Does Locality imply Efficient Testability?

Consider an array of numbers. Is the array monotone increasing?

Consider an array of numbers. Is the array monotone increasing?

Property Testing:

Given query access to $A: [n] \rightarrow \mathbb{R}$ that is ε far from being monotone increasing, how many queries needed to find (with prob. 2/3) a "proof" that A is not monotone. ε -far:

Need to change εn entries in A to make it monotone.

Consider an array of numbers. Is the array monotone increasing?

each interval in level i is union of two or three

Consider only "bad" intervals that are maximal: not contained in any other "bad" one.

<u>Claim:</u> Suffices to edit elements within "good" intervals that are one level above maximal "bad" ones, to make array monotone

Local properties

A property of arrays A: $[n] \rightarrow \Sigma$ is *k*-local if it can be defined by a family of **forbidden consecutive patterns** of size $\leq k$.

Examples:

Monotonicity is **2-local**. Forbidden patterns: "A(i) > A(i + 1)"

Local properties

A property of arrays A: $[n] \rightarrow \Sigma$ is *k*-local if it can be defined by a family of **forbidden consecutive patterns** of size $\leq k$.

Examples:

Monotonicity is **2-local**. Forbidden patterns: "A(i) > A(i + 1)"

Lipschitz-continuity is 2-local

Convexity is 3-local

Properties of first k discrete derivatives are (k + 1)-local

Pattern matching and computational biology problems are k-local for small k

Local properties

A property of arrays A: $[n]^d \rightarrow \Sigma$ is k-local if it can be defined by a family of forbidden consecutive patterns of size $\leq k \times \cdots \times k$.

Examples:

Monotonicity is 2-local . Forbidden patterns: " $A(i) > A(i + 1)$ "	
Lipschitz-continuity is 2-local	
Convexity is 3-local	Submodularity is 2-local
Properties of first k discrete derivatives are $(k + 1)$ -local	
Pattern matching problems in computer vision are k-local for small k	

Local properties \Leftrightarrow Local algorithms

The LOCAL model in distributed computing [Linial'87]:

Which graph properties are "locally decidable" by balls of radius k?

Our setting a bit different:

Graph topology known in advance: graph is the <u>line</u> (for d=1) / <u>hypergrid</u> (d>1).
 However, each vertex holds a value (not known in advance).

Claim: Property is k-local \Leftrightarrow has local algorithm (known topology, unknown values) with $\Theta(k)$ rounds

Generic test for local properties

Theorem [B., 2019]:

Any k-local property \mathcal{P} of $[n]^d$ -arrays over any finite alphabet Σ is ε -testable using $O\left(\frac{k \log n}{\varepsilon}\right)$ queries for d = 1

$$D_d\left(rac{kn^{d-1}}{\varepsilon^{1/d}}
ight)$$
 queries for $d>1$

Property Testing:

Given property \mathcal{P} , parameter ε , and query access to $A: [n]^d \to \Sigma$, distinguish with prob. 2/3 between the cases:

- A satisfies \mathcal{P}
- A is ε-far from P: need to change εn^d
 values in A to satisfy P

Generic test for local properties

Theorem [B., 2019]:

Any k-local property \mathcal{P} of $[n]^d$ -arrays over any finite alphabet Σ is ε -testable using $O\left(\frac{k \log n}{\varepsilon}\right)$ non-adaptive queries for d = 1

 $O_d\left(\frac{kn^{d-1}}{\varepsilon^{1/d}}\right)$ non-adaptive queries for d>1

<u>The good news</u>: Test is canonical (queries depend on d, k, ε, n , but not on \mathcal{P}, Σ); proximity oblivious (repetitive iterations of the same "basic" test); non-adaptive (makes all queries in advance); and has one-sided error.

Allows "sketching for testing".

<u>The bad news</u>: linear running time for d = 1; exponential for d > 1 \otimes

The main idea: Unrepairability

 \mathcal{P} : a 2-local property of 1D arrays $A: [n] \rightarrow \Sigma$.

An interval $I = \{a, a + 1, ..., b\} \subseteq [n]$ is **unrepairable** (w.r.t A, \mathcal{P}) if, no matter how we modify A(a + 1), ..., A(b - 1), the sub-array of A between a and b will **never** satisfy \mathcal{P} .

Observation: Enough to query only f(a) and f(b) to know if I is unrepairable.

The main idea: Unrepairability

 \mathcal{P} : a 2-local property of 1D arrays $A: [n] \rightarrow \Sigma$.

An interval $I = \{a, a + 1, ..., b\} \subseteq [n]$ is **unrepairable** (w.r.t A, \mathcal{P}) if, no matter how we modify A(a + 1), ..., A(b - 1), the sub-array of A between a and b will **never** satisfy \mathcal{P} .

Observation: Enough to query only f(a) and f(b) to know if I is unrepairable.

The main idea: Unrepairability

Proof idea:

<u>Structural result</u>: Suppose that A is ε -far from \mathcal{P} . Then there is a set of "canonical" unrepairable intervals covering $\geq \varepsilon n$ of the entries.

<u>Algorithm</u>: For any $i = 0, 1, ..., \log n$, pick $\approx 1/\epsilon$ "canonical" intervals of length $\approx 2^i$ and query their endpoints. With good probability, one of the intervals will be unrepairable.

Extension to multiple dimensions:

Replace "intervals" by "d-dimensional consecutive boxes" and "endpoints" with "(d-1)-dimensional boundaries".

 Image: Image:

Non-adaptive Lower bounds

The upper bound is tight for non-adaptive algorithms, for any fixed $d \ge 1$

For d = 1, matches $\Theta(\log n)$ bounds for <u>monotonicity</u> [EKKRV'98, F'04, CS'13], <u>convexity</u> [PRR'04], and <u>Lipschitz</u> [JR'11]. Tight for monotonicity even among adaptive two-sided tests.

For d > 1,

Theorem [B., 2019]:

There exists a k-local property of $[n]^d$ -arrays over alphabet of size $n^{O(d)}$, whose non-adaptive one-sided query complexity is $\Omega_d(k\varepsilon^{-\frac{1}{d}}n^{d-1})$.

Non-adaptive Lower bounds

Adaptive Lower bounds

What about the adaptive case for d > 1?

Theorem [B., 2019+]:

There exists a 2-local property of $[n]^d$ -arrays, whose adaptive two-sided query complexity is $n^{\Omega(1)}$.

Open question: close the gaps – no known lower bounds depending on d.

Adaptive Lower bounds

Questions

- Exponential running time is undesirable.
 [S. Raskhodnikova, C. Seshadhri:] For which subclasses of local properties can we also get sublinear running time?
 [Chakrabarty, Seshadhri `12]: "bounded derivative" properties.
- 2. On which graph does "locality \Rightarrow sublinear testability" hold? Bounded-degree graphs? Hyperfinite graphs?
- 3. How powerful is adaptivity?

Thank you!