In the previous lecture, we introduced graph sparsification as a way to obtain a subgraph with fewer edges but similar pairwise distances. In this lecture, we will look at preserving cuts.

1 Preserving cuts

Definition 1 (Cut and minimum cut). Consider a graph $G=(V, E)$.

- For $S \subseteq V, S \neq \emptyset, S \neq V, C_{G}(S, V \backslash S)=\{(u, v): u \in S, v \in V \backslash S\}$ is a non-trivial cut in G
- Define cut size $E_{G}(S, V \backslash S)=\sum_{e \in C_{G}(S, V \backslash S)} w(e)$

For unweighted $G, w(e)=1$ for all $e \in E$, so $E_{G}(S, V \backslash S)=\left|C_{G}(S, V \backslash S)\right|$

- Minimum cut size of the graph G is denoted by $\mu(G)=\min _{S \subseteq V, S \neq \emptyset, S \neq V} E_{G}(S, V \backslash S)$
- A cut $C_{G}(S, V \backslash S)$ is said to be minimum if $E_{G}(S, V \backslash S)=\mu(G)$

Given an undirected graph $G=(V, E)$, our goal in this lecture is to construct a weighted graph $H=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ and weight function $w: E^{\prime} \rightarrow \mathbb{R}^{+}$such that

$$
(1-\epsilon) \cdot E_{G}(S, V \backslash S) \leq E_{H}(S, V \backslash S) \leq(1+\epsilon) \cdot E_{G}(S, V \backslash S)
$$

for every $S \subseteq V, S \neq 0, S \neq V$. Recall Karger's random contraction algorithm [Kar93] ${ }^{1}$:

```
Algorithm 1 RandomContraction \((G=(V, E))\)
    while \(|V|>2\) do
        \(e \leftarrow\) Pick an edge uniformly at random from \(E\)
        \(G \leftarrow G / e \quad \triangleright\) Contract edge \(e\)
    end while
    return The remaining cut
        \(\triangleright\) This may be a multi-graph
```

Theorem 2. For a fixed minimum cut S^{*} in the graph, RandomContraction returns it with probability $\geq 1 /\binom{n}{2}$.

Proof. Fix a minimum cut S^{*} in the graph. Suppose $\left|S^{*}\right|=k$. To successfully return S^{*}, none of the edges in S^{*} must be selected in the whole contraction process.

By construction, there will be $n-i$ vertices in the graph at step i of RandomContraction. Since $\mu(G)=k$, each vertex has degree $\geq k$ (otherwise that vertex itself gives a cut smaller than k), so there are $\geq(n-i) k / 2$ edges in the graph. Thus,

$$
\begin{aligned}
\operatorname{Pr}[\text { Success }] & \geq\left(1-\frac{k}{n k / 2}\right) \cdot\left(1-\frac{k}{(n-1) k / 2}\right) \cdot\left(1-\frac{k}{(n-2) k / 2}\right) \cdots \cdots\left(1-\frac{k}{4 k / 2}\right) \cdot\left(1-\frac{k}{3 k / 2}\right) \\
& =\left(1-\frac{2}{n}\right) \cdot\left(1-\frac{2}{n-1}\right) \cdot\left(1-\frac{2}{n-2}\right) \cdots \cdots\left(1-\frac{2}{4}\right) \cdot\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right) \cdot\left(\frac{n-3}{n-1}\right) \cdot\left(\frac{n-4}{n-2}\right) \cdots \cdots\left(\frac{2}{4}\right) \cdot\left(\frac{1}{3}\right) \\
& =\frac{2}{n(n-1)} \\
& =1 /\binom{n}{2}
\end{aligned}
$$

Corollary 3. There are $\leq\binom{ n}{2}$ minimum cuts in a graph.
Proof. Since RandomContraction successfully produces any given minimum cut with probability $\geq 1 /\binom{n}{2}$, there can be at most $\binom{n}{2}$ many minimum cuts.

[^0]Remark There exists (multi-)graphs with $\binom{n}{2}$ minimum cuts: Consider a cycle where there are $\frac{\mu(G)}{2}$ edges between every pair of adjacent vertices.

In general, we can bound the number of cuts that are of size at most $\alpha \cdot \mu(G)$ for $\alpha \geq 1$.
Theorem 4. In an undirected graph, the number of α-minimum cuts is less than $n^{2 \alpha}$.
Proof. See Lemma 2.2 and Appendix A (in particular, Corollary A.7) of a version ${ }^{2}$ of [Kar99].

1.1 Warm up: $G=K_{n}$

Consider the following procedure to construct H :

1. Let $p=\Omega\left(\frac{\log n}{n}\right)$
2. Independently put each edge $e \in E$ into E^{\prime} with probability p
3. Define $w(e)=\frac{1}{p}$ for each edge $e \in E^{\prime}$

One can check ${ }^{3}$ that this suffices for $G=K_{n}$.

