The Complexity of (Δ+1) Coloring in Congested Clique, Massively Parallel Computation, and Centralized Local Computation

Yi-Jun Chang
Manuela Fischer
Mohsen Ghaffari
Jara Uitto
Yufan Zheng
$(\Delta+1)$ Coloring

- Easy in the sequential setting.
 - A simple sequential greedy algorithm in linear time and space.
- What about the distributed setting?
Two Types of Distributed Models

- Type 1: computer network = input graph
 - LOCAL, CONGEST

- Type 2: computer network ≠ input graph
 - CONGESTED-CLIQUE, MPC
Distributed Models

• **LOCAL:**
 - Can only communicate with neighbors.
 - Unbounded message size.

• **CONGEST:**
 - Can only communicate with neighbors.
 - $O(\log n)$-bit message size.

Other features: Synchronous rounds & unbounded local computation power
Distributed Models

• LOCAL:
 Can only communicate with neighbors.
 Unbounded message size.

• CONGEST:
 Can only communicate with neighbors.
 $O(\log n)$-bit message size.

• Congested Clique:
 Allow all-to-all communication.
 $O(\log n)$-bit message size.
Distributed Models

• Alternative definition of CONGESTED-CLIQUE:
 • In each round each processor can send and receive up to $O(n)$ messages of $O(\log n)$ bits.
 • Number of processors = n.
 • Initially each processor knows the set of neighbors of a vertex.

(in view of Lenzen’s routing)
Distributed Models

• Alternative definition of CONGESTED-CLIQUE:
 • In each round each processor can send and receive up to $O(n)$ messages of $O(\log n)$ bits.
 • Number of processors = n.
 • Initially each processor knows the set of neighbors of a vertex.

• MPC (Massively Parallel Computation) model:
 • A scalable variant of CONGESTED-CLIQUE.
 • Memory per processor = $S = n^\delta$ for some $\delta = \Theta(1)$.
 • Number of processors = $\tilde{O}(m / S)$.
 • Input graph is distributed arbitrarily (can be sorted in $O(1)$ rounds).
(Δ+1)-coloring in the LOCAL Model

- (Rand.) $O(\log n)$
- (Det.) $2^O(\sqrt{\log n})$

Luby (STOC’85) and Alon, Babai and Itai (JALG’86)
Panconesi, Srinivasan (JALG’96)

- (Rand.) $O(\log \Delta)$ + $2^O(\sqrt{\log \log n})$
- (Rand.) $O(\sqrt{\log \Delta})$ + $2^O(\sqrt{\log \log n}) = O(\sqrt{\log n})$
- (Rand.) $O(\log^* \Delta)$ + $2^O(\sqrt{\log \log n}) = 2^O(\sqrt{\log \log n})$

Barenboim, Elkin, Pettie, Schneider (FOCS 2012)
Harris, Schneider, Su (STOC 2016)
Chang, Li, Pettie (STOC 2018)

Pre-shattering Post-shattering

(There are many more!)
(Δ+1)-coloring in the LOCAL Model

- (Rand.) $O(\log n)$
- (Det.) $2^{O(\sqrt{\log n})}$

Luby (STOC’85) and Alon, Babai and Itai (JALG’86)
Panconesi, Srinivasan (JALG’96)

- (Rand.) $O(\log \Delta)$
- (Rand.) $O(\sqrt{\log \Delta})$ + $2^{O(\sqrt{\log \log n})}$
- (Rand.) $O(\log^* \Delta)$ + $2^{O(\sqrt{\log \log n})}$

Barenboim, Elkin, Pettie, Schneider (FOCS 2012)
Harris, Schneider, Su (STOC 2016)
Chang, Li, Pettie (STOC 2018)

Pre-shattering + Post-shattering

(There are many more!)

What about MPC / CONGESTED-CLIQUE?
(Δ+1) Coloring in MPC

• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu Chen, Sanjeev Khanna [SODA 2019]

• Sample $O(\log n)$ colors for each vertex independently and uniformly at random from the $\Delta + 1$ colors.

• With high probability, the graph is colorable using the selected colors.

• This leads to an $O(1)$-round MPC algorithm.
(Δ+1) Coloring in MPC

• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu Chen, Sanjeev Khanna [SODA 2019]

• Sample $O(\log n)$ colors for each vertex independently and uniformly at random from the $\Delta + 1$ colors.

