
Advanced Algorithms 18 December 2018

Lecture 14: Online Algorithms and Competitive Analysis III
Lecturer: Mohsen Ghaffari Scribe: Davin Choo

1 Multiplicative Weights Update

In this final lecture, we discuss the Multiplicative Weight Updates (MWU) method. A comprehensive
survey on MWU and its applications can be found in [AHK12].

Definition 1 (The learning from experts problem). Every day, we are to make a binary decision. At
the end of the day, a binary output is revealed and we incur a mistake if our decision did not match the
output. Suppose we have access to n experts e1, . . . , en, each of which makes an recommendation for the
binary decision to take per day. How does one make use of the experts to minimize the total number of
mistakes on an online binary sequence?

Toy setting Consider a stock market with only a single stock. Every day, we are decide whether to
buy the stock or not. At the end of the day, the stock value will be revealed and we incur a mistake/loss
of 1 if we did not buy when the stock value rose, or bought when the stock value fell.

Example — Why it is non-trivial Suppose n = 3 and σ = (1, 1, 0, 0, 1). In hindsight, we have:

Days 1 1 0 0 1

e1 1 1 0 0 1
e2 1 0 0 0 1
e3 1 1 1 1 0

In hindsight, e1 is always correct so we would have incurred 0 mistakes if we always followed e1’s
recommendation. However, we do not know which is expert e1 (assuming a perfect expert even exists).
Furthermore, it is not necessarily true that the best expert always incurs the least number of mistakes on
any prefix of the sequence σ. Ignoring e1, one can check that e2 outperforms e3 on the example sequence.
However, at the end of day 2, e3 incurred 0 mistakes while e2 incurred 1 mistake.

The goal is as follows: If a perfect expert exists, we hope to eventually converge to always following
him/her. If not, we hope to not do much worse than the best expert on the entire sequence.

1.1 Warm up: Perfect expert exists

Suppose there exists a perfect expert. Do the following on each day:

• Make a decision by taking the majority vote of the remaining experts.

• If we incur a loss, remove the experts that were wrong.

Theorem 2. We incur at most log2 n mistakes on any given sequence.

Proof. Whenever we incur a mistake, at least half the experts were wrong and were removed. Hence, the
total number of experts is at least halved whenever a mistake occurred. After at most log2 n removals,
the only expert left will be the perfect expert and we will be always correct thereafter.

1.2 A deterministic Multiplicative Weights Update algorithm

Suppose that there may not be a perfect expert. The idea is similar, but we update our trust for each
expert instead of completely removing an expert when he/she makes a mistake. Consider the following
deterministic algorithm (DMWU):

• Initialize weights wi = 1 for expert ei, for i ∈ {1, . . . , n}.

• On each day:

1

– Make a decision by the weighted majority.

– If we incur a loss, set wi to (1− ε) · wi for each wrong expert, for some constant ε ∈ (0, 1
2).

Theorem 3. Suppose the best expert makes m∗ mistakes and DMWU makes m mistakes. Then,

m ≤ 2(1 + ε)m∗ +
2 lnn

ε

Proof. Observe that when DMWU makes a mistake, the weighted majority was wrong and their weight
decreases by a factor of (1− ε). Suppose that

∑n
i=1 wi = x at the start of the day. If we make a mistake,

x drops to ≤ x
2 (1− ε) + x

2 = x(1− ε
2). That is, the overall weight reduces by at least a factor of (1− ε

2).

Since the best expert e∗ makes m∗ mistakes, his/her weight at the end would be (1− ε)m∗ . By the above
observation, the total weight of all experts would be ≤ n(1− ε

2)m at the end of the sequence. Then,

(1− ε)m∗ ≤ n(1− ε
2)m Expert e∗’s weight is part of the overall weight

⇒ m∗ ln(1− ε) ≤ lnn+m ln(1− ε
2) Taking ln on both sides

⇒ m∗(−ε− ε2) ≤ lnn+m(− ε
2) Since −x− x2 ≤ ln(1− x) ≤ −x for x ∈ (0, 1

2)
⇒ m ≤ 2(1 + ε)m∗ + 2 lnn

ε Rearranging

Remark 1 In the warm up, m∗ = 0.

Remark 2 For x ∈ (0, 1
2), the inequality −x− x2 ≤ ln(1− x) ≤ −x is due to the Taylor expansion1 of

ln. A more familiar equivalent form would be: e−x−x
2 ≤ (1− x) ≤ e−x.

