Does Locality imply Efficient Testability?

Omri Ben-Eliezer

WOLA 2019
Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

- Array: $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59$
- Array is monotone

- Array: $11, 13, 17, 19, 2, 3, 5, 7, 23, 29, 31, 37, 41, 47, 53, 59$
- Array not monotone
Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

Property Testing:
Given query access to $A: [n] \rightarrow \mathbb{R}$ that is ϵ-far from being monotone increasing, how many queries needed to find (with prob. $2/3$) a “proof” that A is not monotone.

ϵ-far:
Need to change ϵn entries in A to make it monotone.
Monotonicity testing: Yet another proof...

Consider an array of numbers. Is the array monotone increasing?

[2 3 5 7 11 13 17 19 23 29 31 37 41 47 53 59]

array is monotone

[11 13 17 19 2 3 5 7 23 29 31 37 41 47 53 59]

array not monotone

Monotonicity is ε-testable with $O(\varepsilon^{-1}\log n)$ queries.

[Ergün, Kannan, Kumar, Rubinfeld, Viswanthan '98:]

Property Testing:
Given query access to $A: [n] \rightarrow \mathbb{R}$ that is ε-far from being monotone increasing, how many queries needed to find (with prob. 2/3) a “proof” that A is not monotone.

ε-far:
Need to change εn entries in A to make it monotone.
Monotonicity testing: Yet another proof...

Consider a partitioning of the array into intervals.

In which intervals is the first elements larger than the last?
Monotonicity testing: Yet another proof...

Hierarchical partitioning:

each interval in level i is union of two or three intervals from level $i - 1$
Monotonicity testing: Yet another proof...

Hierarchical partitioning:

each interval in level i is union of two or three intervals from level $i-1
Monotonicity testing: Yet another proof...

Hierarchical partitioning:

Each interval in level i is union of two or three intervals from level $i - 1$.
Hierarchical partitioning: each interval in level i is union of two or three intervals from level $i - 1$
Monotonicity testing: Yet another proof...

Hierarchical partitioning:

Each interval in level \(i \) is the union of two or three intervals from level \(i - 1 \)
Consider only “bad” intervals that are maximal: not contained in any other “bad” one.

Claim: Suffices to edit elements within “good” intervals that are one level above maximal “bad” ones, to make array monotone.
Monotonicity testing: Yet another proof...

Consider only “bad” intervals that are maximal: not contained in any other “bad” one.

Claim: Suffices to edit elements within “good” intervals that are one level above maximal “bad” ones, to make array monotone.
Monotonicity testing: Yet another proof...

Corollary: If array is ε-far from monotonicity, then set of “maximal bad intervals” has size at least $\approx \varepsilon n$.

The test: Pick $\approx 1/\varepsilon$ intervals from each level, query their endpoints. Reject if any of them is bad. Total query complexity $\approx \varepsilon^{-1} \log n$.
Local properties

A property of arrays $A: [n] \rightarrow \Sigma$ is k-local if it can be defined by a family of forbidden consecutive patterns of size $\leq k$.

Examples:

Monotonicity is 2-local. Forbidden patterns: “$A(i) > A(i + 1)$”

Array is monotone

Array not monotone
Local properties

A property of arrays $\Lambda: [n] \to \Sigma$ is k-local if it can be defined by a family of forbidden consecutive patterns of size $\leq k$.

Examples:

<table>
<thead>
<tr>
<th>Property</th>
<th>k-locality</th>
<th>Forbidden patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotonicity</td>
<td>2-local</td>
<td>"$A(i) > A(i + 1)$"</td>
</tr>
<tr>
<td>Lipschitz-continuity</td>
<td>2-local</td>
<td></td>
</tr>
<tr>
<td>Convexity</td>
<td>3-local</td>
<td></td>
</tr>
<tr>
<td>Properties of first k discrete derivatives</td>
<td>$(k + 1)$-local</td>
<td></td>
</tr>
<tr>
<td>Pattern matching and computational biology</td>
<td>k-local</td>
<td>for small k</td>
</tr>
</tbody>
</table>
Local properties

A property of arrays $A : [n]^d \rightarrow \Sigma$ is **k-local** if it can be defined by a family of **forbidden consecutive patterns** of size $\leq k \times \cdots \times k$.

Examples:

<table>
<thead>
<tr>
<th>Property</th>
<th>LOCALITY</th>
<th>Forbidden patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotonicity</td>
<td>2-local</td>
<td>“$A(i) > A(i + 1)$”</td>
</tr>
<tr>
<td>Lipschitz-continuity</td>
<td>2-local</td>
<td></td>
</tr>
<tr>
<td>Convexity</td>
<td>3-local</td>
<td></td>
</tr>
<tr>
<td>Submodularity</td>
<td>2-local</td>
<td></td>
</tr>
<tr>
<td>Properties of first k discrete derivatives</td>
<td>$(k + 1)$-local</td>
<td></td>
</tr>
<tr>
<td>Pattern matching problems in computer vision</td>
<td>k-local for small k</td>
<td></td>
</tr>
</tbody>
</table>
Local properties \iff Local algorithms

The LOCAL model in distributed computing [Linial’87]:

Which graph properties are “locally decidable” by balls of radius k?

Our setting a bit different:

1. **Graph topology known in advance**: graph is the line (for $d=1$) / hypergrid ($d>1$).
2. However, each *vertex* holds a *value* (not known in advance).

