
The Complexity of (Δ+1) Coloring in Congested
Clique, Massively Parallel Computation, and

Centralized Local Computation

Yi-Jun Chang

Manuela Fischer

Mohsen Ghaffari

Jara Uitto

Yufan Zheng

(Δ+1) Coloring

• Easy in the sequential setting.
• A simple sequential greedy algorithm in linear time and space.

• What about the distributed setting?

Two Types of Distributed Models

• Type 1: computer network = input graph
• LOCAL, CONGEST

• Type 2: computer network ≠ input graph
• CONGESTED-CLIQUE, MPC

With locality

Without locality

Distributed Models

• LOCAL:
Can only communicate with neighbors.

Unbounded message size.

Can only communicate with neighbors.

𝑂(log 𝑛)-bit message size.
•CONGEST:

Bandwidth
constraint

Locality

Other features: Synchronous rounds & unbounded local computation power

Distributed Models

• LOCAL:
Can only communicate with neighbors.

Unbounded message size.

Can only communicate with neighbors.

𝑂(log 𝑛)-bit message size.

Allow all-to-all communication.

𝑂(log 𝑛)-bit message size.

•CONGEST:

•Congested Clique:
Bandwidth
constraint

Locality

Distributed Models

•Alternative definition of CONGESTED-CLIQUE:
• In each round each processor can send and receive up to
𝑂(𝑛) messages of 𝑂(log 𝑛) bits.

• Number of processors = 𝑛.
• Initially each processor knows the set of neighbors of a vertex.

(in view of Lenzen’s routing)

Distributed Models

• Alternative definition of CONGESTED-CLIQUE:
• In each round each processor can send and receive up to 𝑂(𝑛) messages

of 𝑂(log 𝑛) bits.

• Number of processors = 𝑛.

• Initially each processor knows the set of neighbors of a vertex.

• MPC (Massively Parallel Computation) model:
• A scalable variant of CONGESTED-CLIQUE.

• Memory per processor = 𝑆 = 𝑛𝛿 for some 𝛿 = Θ(1).

• Number of processors = ෨𝑂(𝑚 / 𝑆).

• Input graph is distributed arbitrarily (can be sorted in O(1) rounds).

(Δ+1)-coloring in the LOCAL Model

• (Rand.) 𝑂(log 𝑛)

• (Det.) 2𝑂(log 𝑛)

• (Rand.) 𝑂 log Δ + 2𝑂(log log 𝑛)

• (Rand.) 𝑂 log Δ + 2𝑂(log log 𝑛) = 𝑂 log 𝑛

• (Rand.) 𝑂 log∗ Δ + 2𝑂(log log 𝑛) = 2𝑂(log log 𝑛)

Luby (STOC’85) and Alon, Babai and Itai (JALG’86)

Panconesi, Srinivasan (JALG’96)

Barenboim, Elkin, Pettie, Schneider (FOCS 2012)

Harris, Schneider, Su (STOC 2016)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

(There are many more!)

(Δ+1)-coloring in the LOCAL Model

• (Rand.) 𝑂(log 𝑛)

• (Det.) 2𝑂(log 𝑛)

• (Rand.) 𝑂 log Δ + 2𝑂(log log 𝑛)

• (Rand.) 𝑂 log Δ + 2𝑂(log log 𝑛) = 𝑂 log 𝑛

• (Rand.) 𝑂 log∗ Δ + 2𝑂(log log 𝑛) = 2𝑂(log log 𝑛)

Luby (STOC’85) and Alon, Babai and Itai (JALG’86)

Panconesi, Srinivasan (JALG’96)

Barenboim, Elkin, Pettie, Schneider (FOCS 2012)

Harris, Schneider, Su (STOC 2016)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

(There are many more!) What about MPC / CONGESTED-CLIUQUE?

(Δ+1) Coloring in MPC
• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu

Chen, Sanjeev Khanna [SODA 2019]

• Sample 𝑂(log 𝑛) colors for each vertex independently and uniformly at
random from the ∆ + 1 colors.

• With high probability, the graph is colorable using the selected colors.

• This leads to an 𝑂(1)-round MPC algorithm.

• “Sublinear Algorithms for (Δ+1) Vertex Coloring” by Sepehr Assadi, Yu
Chen, Sanjeev Khanna [SODA 2019]

• Sample 𝑂(log 𝑛) colors for each vertex independently and uniformly at
random from the ∆ + 1 colors.

