
Does Locality imply
Efficient Testability?

Omri Ben-Eliezer

WOLA 2019

Monotonicity testing: Yet another proof...

2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59

11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59

array is monotone

Is the array monotone increasing?Consider an array of numbers.

array not monotone

Monotonicity testing: Yet another proof...

2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59

11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59

array is monotone

Is the array monotone increasing?Consider an array of numbers.

Property Testing:
Given query access to !: # → ℝ that is &-
far from being monotone increasing, how
many queries needed to find (with prob.
2/3) a “proof” that ! is not monotone.
'-far:
Need to change &# entries in ! to make it
monotone.

array not monotone

Monotonicity is !-testable with
"(!$%log)) queries.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanthan ‘98:]

Monotonicity testing: Yet another proof...

2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59

11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59

array is monotone

Is the array monotone increasing?Consider an array of numbers.

Property Testing:
Given query access to +:) → ℝ that is !-
far from being monotone increasing, how
many queries needed to find (with prob.
2/3) a “proof” that + is not monotone.
/-far:
Need to change !) entries in + to make it
monotone.

array not monotone

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Consider a partitioning of
the array into intervals.

In which intervals is the
first elements larger

than the last?

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59 Hierarchical partitioning:

each interval in level ! is
union of two or three

intervals from level ! − 1

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59 Hierarchical partitioning:

each interval in level ! is
union of two or three

intervals from level ! − 1

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59 Hierarchical partitioning:

each interval in level ! is
union of two or three

intervals from level ! − 1

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59 Hierarchical partitioning:

each interval in level ! is
union of two or three

intervals from level ! − 1

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Hierarchical partitioning:

each interval in level ! is
union of two or three

intervals from level ! − 1

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

11 13 17 19 2 3 5 7 26 22 21 31 41 47 60 591 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

Consider only “bad”
intervals that are maximal:
not contained in any other
“bad” one.

Claim: Suffices to edit
elements within “good”
intervals that are one level
above maximal “bad” ones,
to make array monotone

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 !"#! 21 31 41 47 53 59

11 13 17 19 2 3 5 7 26 22 21 31 41 47 60 591 1.3 1.5 1.7 2 3 5 7 20 !"#! 21 31 41 47 53 59

Consider only “bad”
intervals that are maximal:
not contained in any other
“bad” one.

Claim: Suffices to edit
elements within “good”
intervals that are one level
above maximal “bad” ones,
to make array monotone

Monotonicity testing: Yet another proof...
1 13 17 19 2 3 5 7 20 22 21 31 41 47 60 59

1 13 17 19 2 3 5 7 20 !"#! 21 31 41 47 53 59

11 13 17 19 2 3 5 7 26 22 21 31 41 47 60 591 1.3 1.5 1.7 2 3 5 7 20 !"#! 21 31 41 47 53 59

Corollary: If array is $-far
from monotonicity, then set
of “maximal bad intervals”
has size st least ≈ $&

The test: Pick ≈ 1/$ intervals
from each level, query their
endpoints. Reject if any of
them is bad. Total query
complexity ≈ $)* log &.

Local properties

Examples:

2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59

11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59

array is monotone

array not monotone

A property of arrays A: # → Σ is &-local if it can be defined by a
family of forbidden consecutive patterns of size ≤ (.

Monotonicity is 2-local. Forbidden patterns: “) * >)(* + 1)”

Local properties

Examples:

Lipschitz-continuity is 2-local
Convexity is 3-local
Properties of first ! discrete derivatives are (! + $)-local
Pattern matching and computational biology problems
are !-local for small k

Monotonicity is 2-local. Forbidden patterns: “& ' > &(' + 1)”

A property of arrays A: , → Σ is !-local if it can be defined by a
family of forbidden consecutive patterns of size ≤ 0.

Local properties

Monotonicity is 2-local. Forbidden patterns: “! " > !(" + 1)”
Examples:

Lipschitz-continuity is 2-local
Convexity is 3-local
Properties of first (discrete derivatives are ((+))-local

Submodularity is 2-local

A property of arrays A: , - → Σ is (-local if it can be defined by a
family of forbidden consecutive patterns of size ≤ (×⋯× (.

Pattern matching problems in computer vision are (-local for
small k

Local properties ⟺ Local algorithms
The LOCAL model in distributed computing [Linial’87]:

Which graph properties are “locally decidable” by balls of radius "?

Our setting a bit different:
1. Graph topology known in advance: graph is the line (for d=1) / hypergrid (d>1).
2. However, each vertex holds a value (not known in advance).