• With high probability, the graph is colorable using the selected colors.

• This leads to an $O(1)$-round MPC algorithm.

Two issues:
(i) costs polylogarithmic rounds in CONGESTED CLIQUE.
(ii) memory per processor must be $\tilde{\Omega}(n)$.

We will later see that our approach does not have these issues.
Our Results

• $O(1)$-round CONGESTED-CLIQUE algorithm.
• $O(\sqrt{\log \log n})$-round MPC algorithm in the small memory regime.

• Our approach: transformation from Chang-Li-Pettie algorithm for $(\Delta+1)$-coloring in the LOCAL Model
How to implement this algorithm in CONGESTED-CLIQUE?

\[O(\log^* \Delta) + 2^{O(\sqrt{\log \log n})} = 2^{O(\sqrt{\log \log n})} \]

At this stage, the remaining graph has \(O(n) \) edges, so we can send them to one processor. This part can be implemented in CONGESTED-CLIQUE in \(O(1) \) rounds.

For this part, some node has to receive messages of size \(O(\Delta^2) \), so a naïve simulation works only when \(\Delta < \sqrt{n} \).
Prior works

• $O(\log \log n)$ rounds
 • Merav Parter – “(Delta+1) Coloring in the Congested Clique Model” ICALP 2018
 • (the cost for reducing the general case to the $\Delta < \sqrt{n}$ case)

• $O(\log^* \Delta)$ rounds
 • Merav Parter & Hsin-Hao Su – “(Delta+1)-Coloring in $O(\log^* \Delta)$ Congested-Clique Rounds” DISC 2018
 • (modify the internal details of the CLP coloring algorithm to increase the threshold from $\Delta < \sqrt{n}$ to $\Delta < n^{5/8}$)
Our Approach (high-deg case)

• A simple algorithm that deals with the case $\Delta > \log^5 n$ in $O(1)$ rounds.

• Decompose the vertex set and the color set randomly into $\sqrt{\Delta}$ parts: $B_1, B_2, ..., B_{\sqrt{\Delta}}$.
 • Each part has $O(n/\sqrt{\Delta})$ vertices and max-deg $O(\sqrt{\Delta})$.
 • Each part is associated with $O(\sqrt{\Delta})$ colors.

• We want to color each part with its associated colors.
• But there will be a gap of $\approx \Delta^{1/4}$ between max-degree and # colors.
Our Approach (high-deg case)

• We want to color each part with its associated colors.
• But there will be a gap of $\approx \Delta^{1/4}$ between max-degree and # colors.

• Solution: adjust the probabilities to decrease the max-deg of each part $B_1, B_2, ..., B_{\sqrt{\Delta}}$ by $\approx \Delta^{1/4}$, and this leads to a new part L whose size is $\approx n/\Delta^{1/4}$ with max-deg $\approx \Delta^{3/4}$

• Now each of $B_1, B_2, ..., B_{\sqrt{\Delta}}$ is colorable with their colors. After coloring them, we can recurse on L.
Our Approach (high-deg case)

• Recall: each of $B_1, B_2, \ldots, B_{\sqrt{\Delta}}$ has $O(n/\sqrt{\Delta})$ vertices and max-deg $O(\sqrt{\Delta})$, so they have $O(n)$ edges. We can send each of them to a processor to construct the coloring locally. This takes $O(1)$ rounds in CONGESTED-CLIQUE.

• A simple calculation shows that when $\Delta > \log^5 n$, after $O(1)$ depth of recursions, the size of L also decreases to $O(n)$ edges.

• This gives us an $O(1)$-round CONGESTED-CLIQUE algorithm.
Our Approach (low-deg case)

• How about the case $\Delta < \log^5 n$? Recall:

\[
O(\log^{*} \Delta) + 2^{O(\sqrt{\log \log n})} = 2^{O(\sqrt{\log \log n})}
\]

Chang, Li, Pettie (STOC 2018)

Pre-shattering

Post-shattering

At this stage, the remaining graph has $O(n)$ edges, so we can send them to one processor. This part can be implemented in CONGESTED-CLIQUE in $O(1)$ rounds.

