiently large \(c \), we get:

\[
\Pr[\text{Cut } (S, V \setminus S) \text{ is badly estimated in } H] = \Pr[|E_H(S, V \setminus S) - \mathbb{E}[E_H(S, V \setminus S)]| > \epsilon \cdot k']
\]

What it means to be badly estimated

\[
\leq 2e^{-\epsilon^2/4k'} \quad \text{Chernoff bound}
\]

\[
= 2e^{-\epsilon^2 k'p} \quad \text{Since } k' = \alpha k
\]

\[
\leq n^{-100c} \quad \text{For sufficiently large } c
\]

\(^3\)Fix a cut, analyze, then take union bound.
Using Theorem 4 and union bound over all possible cuts in G,

\[
\Pr[\text{Any cut is badly estimated in } H] \leq \int_{1}^{\infty} \frac{2^n}{n^2} \cdot \frac{1}{n^{10}} \alpha n^2 \cdot \frac{1}{n^{10}} d\alpha
\]

From Theorem 4 and above

Loose upper bound

Theorem 6. [Kar94] For a graph G, consider sampling every edge independently with probability p_e into E', and assign weights $1/p_e$ to each edge $e \in E'$. Let $H = (V, E')$ be the sampled graph and suppose $\mu(H) \geq \frac{\ln n}{c \cdot 2}$, for some constant c. Then, with high probability, every weighted cut size in H is (well-estimated) within $(1 \pm \epsilon)$ of the original cut size in G.

Theorem 6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem 2.1 of [Kar94].

1.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut.

![Dumbbell graph with K_n and K_n](image)

Running the uniform edge sampling will not sparsify the above dumbbell graph as $\mu(G) = 1$ leads to large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first define k-strong components.

Definition 7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.

Definition 8 (k-strong component). A k-strong component is a maximal k-connected vertex-induced subgraph. For an edge e, define its strong connectivity / strength k_e as the maximum k such that e is in a k-strong component. We say an edge is k-strong if $k_e \geq k$.

Remark The (standard) connectivity of an edge e is the minimum cut size that separates its endpoints. In particular, an edge’s strong connectivity is no more than the edge’s (standard) connectivity since a cut size of k implies there is no k-connected component containing both endpoints.

Lemma 9. The following holds for k-strong components:

1. k_e is uniquely defined for every edge e
2. For any k, the k-strong components are disjoint.
3. For any 2 values k_1, k_2 ($k_1 < k_2$), k_2-strong components are a refinement of k_1-string components
4. $\sum_{e \in E} \frac{1}{k_e} \leq n - 1$

Intuition: If there are a lot of edges, then many of them have high strength.

Proof.
Theorem 11.

1. By definition of maximum

2. Suppose, for a contradiction, there are two intersecting \(k \)-strong components. Since their union is also \(k \)-strong, this contradicts the fact that they were maximal.

3. For \(k_1 < k_2 \), a \(k_2 \)-strong component is also \(k_1 \)-strong, so it is a subset of some \(k_1 \)-strong component.

4. Consider a minimum cut \(C_G(S, V \setminus S) \). Since \(k_e \geq \mu(G), \forall e \in C_G(S, V \setminus S) \), these edges contribute \(\leq \mu(G) \cdot \frac{1}{k_e} \leq \mu(G) \cdot \frac{1}{\mu(G)} = 1 \) to the summation. Remove these edges from \(G \) and repeat the argument on any remaining connected components. Since each cut removal contributes at most 1 to the summation and the process stops when we reach \(n \) components, \(\sum_{e \in E} \frac{1}{k_e} \leq n - 1 \).

For a graph \(G \) with minimum cut size \(\mu(G) = k \), consider the following procedure to construct \(H \):

1. Set \(q = \frac{c \log n}{\epsilon^2} \) for some constant \(c \)

2. Independently put each edge \(e \in E \) into \(E' \) with probability \(p_e = \frac{q}{k_e} \) for each edge \(e \in E' \)

3. Define \(w(e) = \frac{1}{p_e} = \frac{k_e}{q} \) for each edge \(e \in E' \)

Lemma 10. \(\mathbb{E}[|E'|] \leq O\left(\frac{n \log n}{\epsilon^2}\right) \)

Proof. Let \(X_e \) be the indicator whether edge \(e \) was selected into \(E' \). By construction, \(\mathbb{E}[X_e] = \mathbb{Pr}[X_e = 1] = p_e \). Then,

\[
\mathbb{E}[|E'|] = \mathbb{E}[\sum_{e \in E} X_e] \quad \text{by definition}
\]

\[
= \sum_{e \in E} \mathbb{E}[X_e] \quad \text{linearity of expectation}
\]

\[
= \sum_{e \in E} p_e \quad \text{since } \mathbb{E}[X_e] = \mathbb{Pr}[X_e = 1] = p_e
\]

\[
= \sum_{e \in E} \frac{q}{k_e} \quad \text{since } p_e = \frac{q}{k_e}
\]

\[
= q(n - 1) \quad \text{since } \sum_{e \in E} \frac{1}{k_e} \leq n - 1
\]

\[
\in O\left(\frac{n \log n}{\epsilon^2}\right) \quad \text{since } q = \frac{c \log n}{\epsilon^2}
\]

Remark One can apply Chernoff bounds to argue that \(|E'| \) is highly concentrated around its expectation.

Theorem 11. With high probability, for every \(S \subseteq V, S \neq \emptyset, S \neq V \),

\[
(1 - \epsilon) \cdot E_G(S, V \setminus S) \leq E_H(S, V \setminus S) \leq (1 + \epsilon) \cdot E_G(S, V \setminus S)
\]

Proof. Let \(k_1 < k_2 < \cdots < k_s \) be all possible strength values in the graph. Consider \(G \) as a weighted graph with edge weights \(\frac{k_e}{q} \) for each edge \(e \in E \), and a family of unweighted graphs \(F_1, \ldots, F_s \) where \(F_i = (V, E_i) \) where \(E_i = \{e \in E : k_e \geq k_i\} \). Observe that:

- \(s \leq |E| \) since each edge has only 1 strength value
- By construction of \(F_i \)'s, if an edge \(e \) has strength \(i \) in \(F_i \), \(k_e = i \) in \(G \)
- \(F_1 = G \)
- For each \(i \), \(F_{i+1} \) is a subgraph of \(F_i \)
- By defining \(k_0 = 0 \), one can write \(G = \sum_{i=1}^{s} \frac{k_i - k_{i-1}}{q} F_i \). This is because an edge with strength \(k_i \) will appear in \(F_i, F_{i-1}, \ldots, F_1 \) and the terms will telescope to yield a weight of \(\frac{k_i}{q} \).

The sampling process in \(G \) directly translates to a sampling process in each graph in \(\{F_i\}_{i \in [s]} \) — When we add an edge \(e \) into \(E' \), we also add it to the edge sets of \(F_{k_e}, \ldots, F_s \). For each \(i \in [s] \), Theorem 6 tells us that every cut in \(F_i \) is well-estimated with high probability. Then, a union bound over \(\{F_i\}_{i \in [s]} \) will tell us that any cut in \(G \) is well-estimated with high probability.

\[\square \]
References