Theorem 4. No deterministic algorithm A can do better than 2-competitive.

Proof. Consider only two experts e0 and e1 where e0 always outputs 0 and e1 always outputs 1. Any

binary sequence σ must contain at least |σ|2 zeroes or |σ|2 ones. Thus, m∗ ≤ |σ|
2 . On the other hand,

the adversary looks at A and produces a sequence σ which forces A to incur a loss every day. Thus,
m = |σ| ≥ 2m∗.

1.3 A randomized Multiplicative Weights Update algorithm

The 2-factor in DMWU is due to the fact that DMWU deterministically takes the (weighted) majority
at each step. Let us instead interpret the weights as probabilities. Consider the following randomized
algorithm (RMWU):

• Initialize weights wi = 1 for expert ei, for i ∈ {1, . . . , n}.

• On each day:

– Pick a random expert with probability proportional to their weight.
(i.e. Pick ei with probability wi/

∑n
i=1 wi)

– Follow that expert’s recommendation.

– For each wrong expert, set wi to (1− ε) · wi, for some constant ε ∈ (0, 1
2).

Another way to think about the probabilities is to split all experts into two groups A = {Experts
that output 0} and B = {Experts that output 1}. Then, decide ‘0’ with probability wA

wA+wB
and ‘1’ with

probability wB
wA+wB

, where wA =
∑
i∈A wi and wB =

∑
i∈B wi are the sum of weights in each set.

Theorem 5. Suppose the best expert makes m∗ mistakes and RMWU makes m mistakes. Then,

E[m] ≤ (1 + ε)m∗ +
lnn

ε
1See https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm

2

https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm

Proof. Fix an arbitrary day j ∈ {1, . . . , |σ|}. Denote A = {Experts that output 0 on day j} and B =
{Experts that output 1 on day j}, where wA =

∑
i∈A wi and wB =

∑
i∈B wi are the sum of weights in

each set. Denote Fj be the weighted fraction of wrong experts on day j. If σj = 0, then Fj = wB
wA+wB

. If
σj = 1, then Fj = wA

wA+wB
. By definition of Fj , RMWU makes a mistake on day j with probability Fj .

By linearity of expectation, E[m] =
∑|σ|
j=1 Fj .

Since the best expert e∗ makes m∗ mistakes, his/her weight at the end would be (1− ε)m∗ . On each
day, RMWU reduces the overall weight by a factor of (1− ε · Fj) by penalizing wrong experts. Hence,

the total weight of all experts would be n ·Π|σ|j=1(1− ε · Fj) at the end of the sequence. Then,

(1− ε)m∗ ≤ n ·Π|σ|j=1(1− ε · Fj) Expert e∗’s weight is part of the overall weight

⇒ (1− ε)m∗ ≤ n · e
∑|σ|
j=1(−ε·Fj) Since (1− x) ≤ e−x

⇒ (1− ε)m∗ ≤ n · e−ε·E[m] Since E[m] =
∑|σ|
j=1 Fj

⇒ m∗ ln(1− ε) ≤ lnn− ε · E[m] Taking ln on both sides

⇒ E[m] ≤ − ln(1−ε)
ε m∗ + lnn

ε Rearranging
⇒ E[m] ≤ (1 + ε)m∗ + lnn

ε Since − ln(1− x) ≤ −(−x− x2) = x+ x2

1.4 A generalization of the Multiplicative Weights Update algorithm

Consider the following generalized setting:

• Denote the loss of expert i on day t as lti ∈ [−ρ, ρ], for some constant ρ

• When we incur a loss, update the weights of affected experts from wi to (1− ε l
t
i

ρ)wi.

Remark
lti
ρ is essentially the normalized loss ∈ [−1, 1].

Claim 6 (Without proof). With RMWU, we have E[m] ≤ mini(
∑
t l
t
i + ε

∑
t |lti |+

ρ lnn
ε).

Remark If each expert has a different ρi, one can modify the update rule and claim to use ρi instead
of a uniform ρ accordingly.