Claim: Property is "-local ⟺ has local algorithm
(known topology, unknown values) with Θ(") rounds

Generic test for local properties
Theorem [B., 2019]:

Any !-local property " of # $-arrays over any finite alphabet Σ is
&-testable using

' ()*+ ,
- queries for . = 1

'$ (,123
-4/6 queries for . > 1

Property Testing:
Given property ", parameter &, and
query access to 8: # $ → Σ, distinguish
with prob. 2/3 between the cases:
• 8 satisfies "
• 8 is &-far from ": need to change &#$

values in 8 to satisfy "

Generic test for local properties
Theorem [B., 2019]:

The good news: Test is canonical (queries depend on !, #, $, %, but not on &, Σ);
proximity oblivious (repetitive iterations of the same “basic” test);
non-adaptive (makes all queries in advance); and has
one-sided error.

Allows “sketching for testing”.
The bad news: linear running time for ! = 1; exponential for ! > 1 L

Any +-local property & of % ,-arrays over any finite alphabet Σ is
$-testable using

- . /01 2
3 non-adaptive queries for ! = 1

-, .2456
37/9 non-adaptive queries for ! > 1

The main idea: Unrepairability
An interval ! = #, # + 1,… , (⊆ [+] is unrepairable (w.r.t A, -) if,

no matter how we modify . # + 1 ,… , . (− 1 ,
the sub-array of . between # and (will never satisfy -.

11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59

Example: unrepairable interval for monotonicity.

0: a 2-local
property of 1D

arrays .: + → Σ.

Observation: Enough to query only 5 # and 5(() to know if ! is unrepairable.

The main idea: Unrepairability
An interval ! = #, # + 1,… , (⊆ [+] is unrepairable (w.r.t A, -) if,

no matter how we modify . # + 1 ,… , . (− 1 ,
the sub-array of . between # and (will never satisfy -.

17 7

0: a 2-local
property of 1D

arrays .: + → Σ.

Observation: Enough to query only 5 # and 5(() to know if ! is unrepairable.

Example: unrepairable interval for monotonicity.

1 4 3 5
2 7
8 9
3 4 4 6

The main idea: Unrepairability !: a 2-local
property of 1D

arrays #: % → Σ.

Proof idea:
Structural result: Suppose that # is (-far from). Then there is a set of “canonical”
unrepairable intervals covering ≥ (% of the entries.

Algorithm: For any + = 0,1, … , log %, pick ≈ 1/6 “canonical” intervals
of length ≈ 27 and query their endpoints.
With good probability, one of the intervals will be unrepairable.

Extension to multiple dimensions:
Replace “intervals” by “8-dimensional consecutive boxes” and
“endpoints” with “ 8 − 1 -dimensional boundaries”.

Non-adaptive Lower bounds

There exists a !-local property of " #-arrays over alphabet of size
"$(#), whose non-adaptive one-sided query complexity is Ω#(!()

*
+"#),).

The upper bound is tight for non-adaptive algorithms, for any fixed - ≥ 1

Theorem [B., 2019]:

For 0 = 2, matches Θ(log ") bounds for monotonicity [EKKRV’98, F’04, CS’13], convexity
[PRR’04], and Lipschitz [JR’11]. Tight for monotonicity even among adaptive two-sided tests.

For 0 > 2,

The upper bound is tight for non-adaptive algorithms, for any fixed ! ≥ 1

Non-adaptive Lower bounds

There exists a $-local property of % &-arrays over alphabet of size
%'(&), whose non-adaptive one-sided query complexity is Ω&($+,

-
.%&,/).

For 0 = 2, matches Θ(log %) bounds for monotonicity [EKKRV’98, F’04, CS’13], convexity
[PRR’04], and Lipschitz [JR’11]. Tight for monotonicity even among adaptive two-sided tests.

For 0 > 2,

Theorem [B., 2019]:

3 3 3 6 6 6

1 1 1,3 2,6 2 2

7 7 1,2,3,
4,6,7

1,2,3,
4,6,7 7 7

6 6 2,4,6 1,3,4 3 3

4 4 2,4 1,4 4 4

2 2 2 1 1 1

Adaptive Lower bounds

There exists a 2-local property of " #-arrays, whose adaptive two-
sided query complexity is "$(&).

What about the adaptive case for (> *?

Theorem [B., 2019+]:

Open question: close the gaps – no known lower bounds depending on +.

There exists a 2-local property of " #-arrays, whose adaptive two-
sided query complexity is "$(&).

Adaptive Lower bounds
What about the adaptive case for (> *?

Theorem [B., 2019+]:

Open question: close the gaps – no known lower bounds depending on +.

3 3 1,3 1 1

1 1 1,3,6 3,6 1,3,6 3,6

7 6,7 6,7 7 1,2 1,2

6 6 2,7 2,4 4

4 2,4 2,4 2,4,7 4

2 2 7 7 7

Questions
1. Exponential running time is undesirable.

[S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can
we also get sublinear running time?
[Chakrabarty, Seshadhri ‘12]: “bounded derivative” properties.

2. On which graph does “locality ⟹ sublinear testability” hold?
Bounded-degree graphs? Hyperfinite graphs?

3. How powerful is adaptivity?

Thank you!