• With high probability, the graph is colorable using the selected colors.

• This leads to an 𝑂(1)-round MPC algorithm.

(Δ+1) Coloring in MPC

Two issues:
(i) costs polylogarithmic rounds in CONGESTED CLIQUE.
(ii) memory per processor must be ෩𝛀(𝒏).

We will later see that our approach does not have these issues.

Our Results

• 𝑂(1)-round CONGESTED-CLIQUE algorithm.

• 𝑂(log log 𝑛)-round MPC algorithm in the small memory regime.

• Our approach: transformation from Chang-Li-Pettie algorithm for (Δ+1)-
coloring in the LOCAL Model

LOCAL
CONGEST

MPC
CONGESTED-CLIQUE

(Δ+1) Coloring in CONGESTED-CLIQUE

How to implement this algorithm in CONGESTED-CLIQUE?

• 𝑂 log∗ Δ + 2𝑂(log log 𝑛) = 2𝑂(log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

At this stage, the remaining graph has O(n) edges, so we can send them
to one processor. This part can be implemented in CONGESTED-CLIQUE
in 𝑂(1) rounds.

For this part, some node has to receive messages of size 𝑂(Δ2), so a naïve simulation
works only when Δ < 𝑛.

Prior works

• 𝑂(log log 𝑛) rounds
• Merav Parter – “(Delta+1) Coloring in the Congested Clique Model” ICALP 2018

• (the cost for reducing the general case to the Δ < 𝑛 case)

• 𝑂(log∗ Δ) rounds
• Merav Parter & Hsin-Hao Su – “(Delta+1)-Coloring in O(log* Delta) Congested-

Clique Rounds” DISC 2018

• (modify the internal details of the CLP coloring algorithm to increase the
threshold from Δ < 𝑛 to Δ < 𝑛5/8)

Our Approach (high-deg case)

• A simple algorithm that deals with the case Δ > log5𝑛 in 𝑂(1) rounds.

• Decompose the vertex set and the color set randomly into ∆ parts:
𝐵1, 𝐵2, …, 𝐵 ∆.
• Each part has 𝑂(𝑛/ ∆) vertices and max-deg O(∆).

• Each part is associated with O(∆) colors.

• We want to color each part with its associated colors.

• But there will be a gap of ≈ ∆1/4 between max-degree and # colors.

Our Approach (high-deg case)

• We want to color each part with its associated colors.

• But there will be a gap of ≈ ∆1/4 between max-degree and # colors.

• Solution: adjust the probabilities to decrease the max-deg of each part 𝐵1,
𝐵2, …, 𝐵 ∆ by ≈ ∆1/4, and this leads to a new part 𝐿 whose size is ≈ 𝑛/∆1/4

with max-deg ≈ ∆3/4

• Now each of 𝐵1, 𝐵2, …, 𝐵 ∆ is colorable with their colors. After coloring
them, we can recurse on 𝐿.

Our Approach (high-deg case)

• Recall: each of 𝐵1, 𝐵2, …, 𝐵 ∆ has 𝑂(𝑛/ ∆) vertices and max-deg
O ∆ , so they have 𝑂(𝑛) edges. We can send each of them to a
processor to construct the coloring locally. This takes 𝑂(1) rounds in
CONGESTED-CLIQUE.

• A simple calculation shows that when Δ > log5𝑛, after 𝑂(1) depth of
recursions, the size of 𝐿 also decreases to 𝑂(𝑛) edges.

• This gives us an 𝑂(1)-round CONGESTED-CLIQUE algorithm.

Our Approach (low-deg case)

• How about the case Δ < log5𝑛 ? Recall:

• 𝑂 log∗ Δ + 2𝑂(log log 𝑛) = 2𝑂(log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

At this stage, the remaining graph has O(n) edges, so we can send them
to one processor. This part can be implemented in CONGESTED-CLIQUE
in 𝑂(1) rounds.

For this part, some node has to receive messages of size 𝑂(Δ2), so a naïve simulation
works only when Δ < 𝑛.

