Does Locality imply Efficient Testability?

Omri Ben-Eliezer

WOLA 2019

Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

array is monotone
array not monotone

Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

array is monotone
array not monotone

Property Testing:

Given query access to $A:[n] \rightarrow \mathbb{R}$ that is ε far from being monotone increasing, how many queries needed to find (with prob. 2/3) a "proof" that A is not monotone.
ε-far:
Need to change εn entries in A to make it monotone.

Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

Monotonicity is ε-testable with $O\left(\varepsilon^{-1} \log n\right)$ queries.

Property Testing:

Given query access to $A:[n] \rightarrow \mathbb{R}$ that is ε far from being monotone increasing, how many queries needed to find (with prob. 2/3) a "proof" that A is not monotone.
ε-far:
Need to change εn entries in A to make it monotone.

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59

Monotonicity testing: Yet another proof...

Monotonicity testing: Yet another proof...

Consider a partitioning of the array into intervals.

In which intervals is the

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59

Hierarchical partitioning:
each interval in level i is union of two or three intervals from level $i-1$

Monotonicity testing: Yet another proof...

Hierarchical partitioning:
each interval in level i is union of two or three intervals from level $i-1$

Monotonicity testing: Yet another proof...

Hierarchical partitioning:
each interval in level i is union of two or three intervals from level $i-1$

Monotonicity testing: Yet another proof...

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59
			\checkmark												
1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59

Hierarchical partitioning:
each interval in level i is union of two or three intervals from level $i-1$

Monotonicity testing: Yet another proof...

Monotonicity testing: Yet another proof...

1	13	17	19	2	3	5	7	20	22	21	31	41	47	60	59	Consider only " intervals that are maximal: not contained in any other "bac" one.
1	13	17	19	2	3	5	7	20	$20 \frac{1}{2}$	21	31	41	47	53	59	

1	1.3	1.5	1.7	2	3	5	7	20	20	$\frac{1}{2}$	21	31	41	47	53

Claim: Suffices to edit
elements within good intervals that are one level above maximal "bad" ones, to make array monotone

Monotonicity testing: Yet another proof...

1	1.3	1.5	1.7	2	3	5	7	20	20	$\frac{1}{2}$	21	31	41	47	53

Local properties

A property of arrays $A:[n] \rightarrow \Sigma$ is \boldsymbol{k}-local if it can be defined by a family of forbidden consecutive patterns of size $\leq k$.

Examples:

Monotonicity is 2-local. Forbidden patterns: " $A(i)>A(i+1)$ "

Local properties

A property of arrays $A:[n] \rightarrow \Sigma$ is \boldsymbol{k}-local if it can be defined by a family of forbidden consecutive patterns of size $\leq k$.

Examples:

Monotonicity is 2-local. Forbidden patterns: " $A(i)>A(i+1)$ "
Lipschitz-continuity is 2-local
Convexity is 3-local
Properties of first k discrete derivatives are $(k+1)$-local
Pattern matching and computational biology problems are \boldsymbol{k}-local for small k

Local properties

A property of arrays $A:[n]^{d} \rightarrow \Sigma$ is \boldsymbol{k}-local if it can be defined by a family of forbidden consecutive patterns of size $\leq \boldsymbol{k} \times \cdots \times \boldsymbol{k}$.

Examples:

Monotonicity is 2-local. Forbidden patterns: " $A(i)>A(i+1)^{\prime \prime}$
Lipschitz-continuity is 2-local
Convexity is 3 -local
Submodularity is 2-local
Properties of first k discrete derivatives are $(k+1)$-local
Pattern matching problems in computer vision are k-local for small k

Local properties \Leftrightarrow Local algorithms

The LOCAL model in distributed computing [Linial'87]:

Which graph properties are "locally decidable" by balls of radius k ?

Our setting a bit different:

1. Graph topology known in advance: graph is the line (for $d=1$) / hypergrid ($d>1$). 2. However, each vertex holds a value (not known in advance).

Claim: Property is k-local \Leftrightarrow has local algorithm (known topology, unknown values) with $\Theta(k)$ rounds

Generic test for local properties

Theorem [В., 2019]:

Any \boldsymbol{k}-local property \mathcal{P} of $[n]^{d}$-arrays over any finite alphabet Σ is ε-testable using

$$
\begin{aligned}
& O\left(\frac{k \log n}{\varepsilon}\right) \text { queries for } d=1 \\
& O_{d}\left(\frac{k n^{d-1}}{\varepsilon^{1 / d}}\right) \text { queries for } d>1
\end{aligned}
$$

Property Testing:

Given property \mathcal{P}, parameter ε, and query access to $A:[n]^{d} \rightarrow \Sigma$, distinguish with prob. $2 / 3$ between the cases:

- A satisfies \mathcal{P}
- A is ε-far from \mathcal{P} : need to change εn^{d} values in A to satisfy \mathcal{P}