1.5 Application: Online routing of virtual circuits

Definition 7 (The online routing of virtual circuits problem). Consider a graph G = (V,E) where each
edge e ∈ E has a capacity ue. A request is denoted by a triple 〈s(i), t(i), d(i)〉, where s(i) ∈ V is the
source, t(i) ∈ V is the target, and d(i) > 0 is the demand for the ith request respectively. Given the ith

request, we are to build a connection (single path Pi) from s(i) to t(i) with flow p(i). The objective is
to minimize the maximum congestion on all edges as we handle requests in an online manner. To be

precise, we wish to minimize maxe∈E

∑|σ|
i=1

∑
Pi3e

d(i)

ue
on the input sequence σ where Pi 3 e is the set of

paths that include edge e.

Remark This is similar to the multi-commodity routing problem in lecture 5. However, in this problem,
each commodity flow cannot be split into multiple paths, and the commodities appear in an online fashion.

Example Consider the following graph G = (V,E) with 5 vertices and 5 edges with the edge capacities
ue annotated for each edge e ∈ E. Suppose there are 2 requests: σ = (〈v1, v4, 5〉, 〈v5, v2, 8〉).

v3

v1

v2

v4

v5

13

11

10

8

20

3

Upon seeing σ(1) = 〈v1, v4, 5〉, we (red edges) commit to P1 = v1 – v3 – v4 as it minimizes the
congestion to 5/10. When σ(2) = 〈v5, v2, 8〉 appears, we are forced to take P2 = v5 – v3 – v2. This causes
the congestion to be 8/8 = 1. On the other hand, the optimal offline algorithm (blue edges) can attain
a congestion of 8/10 via P1 = v1 – v3 – v5 – v4 and P2 = v5 – v4 – v3 – v2.

v3

v1

v2

v4

v5

5/13

0/11

5/10

0/8

0/21 v3

v1

v2

v4

v5

5/13

8/11

5/10

8/8

0/21 v3

v1

v2

v4

v5

5/13

8/11

8/10

5/8

13/21

To facilitate further discussion, we define the following notations:

• pe(i) = d(i)
ue

is the relative demand i with respect to the capacity of edge e.

• le(j) =
∑
Pi3e,i≤j pe(i) as the relative load of edge e after request j

• l∗e(j) as the optimal offline algorithm’s load of edge e after request j.

In other words, the objective is to minimize maxe∈E le(|σ|) for a given sequence σ. Denoting Λ as the

(unknown) optimal congestion factor, we normalize p̃e(i) = pe(i)
Λ , l̃e(j) = le(j)

Λ , and l̃∗e(j) =
l∗e(j)

Λ . Let a
be a constant to be determined. Consider algorithm A which does the following on request i+ 1:

• Denote the cost of edge e by ce = al̃e(i)+p̃e(i+1) − al̃e(i)

• Return the shortest s(i)− t(i) path Pi on G with edge weights ce

Finding the shortest path via the cost function ce tries to minimize the load impact of the new (i+ 1)th

request. To analyze A, we consider the following potential function: Φ(j) =
∑
e∈E a

l̃e(j)(γ − l̃∗e(j)), for

some constant γ ≥ 1. Because of normalization, l̃∗e(j) ≤ 1, so (γ − l̃∗e(j)) ∈ Ω(1). Initially, when j = 0,
Φ(0) =

∑
e∈E γ = mγ.

Lemma 8. For γ ≥ 1 and 0 ≤ x ≤ 1, (1 + 1
2γ)x < 1 + x

γ .

Proof. By Taylor series2, (1 + 1
2γ)x = 1 + x

2γ +O(x2γ) < 1 + x
γ .

Lemma 9. For a = 1 + 1
2γ , Φ(j + 1)− Φ(j) ≤ 0.

Proof. Let Pj+1 be the path that A found and P ∗j+1 be the path that the optimal offline algorithm

assigned to the (j + 1)th request 〈s(j + 1), t(j + 1), d(j + 1)〉. For any edge e, observe the following:

• If e 6∈ P ∗j+1, the load on e due to the optimal offline algorithm remains unchanged. That is,

l̃∗e(j + 1) = l̃∗e(j). On the other hand, if e ∈ P ∗j+1, then l̃∗e(j + 1) = l̃∗e(j) + p̃e(j + 1).

• Similarly, (i) If e 6∈ Pj+1, then l̃e(j + 1) = l̃e(j); (ii) If e ∈ Pj+1, then l̃e(j + 1) = l̃e(j) + p̃e(j + 1).