For this part, some node has to receive messages of size $O(\Delta^2)$, so a naïve simulation works only when $\Delta < \sqrt{n}$.
Our Approach (low-deg case)

• How about the case $\Delta < \log^5 n$? Recall:

$O(\log^* \Delta) + 2^O(\sqrt{\log \log n}) = 2^{O(\sqrt{\log \log n})}$

Pre-shattering Post-shattering

$O(\log^* \Delta) + O(1) \quad \leftarrow$ Straightforward simulation

$O(\log \log^* \Delta) + O(1) \quad \leftarrow$ Graph exponentiation

Chang, Li, Pettie (STOC 2018)

After the i-th round, each vertex gathers all information within its radius 2^i neighborhood. We can do this because the degree is small.
Our Approach (low-deg case)

• Can we do better?

• Let’s say we have a T-round LOCAL algorithm that we wish to run in the CONGESTED CLIQUE.

\[
O(T) \leftarrow \text{Straightforward simulation} \quad \text{(when degree and message size is sufficiently small)}
\]

\[
O(\log T) \leftarrow \text{Graph exponentiation} \quad (\Delta^T < n)
\]

\[
O(1) \leftarrow \text{Straightforward information gathering} \quad (# \text{ edges } = O(n))
\]
Our Approach (low-deg case)

• “Opportunistic” information gathering:
 • Each vertex \(v \) sends its edges to random destinations, and it wishes that someone will gather enough information to simulate the algorithm at \(v \).

• \(\Pr[\ e \ is \ sent \ to \ u \] = p \)
 • Need \(p = 1/\Delta \) so that each node received only \(O(n) \) words.
 • Recall: \(\# \) edges = \(O(n\Delta) \).

• \(\Pr[\ v \ is \ successfully \ simulated \ by \ u \] = p^{\Delta T} \) \quad (need this to be \(\gg 1/n \))

This idea is implicit in:
Tomasz Jurdzinski and Krzysztof Nowicki - “MST in O(1) rounds of congested clique” in SODA 2018.
Our Approach (low-deg case)

• For example, it works when $T = O(\log^* n)$ and $\Delta = \text{poly log log } n$.

• We “sparsify” the pre-shattering phase of the CLP algorithm to reduce the effective degree from $\Delta = O(\log^5 n)$ to $\Delta = \text{poly log log } n$.

• This leads to an $O(1)$-round algorithm in CONGESTED CLIQUE.

The idea of sparsifying local algorithms to obtain better MPC / CONGESTED CLIQUE algorithms appears in: Mohsen Ghaffari and Jara Uitto – “Sparsifying Distributed Algorithms with Ramifications in Massively Parallel Computation and Centralized Local Computation” in SODA 2019.
Adaptation to MPC

• One issue: memory per processor is $S = n^\delta$

• When # edges = $O(n)$, cannot gather all information to one processor.

• Need to recurse on $B_1, B_2, ..., B_{\sqrt{\Delta}}$, until they have small degree.
 • depth of recursion is still $O(1)$.

• Post-shattering phase cannot be done in $O(1)$ rounds.
 • Apply graph exponentiation to attain the round complexity of $O(\sqrt{\log \log n})$.
Adaptation to MPC

• One issue: memory per processor is $S = n^\delta$

• When # edges = $O(n)$, cannot gather all information to one processor.

• Need to recurse on $B_1, B_2, \ldots, B^{\sqrt{\Delta}}$, until they have small degree.
 • depth of recursion is still $O(1)$.

• Post-shattering phase cannot be done in $O(1)$ rounds.
 • Apply graph exponentiation to attain the round complexity of $O(\sqrt{\log \log n})$.

Adaptation to MPC

• One issue: memory per processor is $S = n^\delta$

• When # edges = $O(n)$, cannot gather all information to one processor.

• Need to recurse on $B_1, B_2, ..., B_{\sqrt{\Delta}}$, until they have small degree.
 • depth of recursion is still $O(1)$.

• Post-shattering phase cannot be done in $O(1)$ rounds.
 • Apply graph exponentiation to attain the round complexity of $O(\sqrt{\log \log n})$.

Conditional lower bound: Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto – “Conditional Hardness Results for Massively Parallel Computation from Distributed Lower Bounds” in FOCS 2019.

Thanks for your attention