Generic test for local properties

Theorem [B., 2019]:
Any \boldsymbol{k}-local property \mathcal{P} of $[n]^{d}$-arrays over any finite alphabet Σ is ε-testable using
$O\left(\frac{k \log \boldsymbol{n}}{\varepsilon}\right)$ non-adaptive queries for $d=1$
$O_{d}\left(\frac{k n^{d-1}}{\varepsilon^{1 / d}}\right)$ non-adaptive queries for $d>1$
The good news: Test is canonical (queries depend on d, k, ε, n, but not on \mathcal{P}, Σ); proximity oblivious (repetitive iterations of the same "basic" test); non-adaptive (makes all queries in advance); and has one-sided error.
Allows "sketching for testing".
The bad news: linear running time for $d=1$; exponential for $d>1 *$

The main idea: Unrepairability

An interval $I=\{a, a+1, \ldots, b\} \subseteq[n]$ is unrepairable (w.r.t A, \mathcal{P}) if, no matter how we modify $A(a+1), \ldots, A(b-1)$, the sub-array of A between a and b will never satisfy \mathcal{P}.

Observation: Enough to query only $f(a)$ and $f(b)$ to know if I is unrepairable.

The main idea: Unrepairability

An interval $I=\{a, a+1, \ldots, b\} \subseteq[n]$ is unrepairable (w.r.t A, \mathcal{P}) if, no matter how we modify $A(a+1), \ldots, A(b-1)$, the sub-array of A between a and b will never satisfy \mathcal{P}.

Observation: Enough to query only $f(a)$ and $f(b)$ to know if I is unrepairable.

The main idea: Unrepairability

Proof idea:

Structural result: Suppose that A is ε-far from \mathcal{P}. Then there is a set of "canonical" unrepairable intervals covering $\geq \varepsilon n$ of the entries.

Algorithm: For any $i=0,1, \ldots, \log n$, pick $\approx 1 / \epsilon$ "canonical" intervals of length $\approx 2^{i}$ and query their endpoints.
With good probability, one of the intervals will be unrepairable.

Extension to multiple dimensions:

Replace "intervals" by " d-dimensional consecutive boxes" and "endpoints" with "($d-1$)-dimensional boundaries".

1	4	3	5				
2			7				
8			9				
3	4	4	6				

Non-adaptive Lower bounds

The upper bound is tight for non-adaptive algorithms, for any fixed $d \geq 1$
For $\boldsymbol{d}=1$, matches $\Theta(\log n)$ bounds for monotonicity [EKKRV'98, $\mathrm{F}^{\prime} 04, \mathrm{CS}^{\prime} 13$], convexity [PRR'04], and Lipschitz [JR'11]. Tight for monotonicity even among adaptive two-sided tests.

For $\boldsymbol{d}>\mathbf{1}$,
Theorem [B., 2019]:
There exists a k-local property of $[n]^{d}$-arrays over alphabet of size $n^{O(d)}$, whose non-adaptive one-sided query complexity is $\Omega_{d}\left(k \varepsilon^{-\frac{1}{d}} n^{d-1}\right)$.

Non-adaptive Lower bounds

The upper bound
For $\boldsymbol{d}=1$, matches $\Theta(\log n$) [PRR'04], and Lipschitz [JR

For $\boldsymbol{d}>\mathbf{1}$,
Theorem [B., 2019]:
There exists a k-loc,
$n^{o(d)}$, whose non-ad,

Adaptive Lower bounds

What about the adaptive case for $\boldsymbol{d}>\mathbf{1}$?
Theorem [B., 2019+]:
There exists a 2-local property of $[n]^{d}$-arrays, whose adaptive twosided query complexity is $n^{\Omega(1)}$.

Open question: close the gaps - no known lower bounds depending on d.

Adaptive Lower bounds

What about the adaptive Theorem [B., 2019+]:

There exists a 2-loca sided query complex

Open question: close thi
$3 \rightarrow 3 \rightarrow 1,3 \rightarrow 1 \rightarrow 1$
$1 \rightarrow 1 \rightarrow \mathbf{1 , 3 , 6} \longrightarrow \mathbf{3 , 6} \longrightarrow 1,3,6 \rightrightarrows 3,6$

$\begin{array}{ll} & \uparrow \\ 2 \rightarrow 2\end{array} \quad \begin{aligned} & \downarrow \\ & 7 \rightarrow 7 \rightarrow 7\end{aligned}$ ending on d.

Questions

1. Exponential running time is undesirable.
[S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can we also get sublinear running time? [Chakrabarty, Seshadhri '12]: "bounded derivative" properties.
2. On which graph does "locality \Rightarrow sublinear testability" hold? Bounded-degree graphs? Hyperfinite graphs?
3. How powerful is adaptivity?