1.2 Uniform edge sampling

For a graph G with minimum cut size $\mu(G)=k$, consider the following procedure to construct H :

1. Set $p=\frac{c \log n}{\epsilon^{2} k}$ for some constant c
2. Independently put each edge $e \in E$ into E^{\prime} with probability p
3. Define $w(e)=\frac{1}{p}$ for each edge $e \in E^{\prime}$

Theorem 5. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,

$$
(1-\epsilon) \cdot E_{G}(S, V \backslash S) \leq E_{H}(S, V \backslash S) \leq(1+\epsilon) \cdot E_{G}(S, V \backslash S)
$$

Proof. Fix an arbitrary cut $(S, V \backslash S)$. Suppose $E_{G}(S, V \backslash S)=k^{\prime}=\alpha \cdot k$ for some $\alpha \geq 1$.

Let X_{e} be the indicator for the edge $e \in C_{G}(S, V \backslash S)$ being selected into E^{\prime}. By construction, $\mathbb{E}\left[X_{i}\right]=$ $\operatorname{Pr}\left[X_{i}=1\right]=p$. Then, by linearity of expectation, $\mathbb{E}\left[\left|C_{H}(S, V \backslash S)\right|\right]=\sum_{e \in C_{G}(S, V \backslash S)} \mathbb{E}\left[X_{i}\right]=k^{\prime} p$. As we put $1 / p$ weight on each edge in $E^{\prime}, \mathbb{E}\left[E_{H}(S, V \backslash S)\right]=k^{\prime}$. Using Chernoff bound, for sufficiently large c, we get:

$$
\begin{array}{rll}
& \operatorname{Pr}[\operatorname{Cut}(S, V \backslash S) \text { is badly estimated in } H] & \\
= & \operatorname{Pr}\left[\left|E_{H}(S, V \backslash S)-\mathbb{E}\left[E_{H}(S, V \backslash S)\right]\right|>\epsilon \cdot k^{\prime}\right] & \text { What it means to be b } \\
\leq & 2 e^{-\frac{\epsilon^{2} k^{\prime}}{3}} & \text { Chernoff bound } \\
= & 2 e^{-\frac{\epsilon^{2} \alpha k p}{3}} & \text { Since } k^{\prime}=\alpha k \\
\leq & n^{-10 \alpha} & \text { For sufficiently large } c
\end{array}
$$

[^1]Using Theorem 4 and union bound over all possible cuts in G,

$$
\begin{array}{ll}
& \operatorname{Pr}[A n y \text { cut is badly estimated in } H] \\
\leq & \\
\leq \int_{1}^{\infty} n^{2 \alpha} \cdot \frac{1}{n^{-10 \alpha}} d \alpha & \text { From Theorem } 4 \text { and above } \\
n^{-5} & \text { Loose upper bound }
\end{array}
$$

Theorem 6. [Kar94] For a graph G, consider sampling every edge independently with probability p_{e} into E^{\prime}, and assign weights $1 / p_{e}$ to each edge $e \in E^{\prime}$. Let $H=\left(V, E^{\prime}\right)$ be the sampled graph and suppose $\mu(H) \geq \frac{c \log n}{\epsilon^{2}}$, for some constant c. Then, with high probability, every weighted cut size in H is (well-estimated) within $(1 \pm \epsilon)$ of the original cut size in G.

Theorem 6 can be proved by using a variant of the earlier proof. Interested readers can see Theorem 2.1 of [Kar94].

1.3 Non-uniform edge sampling

Unfortunately, uniform sampling does not work well on graphs with small minimum cut.

Running the uniform edge sampling will not sparsify the above dumbbell graph as $\mu(G)=1$ leads to large sampling probability p.

Before we describe a non-uniform edge sampling process [BK96], we first define k-strong components.
Definition 7 (k-connected). A graph is k-connected if the value of each cut of G is at least k.
Definition 8 (k-strong component). A k-strong component is a maximal k-connected vertex-induced subgraph. For an edge e, define its strong connectivity / strength k_{e} as the maximum k such that e is in a k-strong component. We say an edge is k-strong if $k_{e} \geq k$.

Remark The (standard) connectivity of an edge e is the minimum cut size that separates its endpoints. In particular, an edge's strong connectivity is no more than the edge's (standard) connectivity since a cut size of k implies there is no k-connected component containing both endpoints.

Lemma 9. The following holds for k-strong components:

1. k_{e} is uniquely defined for every edge e
2. For any k, the k-strong components are disjoint.
3. For any 2 values $k_{1}, k_{2}\left(k_{1}<k_{2}\right)$, k_{2}-strong components are a refinement of k_{1}-string components
4. $\sum_{e \in E} \frac{1}{k_{e}} \leq n-1$

Intuition: If there are a lot of edges, then many of them have high strength.
Proof.

1. By definition of maximum
2. Suppose, for a contradiction, there are two intersecting k-strong components. Since their union is also k-strong, this contradicts the fact that they were maximal.
3. For $k_{1}<k_{2}$, a k_{2}-strong component is also k_{1}-strong, so it is a subset of some k_{1}-strong component.
4. Consider a minimum cut $C_{G}(S, V \backslash S)$. Since $k_{e} \geq \mu(G)$, $\forall e \in C_{G}(S, V \backslash S)$, these edges contribute $\leq \mu(G) \cdot \frac{1}{k_{e}} \leq \mu(G) \cdot \frac{1}{\mu(G)}=1$ to the summation. Remove these edges from G and repeat the argument on any remaining connected components. Since each cut removal contributes at most 1 to the summation and the process stops when we reach n components, $\sum_{e \in E} \frac{1}{k_{e}} \leq n-1$.

