Does Locality imply
Efficient Testability?

Omri Ben-Eliezer %('

UUUUUUUUUU

WOLA 2019



Monotonicity testing: Yet another proof..

Consider an array of numbers. Is the array monotone increasing?
2 |35 7 11013117 19]23 1293137 41 4753 59 J array is monotone
\ J \ J \ J
| | |
111317 19| 2 | 3 | 5 | 7 23] 29|31 37 41|47 53 59 x
\ Y A Y ) \ y J \ y J




Monotonicity testing: Yet another proof..

Consider an array of numbers. Is the array monotone increasing?

21357 11]13]17 19|23 293137414753 59 J array is monotone
\ J \ J \ J
| | |

OOEOODORODEEOEEE $€ oo
\ Y A Y J \ Y J \ Y J

ﬁroperty Testing:

far from being monotone increasing, how
many queries needed to find (with prob.
2/3) a “proof” that A is not monotone.
e-far:

Need to change €n entries in A to make it

knonotone.

Given query access to A: [n] = R thatis &-

~

J




Monotonicity testing: Yet another proof..

Consider an array of numbers. Is the array monotone increasing?

21357 11]13]17 19|23 293137414753 59 J array is monotone
\ J \ J \ J
I | I

OOEOODORODEEOEEE $€ oo
\ Y A Y J \ y J \ y J

[Erglin, Kannan, Kumar, Rubinfeld, Viswanthan '98:]

Monotonicity is e-testable with
0(e~'logn) queries.

ﬁroperty Testing:

far from being monotone increasing, how
many queries needed to find (with prob.
2/3) a “proof” that A is not monotone.
e-far:

Need to change €n entries in A to make it

knonotone.

Given query access to A: [n] = R thatis &-

\

J




Monotonicity testing: Yet another proof..

(101311711902 |3 |57 [20]22]21/31]41 /476059
\ J
1



Monotonicity testing: Yet another proof..

(101311711902 |3 |57 [20]22]21/31]41 /476059
\ J
1



Monotonicity testing: Yet another proof..

1013117 119] 2 |3 |57 [20]22]21/31]41 /476059
\ J
|



Monotonicity testing: Yet another proof..

10131171902 ] 3 |57 [20]22]21/31]41 /476059
\ J
X



Monotonicity testing: Yet another proof..

1T [ is [ 15 15 1120 22 a1 L L7 6o 159
X X '

X

Consider a partitioning of
the array into intervals.

In which intervals is the




Monotonicity testing: Yet another proof..

(101311711902 3 |57 [20] 222131414760 59
\ J \ J \ J
| | |

Hierarchical parftitioning:

(10131171902 |3 |5 |7 2022|2131 41147 16059
\ J
|

each Inferval in level i is
union of two or three

intervals from level i — 1



Monotonicity testing: Yet another proof..

(101311711902 3 |57 [20] 222131414760 59
\ J \ J \ J
| | |

Hierarchical parftitioning:

1113117119 2 | 3 |5 |7 2022|2131 41147 16059
\ J
|

x each Inferval in level i is
union of two or three

intervals from level i — 1



Monotonicity testing: Yet another proof..

(101311711902 3 |57 [20] 222131414760 59
\ J \ J \ J
| | |

Hierarchical parftitioning:

1113117119 2 |3 |5 |7 2022|2131 41147 16059
\ J
1

each Inferval in level i is
union of two or three

intervals from level i — 1



Monotonicity testing: Yet another proof..

nnnmmmm

‘e
...................
.........
K .

Hierarchical parftitioning:

*e.
. N
. .

..........................
Yo, o*
o

x each Inferval in level i is
union of two or three
intervals from level i — 1




Monotonicity testing: Yet another proof..

(101311711902 3 |57 [20] 222131414760 59
\ J \ J \ J
I I 1

nnnmmmm

each Iinterval in level i is
-nnn-mmmm union of two or three

......................................................................................................................................................... in-I-ervals From level i _ 1

Hierarchical parftitioning:




Monotonicity testing: Yet another proof..

