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Monotonicity testing: Yet another proof..

Consider an array of numbers. Is the array monotone increasing?
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ﬁroperty Testing:

far from being monotone increasing, how
many queries needed to find (with prob.
2/3) a “proof” that A is not monotone.
e-far:

Need to change €n entries in A to make it
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Given query access to A: [n] = R thatis &-
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[Erglin, Kannan, Kumar, Rubinfeld, Viswanthan '98:]

Monotonicity is e-testable with
0(e~'logn) queries.
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Monotonicity testing: Yet another proof..
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Consider a partitioning of
the array into intervals.

In which intervals is the
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Monotonicity testing: Yet another proof..
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Monotonicity testing: Yet another proof..
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Local properties

{ A property of arrays A:[n] - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”
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Local properties

[ A property of arrays A:[n] - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”
Lipschitz-continuity is 2-local

Convexity is 3-local

Properties of first k discrete derivatives are (k + 1)-local

Pattern matching and computational biology problems
are k-local for small k
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[ A property of arrays A:[n]% - X is k-local if it can be defined by a }

family of forbidden consecutive patterns of size < k x --- X k.

Examples:

Monotonicity is 2-local. Forbidden patterns: "A(i) > A(i + 1)”

Lipschitz-continuity is 2-local
Convexity is 3-local Submodularity is 2-local

Properties of first k discrete derivatives are (k + 1)-local
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small Kk




Local properties < Local algorithms

The LOCAL model in distributed computing [Linial ' 87]:

{ Which graph properties are “locally decidable” by balls of radius k? }

Our setting a bit different:
1. Graph topology known in advance: graph is the line (for d=1) / hypergrid (d>1).
2. However, each vertex holds a value (not known in advance).

4 )
Claim: Property is k-local < has local algorithm

(known topology, unknown values) with (k) rounds
\ J




Generic test for local properties

Theorem [B., 2019]:

e-testable using

0 (k logn
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with prob. 2/3 between the cases:
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Generic test for local properties

Theorem [B., 2019]:
ﬂny k-local property P of [n]%-arrays over any finite alphabet ¥ iﬁ
e-testable using

0 (k l‘;‘g n) non-adaptive queries ford = 1

k 04 (knd_l) non-adaptive queries ford > 1 /

c1/d

The good news: Test is canonical (queries depend on d, k, &, n, but not on P, X);
proximity oblivious (repetitive iterations of the same “basic” test);
non-adaptive (makes all queries in advance); and has
one-sided error.

Allows “sketching for testing”.

The bad news: linear running time for d = 1; exponential ford > 1 ®




property of 1D
arrays A: [n] - .

The main idea: Unrepairability ( :a 2-oca
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An interval I = {a,a + 1, ...,b} S [n] is unrepairable (w.r.t A, P) if,
no matter how we modify A(a + 1), ...,A(b — 1),
the sub-array of A between a and b will never satisfy P.

:Observafion: Enough to query only f(a) and f(b) to know if I is unrepairable.

Example: unrepairable interval for monotonicity.
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property of 1D
arrays A: [n] - .

The main idea: Unrepairability { P:a 2loca }

Proof idea:
Structural result: Suppose that A is e-far from P. Then there is a set of “canonical”

unrepairable intervals covering = en of the enfries. ST
Algorithm: For any i = 0,1, ...,logn, pick = 1/€ “canonical” intervals ........
of length ~ 2" and query their endpoints. EEEEEEEE
With good probability, one of the intervals will be unrepairable. 1 e A A S 8

1jafsys] [ ] ]
Extension to multiple dimensions: 20 |7l
Replace "intervals” by “d-dimensional consecutive boxes” and sl | 9] | | |
“endpoints” with “(d — 1)-dimensional boundaries”. 3|4fale| | | |




Non-adaptive Lower bounds

[ The upper bound is tight for non-adaptive algorithms, for any fixed d > 1 }

For d = 1, matches O(logn) bounds for monotonicity [EKKRV'98, F'04, CS'13], convexity
[PRR'04], and Lipschitz [JR'11]. Tight for monotonicity even among adaptive two-sided tests.

For d > 1,

Theorem [B., 2019]:

4 N
There exists a k-local property of [n]%-arrays over alphabet of size
1

K n%@, whose non-adaptive one-sided query complexity is Q (ke an?™1). )




Non-adaptive Lower bounds

[ The upper bound 3 =) 3 m) 3 6 @m 6 @6 oranyfixedd=>1 ]
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Adapti

ve Lower bounds

What about the adaptive case for d > 1?

Theorem [B., 2019+]:

-
There exists a 2-local prop

sided query complexity isn
-

erty of [n]?¢-arrays, whose adaptive two-
@)’

~

Open question: close the gaps - no known lower bounds depending on d.



Adaptive Lower bounds

What about the adaptive

Theorem [B., 2019+]:

-
There exists a 2-loc«

sided query complex
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Open question: close th:
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Questions

1. Exponential running ftime is undesirable.
[S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can
we also get sublinear running time?
[Chakrabarty, Seshadhri ‘12]): "bounded derivative” properties.

2. On which graph does “locality = sublinear testability” hold?
Bounded-degree graphs? Hyperfinite graphs?

3. How powerful is adaptivity?

Thank you!