For a graph G with minimum cut size $\mu(G)=k$, consider the following procedure to construct H :

1. Set $q=\frac{c \log n}{\epsilon^{2}}$ for some constant c
2. Independently put each edge $e \in E$ into E^{\prime} with probability $p_{e}=\frac{q}{k_{e}}$
3. Define $w(e)=\frac{1}{p_{e}}=\frac{k_{e}}{q}$ for each edge $e \in E^{\prime}$

Lemma 10. $\mathbb{E}\left[\left|E^{\prime}\right|\right] \leq \mathcal{O}\left(\frac{n \log n}{\epsilon^{2}}\right)$
Proof. Let X_{e} be the indicator whether edge e was selected into E^{\prime}. By construction, $\mathbb{E}\left[X_{e}\right]=\operatorname{Pr}\left[X_{e}=\right.$ $1]=p_{e}$. Then,

$$
\begin{aligned}
\mathbb{E}\left[\left|E^{\prime}\right|\right] & =\mathbb{E}\left[\sum_{e \in E} X_{e}\right] & & \text { By definition } \\
& =\sum_{e \in E} \mathbb{E}\left[X_{e}\right] & & \text { Linearity of expectation } \\
& =\sum_{e \in E} p_{e} & & \text { Since } \mathbb{E}\left[X_{e}\right]=\operatorname{Pr}\left[X_{e}=1\right]=p_{e} \\
& =\sum_{e \in E} \frac{q}{k_{e}} & & \text { Since } p_{e}=\frac{q}{k_{e}} \\
& =q(n-1) & & \text { Since } \sum_{e \in E} \frac{1}{k_{e}} \leq n-1 \\
& \in \mathcal{O}\left(\frac{n \log n}{\epsilon^{2}}\right) & & \text { Since } q=\frac{c \log n}{\epsilon^{2}} \text { for some constant } c
\end{aligned}
$$

Remark One can apply Chernoff bounds to argue that $\left|E^{\prime}\right|$ is highly concentrated around its expectation.

Theorem 11. With high probability, for every $S \subseteq V, S \neq \emptyset, S \neq V$,

$$
(1-\epsilon) \cdot E_{G}(S, V \backslash S) \leq E_{H}(S, V \backslash S) \leq(1+\epsilon) \cdot E_{G}(S, V \backslash S)
$$

Proof. Let $k_{1}<k_{2}<\cdots<k_{s}$ be all possible strength values in the graph. Consider G as a weighted graph with edge weights $\frac{k_{e}}{q}$ for each edge $e \in E$, and a family of unweighted graphs F_{1}, \ldots, F_{s} where $F_{i}=\left(V, E_{i}\right)$ where $E_{i}=\left\{e \in E: k_{e} \geq k_{i}\right\}$. Observe that:

- $s \leq|E|$ since each edge has only 1 strength value
- By construction of F_{i} 's, if an edge e has strength i in $F_{i}, k_{e}=i$ in G
- $F_{1}=G$
- For each i, F_{i+1} is a subgraph of F_{i}
- By defining $k_{0}=0$, one can write $G=\sum_{i=1}^{s} \frac{k_{i}-k_{i-1}}{q} F_{i}$. This is because an edge with strength k_{i} will appear in $F_{i}, F_{i-1}, \ldots, F_{1}$ and the terms will telescope to yield a weight of $\frac{k_{i}}{q}$.

The sampling process in G directly translates to a sampling process in each graph in $\left\{F_{i}\right\}_{i \in[s]}$ When we add an edge e into E^{\prime}, we also add it to the edge sets of $F_{k_{e}}, \ldots, F_{s}$. For each $i \in[s]$, Theorem 6 tells us that every cut in F_{i} is well-estimated with high probability. Then, a union bound over $\left\{F_{i}\right\}_{i \in[s]}$ will tell us that any cut in G is well-estimated with high probability.

References

[BK96] András A Benczúr and David R Karger. Approximating st minimum cuts in õ (n 2) time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 47-55. ACM, 1996.
[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm. In $S O D A$, volume 93, pages 21-30, 1993.
[Kar94] David R Karger. Random sampling in cut, flow, and network design problems. In Proc. of the Symp. on Theory of Comp. (STOC), pages 648-657, 1994.
[Kar99] David R Karger. Random sampling in cut, flow, and network design problems. Mathematics of Operations Research, 24(2):383-413, 1999.

[^0]: ${ }^{1}$ Also, see https://en.wikipedia.org/wiki/Karger\%27s_algorithm

[^1]: ${ }^{2}$ Version available at: http://people.csail.mit.edu/karger/Papers/skeleton-journal.ps
 ${ }^{3}$ Fix a cut, analyze, then take union bound.