1 013[17 /19| 2 | 3|5 |7 [20]22)21[31]41]47|60]59
— e Consider only "
intervals that are maximal:

-nnn-mmmm not contained in any other

one.

Claim: Suffices to edit
elements within good

intervals that are one level
above maximal®  ” ones,
to make array monotone



Monotonicity testing: Yet another proof..

101311711902 |3 |57 202221 /3141476059
\ J \ J
I 1

"

Consider only "
intervals that are maximal:
not contained in any other

W n

one.

Claim: Suffices to edit
elements within good

intervals that are one level
above maximal®  ” ones,
to make array monotone

e, 0
. o
---------------------------------------------------

.

DR



Monotonicity testing: Yet another proof..

101311711902 |3 |57 202221 /3141476059
\ J \
I 1

| Corollary: If array is e-far

from monotonicity, then set
of “maximal intervals”
has size st least = en

The test: Pick = 1/¢ intervals

from each level, query their
endpoints. Reject if any of

them is . Total query
complexity = e~!logn.

e, 0
. o
---------------------------------------------------

.

DR



Local properties

{ A property of arrays A:[n] - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”

203 5|7 11013]17 192329 |31 37 41147 5359 J array is monotone
\ J \ J \ J
I | I
11013 117119 | 2 |3 ] 5 | 71232931 37 41147 53 59 x array not monotone
\ Y A Y J | y | \ ' ]




Local properties

[ A property of arrays A:[n] - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”
Lipschitz-continuity is 2-local

Convexity is 3-local

Properties of first k discrete derivatives are (k + 1)-local

Pattern matching and computational biology problems
are k-local for small k




Local properties

[ A property of arrays A:[n]% - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k x --- X k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”

Lipschitz-continuity is 2-local
Convexity is 3-local Submodularity is 2-local

Properties of first k discrete derivatives are (k + 1)-local

Pattern matching problems in computer vision are k-local for
small Kk




Local properties < Local algorithms

The LOCAL model in distributed computing [Linial ' 87]:

{ Which graph properties are “locally decidable” by balls of radius k? }

Our setting a bit different:
1. Graph topology known in advance: graph is the line (for d=1) / hypergrid (d>1).
2. However, each vertex holds a value (not known in advance).

4 )
Claim: Property is k-local < has local algorithm

(known topology, unknown values) with (k) rounds
\ J




Generic test for local properties

Theorem [B., 2019]:

e-testable using

0 (k logn

&E

knd—l
\ O ( e

ﬂny k-local property P of [n]%-arrays over any finite alphabet ¥ is )

)queries ford=1

)queries ford > 1 )

/ Property Testing:
Given property P, parameter &, and

with prob. 2/3 between the cases:
e A satisfies P

\ values in A to satisfy P

e Ais e-far from P: need to change en

~

query access to 4: [n]¢ — X, distinguish

d

J




Generic test for local properties

Theorem [B., 2019]:
ﬂny k-local property P of [n]%-arrays over any finite alphabet ¥ iﬁ
e-testable using

0 (k l‘;‘g n) non-adaptive queries ford = 1

k 04 (knd_l) non-adaptive queries ford > 1 /

c1/d

The good news: Test is canonical (queries depend on d, k, &, n, but not on P, X);
proximity oblivious (repetitive iterations of the same “basic” test);
non-adaptive (makes all queries in advance); and has
one-sided error.

Allows “sketching for testing”.

The bad news: linear running time for d = 1; exponential ford > 1 ®




property of 1D
arrays A: [n] - .

The main idea: Unrepairability ( :a 2-oca

\_

|

An interval I = {a,a + 1, ...,b} S [n] is unrepairable (w.r.t A, P) if,
no matter how we modify A(a + 1), ...,A(b — 1),
the sub-array of A between a and b will never satisfy P.