Our Approach (low-deg case)

• How about the case Δ < log5𝑛 ? Recall:

• 𝑂 log∗ Δ + 2𝑂(log log 𝑛) = 2𝑂(log log 𝑛)

Pre-shattering Post-shattering

Chang, Li, Pettie (STOC 2018)

𝑂 log∗ Δ + 𝑂 1 <- Straightforward simulation

After the 𝑖-th round, each vertex gathers all information within its
radius 2𝑖 neighborhood. We can do this because the degree is small.

𝑂 log log∗ Δ + 𝑂 1 <- Graph exponentiation

Our Approach (low-deg case)

• Can we do better?

• Let’s say we have a 𝑇-round LOCAL algorithm that we wish to run in the
CONGESTED CLIQUE.

𝑂 𝑇 <- Straightforward simulation (when degree and message size is sufficiently small)

𝑂 log 𝑇 <- Graph exponentiation (Δ𝑇 < 𝑛)

𝑂 1 <- Straightforward information gathering (# edges = 𝑂(𝑛))

Our Approach (low-deg case)

• “Opportunistic” information gathering:
• Each vertex 𝑣 sends its edges to random destinations, and it wishes that someone

will gather enough information to simulate the algorithm at 𝑣.

• Pr[𝑒 is sent to 𝑢] = 𝑝
• Need 𝑝 = 1/Δ so that each node received only O(n) words.

• Recall: # edges = 𝑂(𝑛Δ).

• Pr[𝑣 is successfully simulated by 𝑢] = 𝑝Δ
𝑇

(need this to be ≫ 1/𝑛)

This idea is implicit in:
Tomasz Jurdzinski and Krzysztof Nowicki - “MST in O(1) rounds of congested clique” in SODA 2018.

Our Approach (low-deg case)

• For example, it works when 𝑇 = 𝑂(log∗𝑛) and ∆ = poly log log 𝑛.

• We “sparsify” the pre-shattering phase of the CLP algorithm to reduce the
effective degree from ∆ = 𝑂(log5𝑛) to ∆ = poly log log 𝑛.

• This leads to an 𝑂(1)-round algorithm in CONGESTED CLIQUE.

The idea of sparsifying local algorithms to obtain better MPC / CONGESTED CLIQUE algorithms appears in:
Mohsen Ghaffari and Jara Uitto – “Sparsifying Distributed Algorithms with Ramifications in Massively

Parallel Computation and Centralized Local Computation” in SODA 2019.

Adaptation to MPC

• One issue: memory per processor is 𝑆 = 𝑛𝛿

• When # edges = 𝑂(𝑛), cannot gather all information to one processor.

• Need to recurse on 𝐵1, 𝐵2, …, 𝐵 ∆, until they have small degree.
• depth of recursion is still 𝑂(1).

• Post-shattering phase cannot be done in 𝑂(1) rounds.

• Apply graph exponentiation to attain the round complexity of 𝑂(log log 𝑛).

bottleneck

Adaptation to MPC

• One issue: memory per processor is 𝑆 = 𝑛𝛿

• When # edges = 𝑂(𝑛), cannot gather all information to one processor.

• Need to recurse on 𝐵1, 𝐵2, …, 𝐵 ∆, until they have small degree.
• depth of recursion is still 𝑂(1).

• Post-shattering phase cannot be done in 𝑂(1) rounds.

• Apply graph exponentiation to attain the round complexity of 𝑂(log log 𝑛).

bottleneck

Conditional lower bound: Mohsen Ghaffari, Fabian Kuhn, and
Jara Uitto – “Conditional Hardness Results for Massively Parallel
Computation from Distributed Lower Bounds” in FOCS 2019.

Adaptation to MPC

• One issue: memory per processor is 𝑆 = 𝑛𝛿

• When # edges = 𝑂(𝑛), cannot gather all information to one processor.

• Need to recurse on 𝐵1, 𝐵2, …, 𝐵 ∆, until they have small degree.
• depth of recursion is still 𝑂(1).

• Post-shattering phase cannot be done in 𝑂(1) rounds.

• Apply graph exponentiation to attain the round complexity of 𝑂(log log 𝑛).

bottleneck

Conditional lower bound: Mohsen Ghaffari, Fabian Kuhn, and
Jara Uitto – “Conditional Hardness Results for Massively Parallel
Computation from Distributed Lower Bounds” in FOCS 2019.

Thanks for your attention

