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(Δ+1) Coloring

• Easy in the sequential setting.
• A simple sequential greedy algorithm in linear time and space.

• What about the distributed setting?



Two Types of Distributed Models

• Type 1: computer network = input graph
• LOCAL, CONGEST

• Type 2: computer network ≠ input graph
• CONGESTED-CLIQUE, MPC

With locality

Without locality



Distributed Models

• LOCAL:  
Can only communicate with neighbors.

Unbounded message size.

Can only communicate with neighbors.

𝑂(log 𝑛)-bit message size.
•CONGEST:

Bandwidth 
constraint

Locality

Other features: Synchronous rounds & unbounded local computation power



Distributed Models

• LOCAL:  
Can only communicate with neighbors.

Unbounded message size.

Can only communicate with neighbors.

𝑂(log 𝑛)-bit message size.

Allow all-to-all communication.

𝑂(log 𝑛)-bit message size.

•CONGEST:

•Congested Clique:
Bandwidth 
constraint

Locality



Distributed Models

•Alternative definition of CONGESTED-CLIQUE:
• In each round each processor can send and receive up to 
𝑂(𝑛) messages of 𝑂(log 𝑛) bits. 

• Number of processors = 𝑛.
• Initially each processor knows the set of neighbors of a vertex.

(in view of Lenzen’s routing)



Distributed Models

• Alternative definition of CONGESTED-CLIQUE:
• In each round each processor can send and receive up to 𝑂(𝑛) messages 

of 𝑂(log 𝑛) bits. 

• Number of processors = 𝑛.

• Initially each processor knows the set of neighbors of a vertex.

• MPC (Massively Parallel Computation) model:
• A scalable variant of CONGESTED-CLIQUE.

• Memory per processor = 𝑆 = 𝑛𝛿 for some 𝛿 = Θ(1).

• Number of processors = ෨𝑂(𝑚 / 𝑆).

• Input graph is distributed arbitrarily (can be sorted in O(1) rounds).



(Δ+1)-coloring in the LOCAL Model

• (Rand.)    𝑂(log 𝑛)

• (Det.)       2𝑂( log 𝑛)

• (Rand.)    𝑂 log Δ + 2𝑂( log log 𝑛)

• (Rand.)    𝑂 log Δ + 2𝑂( log log 𝑛) = 𝑂 log 𝑛

• (Rand.)    𝑂 log∗ Δ + 2𝑂( log log 𝑛) = 2𝑂( log log 𝑛)

Luby (STOC’85) and Alon, Babai and Itai (JALG’86)

Panconesi, Srinivasan (JALG’96)

Barenboim,  Elkin,  Pettie, Schneider (FOCS 2012)

Harris, Schneider, Su (STOC 2016)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

(There are many more!)
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(There are many more!) What about MPC / CONGESTED-CLIUQUE?



(Δ+1) Coloring in MPC 
• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu 

Chen, Sanjeev Khanna [SODA 2019]

• Sample 𝑂(log 𝑛) colors for each vertex independently and uniformly at 
random from the ∆ + 1 colors. 

• With high probability, the graph is colorable using the selected colors.

• This leads to an 𝑂(1)-round MPC algorithm.



• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu 
Chen, Sanjeev Khanna [SODA 2019]

• Sample 𝑂(log 𝑛) colors for each vertex independently and uniformly at 
random from the ∆ + 1 colors. 

• With high probability, the graph is colorable using the selected colors.

• This leads to an 𝑂(1)-round MPC algorithm.

(Δ+1) Coloring in MPC 

Two issues:  
(i)  costs polylogarithmic rounds in CONGESTED CLIQUE.
(ii) memory per processor must be ෩𝛀(𝒏).

We will later see that our approach does not have these issues.



Our Results

• 𝑂(1)-round CONGESTED-CLIQUE algorithm.

• 𝑂( log log 𝑛)-round MPC algorithm in the small memory regime.

• Our approach:  transformation from Chang-Li-Pettie algorithm for (Δ+1)-
coloring in the LOCAL Model 

LOCAL
CONGEST

MPC
CONGESTED-CLIQUE



(Δ+1) Coloring in CONGESTED-CLIQUE

How to implement this algorithm in CONGESTED-CLIQUE?

• 𝑂 log∗ Δ + 2𝑂( log log 𝑛) = 2𝑂( log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

At this stage, the remaining graph has O(n) edges, so we can send them 
to one processor. This part can be implemented in CONGESTED-CLIQUE 
in 𝑂(1) rounds.

For this part, some node has to receive messages of size 𝑂(Δ2), so a naïve simulation 
works only when Δ < 𝑛.



Prior works

• 𝑂(log log 𝑛) rounds
• Merav Parter – “(Delta+1) Coloring in the Congested Clique Model” ICALP 2018

• (the cost for reducing the general case to the Δ < 𝑛 case) 

• 𝑂(log∗ Δ) rounds
• Merav Parter & Hsin-Hao Su – “(Delta+1)-Coloring in O(log* Delta) Congested-

Clique Rounds” DISC 2018

• (modify the internal details of the CLP coloring algorithm to increase the 
threshold from Δ < 𝑛 to Δ < 𝑛5/8)



Our Approach (high-deg case)

• A simple algorithm that deals with the case Δ > log5𝑛 in 𝑂(1) rounds.