:Observafion: Enough to query only f(a) and f(b) to know if I is unrepairable.

Example: unrepairable interval for monotonicity.

mﬁ;;;lnammmmm
|




property of 1D
arrays A: [n] - .

The main idea: Unrepairability ( :a 2-oca

\_

|

An interval I = {a,a + 1, ...,b} S [n] is unrepairable (w.r.t A, P) if,
no matter how we modify A(a + 1), ...,A(b — 1),
the sub-array of A between a and b will never satisfy P.

:Observafion: Enough to query only f(a) and f(b) to know if I is unrepairable.

Example: unrepairable interval for monotonicity.

B o W




property of 1D
arrays A: [n] - .

The main idea: Unrepairability { P:a 2loca }

Proof idea:
Structural result: Suppose that A is e-far from P. Then there is a set of “canonical”

unrepairable intervals covering = en of the enfries. ST
Algorithm: For any i = 0,1, ...,logn, pick = 1/€ “canonical” intervals ........
of length ~ 2" and query their endpoints. EEEEEEEE
With good probability, one of the intervals will be unrepairable. 1 e A A S 8

1jafsys] [ ] ]
Extension to multiple dimensions: 20 |7l
Replace "intervals” by “d-dimensional consecutive boxes” and sl | 9] | | |
“endpoints” with “(d — 1)-dimensional boundaries”. 3|4fale| | | |




Non-adaptive Lower bounds

[ The upper bound is tight for non-adaptive algorithms, for any fixed d > 1 }

For d = 1, matches O(logn) bounds for monotonicity [EKKRV'98, F'04, CS'13], convexity
[PRR'04], and Lipschitz [JR'11]. Tight for monotonicity even among adaptive two-sided tests.

For d > 1,

Theorem [B., 2019]:

4 N
There exists a k-local property of [n]%-arrays over alphabet of size
1

K n%@, whose non-adaptive one-sided query complexity is Q (ke an?™1). )




Non-adaptive Lower bounds

[ The upper bound 3 =) 3 m) 3 6 @m 6 @6 oranyfixedd=>1 ]

11

)4, CS’13], convexity

For d = 1, matches O(logn’

[PRR'04], and Lipschitz [JR  + =7 1 "1‘3’ zf 242 optive two-sided tests.
1,23,11,2,3,

For d > 1, 7 w7 e 7 T

Theorem [B., 2019]: 6 ™ 6 ™2,4,6!1,34¢m 3 4m 3

9 ‘ 2 =) ) m) ) 1 4m 1 @m 1

4 1 A
There exists a k-locc 4 = 4 m)24 | 1,44m4 ¢m 4  alphabet of size

I 1
n%@d, whose non-ad 1 L) ity is Qg(ke and™1).



Adapti

ve Lower bounds

What about the adaptive case for d > 1?

Theorem [B., 2019+]:

-
There exists a 2-local prop

sided query complexity isn
-

erty of [n]?¢-arrays, whose adaptive two-
@)’

~

Open question: close the gaps - no known lower bounds depending on d.



Adaptive Lower bounds

What about the adaptive

Theorem [B., 2019+]:

-
There exists a 2-loc«

sided query complex
N

Open question: close th:

3—3 —13—1— 1

¥ l

1 —1—136—3,6—1,3,6_3,6

I l

7 —67267— 7 1,2 —1,2 B\

I Lo ise adaptive two-
6 — 6 2,7 —2,4 — 4

o J

4 —24=24=247— 4

I l iending on d.
2 — 2 7 — 7 — 7



Questions

1. Exponential running ftime is undesirable.
[S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can
we also get sublinear running time?
[Chakrabarty, Seshadhri ‘12]): "bounded derivative” properties.

2. On which graph does “locality = sublinear testability” hold?
Bounded-degree graphs? Hyperfinite graphs?

3. How powerful is adaptivity?

Thank you!