• If e is neither in Pj+1 nor in P ∗j+1, then al̃e(j+1)(γ − l̃∗e(j + 1)) = al̃e(j)(γ − l̃∗e(j)).
That is, only edges used by Pj+1 or P ∗j+1 affect Φ(j + 1)− Φ(j).

Using the observations above together with Lemma 8 and the fact that A computes a shortest path, one

2See https://en.wikipedia.org/wiki/Taylor_series#Binomial_series

4

https://en.wikipedia.org/wiki/Taylor_series#Binomial_series

can show that Φ(j + 1)− Φ(j) ≤ 0. In detail,

Φ(j + 1)− Φ(j)

=
∑
e∈E a

l̃e(j+1)(γ − l̃∗e(j + 1))− al̃e(j)(γ − l̃∗e(j)) By definition of Φ

=
∑
e∈Pj+1\P∗j+1

(al̃e(j+1) − al̃e(j))(γ − l̃∗e(j)) From observations above

+
∑
e∈P∗j+1

al̃e(j+1)(γ − l̃∗e(j)− p̃e(j + 1))− al̃e(j)(γ − l̃∗e(j))
=

∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))(γ − l̃∗e(j))−
∑
e∈P∗j+1

al̃e(j+1)p̃e(j + 1) Rewriting

≤
∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))γ −
∑
e∈P∗j+1

al̃e(j+1)p̃e(j + 1) l̃∗e(j) ≥ 0

≤
∑
e∈Pj+1

(al̃e(j+1) − al̃e(j))γ −
∑
e∈P∗j+1

al̃e(j)p̃e(j + 1) l̃e(j + 1) ≥ l̃e(j)
=

∑
e∈Pj+1

(al̃e(j)+p̃e(j+1) − al̃e(j))γ −
∑
e∈P∗j+1

al̃e(j)p̃e(j + 1) For e ∈ Pj+1, l̃e(j) = l̃e(j) + p̃e(j + 1)

≤
∑
e∈P∗j+1

(
(al̃e(j)+p̃e(j+1) − al̃e(j))γ − al̃e(j)p̃e(j + 1)

)
Since Pj+1 is the shortest path

=
∑
e∈P∗j+1

al̃e(j)
(

(ap̃e(j+1) − 1)γ − p̃e(j + 1)
)

Rewriting

=
∑
e∈P∗j+1

al̃e(j)
(

((1 + 1
2γ)p̃e(j+1) − 1)γ − p̃e(j + 1)

)
Since a = 1 + 1

2γ

≤ 0 Lemma 8 with 0 ≤ p̃e(j + 1) ≤ 1

Theorem 10. Let L = maxe∈E l̃e. For a = 1 + 1
2γ , L ≤ O(log n). That is, A is O(log n)-competitive.

Proof. Since Φ(0) = mγ and Φ(j + 1) − Φ(j) ≤ 0, we see that Φ(j) ≤ mγ, for all j ∈ {1, . . . , |σ|}.
Consider the edge e with the highest congestion. Since γ − l̃∗e(j) ∈ Ω(1), we see that

(1 +
1

2γ
)L ≤ aL · (γ − l̃∗e(j)) ≤ Φ(j) ≤ mγ ≤ n2γ

Taking log on both sides and manipulating, we get:

L ≤ (2 log(n) + log(γ)) · 1

log(1 + 1
2γ)
≤ O(log n)

Handling unknown Λ Since Λ is unknown but is needed for the run of A (to compute ce when a

request arrives), we use a dynamically estimated Λ̃. Let β be a constant such that A is β-competitive
according to Theorem 10. The following modification to A is a 4β-competitive: On the first request, we
can explicitly compute Λ̃ = Λ. Whenever the actual congestion exceeds Λ̃β, we reset3 the edge loads to
0, update our estimate to 2Λ̃, and start a new phase.

• By the updating procedure, Λ̃ ≤ 2βΛ in all phases.

• Let T be the total number of phases. In any phase i ≤ T , the congestion at the end of phase i is
at most 2βΛ

2T−i
. Across all phases, we have

∑T
i=1

2βΛ
2T−i

≤ 4βΛ.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

3Existing paths are preserved, just that we ignore them in the subsequent computations of ce.

5

	Multiplicative Weights Update
	Warm up: Perfect expert exists
	A deterministic Multiplicative Weights Update algorithm
	A randomized Multiplicative Weights Update algorithm
	A generalization of the Multiplicative Weights Update algorithm
	Application: Online routing of virtual circuits