Claim: Property is k-local \iff has local algorithm (known topology, unknown values) with $\Theta(k)$ rounds
Generic test for local properties

Theorem [B., 2019]:

Any k-local property \mathcal{P} of $[n]^d$-arrays over any finite alphabet Σ is ε-testable using

$$O\left(\frac{k \log n}{\varepsilon}\right)$$
queries for $d = 1$

$$O_d\left(\frac{kn^{d-1}}{\varepsilon^{1/d}}\right)$$
queries for $d > 1$

Property Testing:
Given property \mathcal{P}, parameter ε, and query access to $A: [n]^d \rightarrow \Sigma$, distinguish with prob. $2/3$ between the cases:

- A satisfies \mathcal{P}
- A is ε-far from \mathcal{P}: need to change εn^d values in A to satisfy \mathcal{P}
Generic test for local properties

Theorem [B., 2019]:

Any k-local property \mathcal{P} of $[n]^d$-arrays over any finite alphabet Σ is ε-testable using

\[O \left(\frac{k \log n}{\varepsilon} \right) \text{ non-adaptive queries for } d = 1 \]

\[O_d \left(\frac{kn^{d-1}}{\varepsilon^{1/d}} \right) \text{ non-adaptive queries for } d > 1 \]

The good news: Test is canonical (queries depend on d, k, ε, n, but not on \mathcal{P}, Σ);
proximity oblivious (repetitive iterations of the same “basic” test);
non-adaptive (makes all queries in advance); and has
one-sided error.

Allows “sketching for testing”.

The bad news: linear running time for $d = 1$; exponential for $d > 1$ 😞
The main idea: Unrepairability

An interval $I = \{a, a + 1, \ldots, b\} \subseteq [n]$ is unrepairable (w.r.t A, \mathcal{P}) if, no matter how we modify $A(a + 1), \ldots, A(b - 1)$, the sub-array of A between a and b will never satisfy \mathcal{P}.

Observation: Enough to query only $f(a)$ and $f(b)$ to know if I is unrepairable.

Example: unrepairable interval for monotonicity.
The main idea: Unrepairability

An interval $I = \{a, a + 1, \ldots, b\} \subseteq [n]$ is unrepairable (w.r.t A, \mathcal{P}) if, no matter how we modify $A(a + 1), \ldots, A(b - 1)$, the sub-array of A between a and b will never satisfy \mathcal{P}.

Observation: Enough to query only $f(a)$ and $f(b)$ to know if I is unrepairable.

Example: unrepairable interval for monotonicity.
The main idea: Unrepairability

Proof idea:
Structural result: Suppose that A is ε-far from \mathcal{P}. Then there is a set of “canonical” unrepairable intervals covering $\geq \varepsilon n$ of the entries.

Algorithm: For any $i = 0, 1, \ldots, \log n$, pick $\approx 1/\varepsilon$ “canonical” intervals of length $\approx 2^i$ and query their endpoints. With good probability, one of the intervals will be unrepairable.

Extension to multiple dimensions:
Replace “intervals” by “d-dimensional consecutive boxes” and “endpoints” with “$(d - 1)$-dimensional boundaries”.
Non-adaptive Lower bounds

The upper bound is tight for non-adaptive algorithms, for any fixed $d \geq 1$

For $d = 1$, matches $\Theta(\log n)$ bounds for monotonicity [EKKRV’98, F’04, CS’13], convexity [PRR’04], and Lipschitz [JR’11]. Tight for monotonicity even among adaptive two-sided tests.

For $d > 1$,

Theorem [B., 2019]:

There exists a k-local property of $[n]^d$-arrays over alphabet of size $n^{O(d)}$, whose non-adaptive one-sided query complexity is $\Omega_d(k \epsilon^{-\frac{1}{d}} n^{d-1})$.
Non-adaptive Lower Bounds

The upper bound

For $d = 1$, matches $\Theta(\log n)$ [PRR’04], and Lipschitz [JR’11].

For $d > 1$,

Theorem [B., 2019]:

There exists a k-local $n^{O(d)}$, whose non-adaptive one-sided query complexity is $\Omega_d(k\varepsilon^{-\frac{1}{d}}n^{d-1})$.

<table>
<thead>
<tr>
<th>d</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Theta(\log n)$</td>
<td>$\Omega_d(k\varepsilon^{-\frac{1}{d}}n^{d-1})$</td>
</tr>
<tr>
<td>$d > 1$</td>
<td>$\Omega_d(k\varepsilon^{-\frac{1}{d}}n^{d-1})$</td>
<td>$\Omega_d(k\varepsilon^{-\frac{1}{d}}n^{d-1})$</td>
</tr>
</tbody>
</table>
Adaptive Lower bounds

What about the adaptive case for $d > 1$?

Theorem [B., 2019+]:

There exists a 2-local property of $[n]^d$-arrays, whose adaptive two-sided query complexity is $n^{\Omega(1)}$.

Open question: close the gaps – no known lower bounds depending on d.

Adaptive Lower bounds

There exists a 2-local property of "#"-arrays, whose adaptive two-sided query complexity is $\omega(n)$.

Theorem [B., 2019+]:

Open question: close the gaps – no known lower bounds depending on d.

- What about the adaptive case for $\Theta^*(\cdot)$?
Questions

1. Exponential running time is undesirable.
 [S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can we also get sublinear running time?
 [Chakrabarty, Seshadhri ‘12]: “bounded derivative” properties.

2. On which graph does “locality \Rightarrow sublinear testability” hold?
 Bounded-degree graphs? Hyperfinite graphs?

3. How powerful is adaptivity?

Thank you!