• Decompose the vertex set and the color set randomly into ∆ parts:     
𝐵1, 𝐵2, …, 𝐵 ∆.
• Each part has 𝑂(𝑛/ ∆) vertices and max-deg O( ∆).

• Each part is associated with O( ∆) colors.

• We want to color each part with its associated colors.

• But there will be a gap of ≈ ∆1/4 between max-degree and # colors.



Our Approach (high-deg case)

• We want to color each part with its associated colors.

• But there will be a gap of ≈ ∆1/4 between max-degree and # colors.

• Solution: adjust the probabilities to decrease the max-deg of each part 𝐵1, 
𝐵2, …, 𝐵 ∆ by ≈ ∆1/4, and this leads to a new part 𝐿 whose size is ≈ 𝑛/∆1/4

with max-deg ≈ ∆3/4

• Now each of 𝐵1, 𝐵2, …, 𝐵 ∆ is colorable with their colors. After coloring 
them, we can recurse on 𝐿.



Our Approach (high-deg case)

• Recall: each of 𝐵1, 𝐵2, …, 𝐵 ∆ has 𝑂(𝑛/ ∆) vertices and max-deg 
O ∆ , so they have 𝑂(𝑛) edges. We can send each of them to a 
processor to construct the coloring locally. This takes 𝑂(1) rounds in 
CONGESTED-CLIQUE.

• A simple calculation shows that when Δ > log5𝑛, after 𝑂(1) depth of 
recursions, the size of 𝐿 also decreases to 𝑂(𝑛) edges.

• This gives us an 𝑂(1)-round CONGESTED-CLIQUE algorithm.



Our Approach (low-deg case)

• How about the case Δ < log5𝑛 ?       Recall:

• 𝑂 log∗ Δ + 2𝑂( log log 𝑛) = 2𝑂( log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

At this stage, the remaining graph has O(n) edges, so we can send them 
to one processor. This part can be implemented in CONGESTED-CLIQUE 
in 𝑂(1) rounds.

For this part, some node has to receive messages of size 𝑂(Δ2), so a naïve simulation 
works only when Δ < 𝑛.



Our Approach (low-deg case)

• How about the case Δ < log5𝑛 ?       Recall:

• 𝑂 log∗ Δ + 2𝑂( log log 𝑛) = 2𝑂( log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

𝑂 log∗ Δ + 𝑂 1 <- Straightforward simulation

After the 𝑖-th round, each vertex gathers all information within its 
radius 2𝑖 neighborhood.  We can do this because the degree is small. 

𝑂 log log∗ Δ + 𝑂 1 <- Graph exponentiation



Our Approach (low-deg case)

• Can we do better?

• Let’s say we have a 𝑇-round LOCAL algorithm that we wish to run in the 
CONGESTED CLIQUE.

𝑂 𝑇 <- Straightforward simulation    (when degree and message size is sufficiently small)

𝑂 log 𝑇 <- Graph exponentiation            (Δ𝑇 < 𝑛)

𝑂 1 <- Straightforward information gathering            (# edges = 𝑂(𝑛))



Our Approach (low-deg case)

• “Opportunistic” information gathering:
• Each vertex 𝑣 sends its edges to random destinations, and it wishes that someone 

will gather enough information to simulate the algorithm at 𝑣. 

• Pr[ 𝑒 is sent to 𝑢 ] = 𝑝
• Need 𝑝 = 1/Δ so that each node received only O(n) words.

• Recall:  # edges = 𝑂(𝑛Δ).

• Pr[ 𝑣 is successfully simulated by 𝑢 ] = 𝑝Δ
𝑇

(need this to be ≫ 1/𝑛)

This idea is implicit in:
Tomasz Jurdzinski and Krzysztof Nowicki - “MST in O(1) rounds of congested clique” in SODA 2018.



Our Approach (low-deg case)

• For example, it works when 𝑇 = 𝑂(log∗𝑛) and ∆ = poly log log 𝑛.

• We “sparsify” the pre-shattering phase of the CLP algorithm to reduce the 
effective degree from  ∆ = 𝑂(log5𝑛) to ∆ = poly log log 𝑛.

• This leads to an 𝑂(1)-round algorithm in CONGESTED CLIQUE.

The idea of sparsifying local algorithms to obtain better MPC / CONGESTED CLIQUE algorithms appears in:
Mohsen Ghaffari and Jara Uitto – “Sparsifying Distributed Algorithms with Ramifications in Massively 

Parallel Computation and Centralized Local Computation” in SODA 2019.



Adaptation to MPC

• One issue:  memory per processor is 𝑆 = 𝑛𝛿

• When # edges = 𝑂(𝑛), cannot gather all information to one processor.

• Need to recurse on 𝐵1, 𝐵2, …, 𝐵 ∆, until they have small degree.
• depth of recursion is still 𝑂(1).

• Post-shattering phase cannot be done in 𝑂(1) rounds.

• Apply graph exponentiation to attain the round complexity of 𝑂( log log 𝑛). 

bottleneck
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Conditional lower bound:  Mohsen Ghaffari, Fabian Kuhn, and 
Jara Uitto – “Conditional Hardness Results for Massively Parallel 
Computation from Distributed Lower Bounds” in FOCS 2019.
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Thanks for your attention


