Sampling Vertices
Uniformly from a Graph

Flavio Chierichetti Sapienza University

With subsets of

Anirban Dasgupta IIT Gandhinagar
Shahrzad Haddadan Sapienza University
Silvio Lattanzi Google Zurich

Ravi Kumar Google MTV
Tamas Sarlos Google MTV

Social Networks

e Social Networks are “large”
e We would like to study their properties

e \We need to be able to sample from them

Learning Average Opinions

Learning Average Opinions

Learning Average Opinions

Learning Average Opinions

Learning Average Opinions

Learning Average Opinions

Asking all the users
IS too costly!

Learning Average Opinions

Select some people
uniformly-at-random
and ask them
their opinion

Learning Average Opinions

Select some people
uniformly-at-random
and ask them
their opinion

Learning Average Opinions

Select some people
uniformly-at-random
and ask them
their opinion

Learning Average Opinions

Select some people
uniformly-at-random
and ask them

- @ their opinion

The empirical
average will be
close to the real
ays average

Learning Average Opinions

Learning Average Opinions

Learning Average Opinions

What Is the
fraction of & 7

Learning Average Opinions

P \
P g O
RN y N
Y I ¢ s b
z AL o 3
: ,'{- R
A S A
- <od
S £ P
s
B ‘.
i ¥
. P
eriat
R -)
5 o

Select some people
uniformly-at-random
and ask them

’ their opinion

Learning Average Opinions

. e \
¥ . N\
i ST p
I o
] A e
L o
B - R o
e ‘£ -~
-
g A

by Y —

Select some people
uniformly-at-random
and ask them

’ their opinion

The empirical
fraction of & will
be close to the

ks real fraction

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process.

|
ﬂ http://s-n.com/001.html

N

http://s-n.com/001.html

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process.

Friends

|
ﬂ http://s-n.com/001.html

N

http://s-n.com/001.html

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process.

»

o
http://s-n.com/005.html ==

N

http://s-n.com/001.html

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process.

http://s-n.com/011.html<=~ £ fl
A "

http://s-n.com/001.html

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process

http://s-n.com/012.html

i 13
|

http://s-n.com/001.html

How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process

e \We cannot crawl the whole network.

Random Walks

o$

Random Walks

1/4 @1/4
O 1/4\ /4

Random Walks

o©$©

Random Walks

O 1/3 1/3
1/3

Random Walks

o©$@

Random Walks

o©$©

Random Walks

@©$©

Random Walks

If the process goes on for enough many steps,
the random node it ends up on will be “random”

Random Walks

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”

Random Walks

1¢ The Mixing Times of many Somal Netvvorks are smaII
%% [Leskovec eta/ 08] - 5 A 1

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”

Random Walks

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”,

chosen with probability proportional to its degree

Random Walks

1/18

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”,

chosen with probability proportional to its degree

Random Walks

4/18
1/18

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”,

chosen with probability proportional to its degree

Random Walks

4/18
1/18

Mixing Time T(G)
If the process goes on for enough many steps,
the random node it ends up on will be “random”,

chosen with probability proportional to its degree

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

~ 4/18

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

~ 4/18 - 1/4

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

~ 4/18 - 1/4 = ~ 1/18

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

~1/18

~1/18 - 1/1
®

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

~1/18

~ 1/18
O

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

|

- This algorithm returns a node chosen |

! (arbitrarily close to) uniformly tando

A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

|

- One éan easlily show thah B
. downloads, with high probability, at most |
LO(T(G) - AvgDeg(Q)) nodes from the network

S e e O e e

The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.

The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.

The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.
Running Time: D - T(G)

The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.
Running Time: D - T(G)

of Downloaded Vertices < AvgDeg(G) - T(G)

Can one do better?

e In[C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we analyzed
various algorithms for selecting a UAR node.

e Some of them were on-par with the Folklore Algorithm, some
of them were worse.

Can one do better?

In [C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we analyzed
various algorithms for selecting a UAR node.

Some of them were on-par with the Folklore Algorithm, some
of them were worse.

In [C., Haddadan, ’18], we show that if an algorithm
downloads < o(T(G) AvgDeg(G)) nodes from the network,
then it cannot return anything close to a uniform-at-random

node.

That is, the Folklore algorithm is optimal.

Two Main Ingredients

Two Main Ingredients

G iy .
| !._. - © H

Two Main Ingredients

G

:'-1:- ‘

H

A distribution over graphs G

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.

PN

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:

e for each vin V, flip an iid coin: with probability 7/7T,

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:

e for each vin V, flip an iid coin: with probability 7/7T,

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:

e for each vin V, flip an iid coin: with probability 7/7T,

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:
e for each vin V, flip an iid coin: with probability 7/7T,

* mark node v;

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:
e for each vin V, flip an iid coin: with probability 7/7T,
* mark node v;

e create a new node v’, and cT new nodes Vv’

®
OO

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:
e for each vin V, flip an iid coin: with probability 7/7T,
* mark node v;
e create a new node v’, and cT new nodes V’;

* add an edge from v to v’, and an edge to v’ to each v’

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:
e for each vin V, flip an iid coin: with probability 7/7T,
* mark node v;
e create a new node v’, and cT new nodes V’;

* add an edge from v to v’, and an edge to v’ to each v’

Decoration Construction

[C., Haddadan,’18]

e Let G = (V,E) be a graph, with mixing time T.
* The (random) decoration of G is a super-graph H of G constructed as follows:
e for each vin V, flip an iid coin: with probability 7/7T,
* mark node v;

e create a new node v’, and cT new nodes Vv’

* add an edge from v to v’, and an edge to v’ to each v’

Decoration Construction

[C., Haddadan,’18]

e Let G = (VE) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

e et H be arandom decoration of G.

24
24
24
4
4
4
4
4
4
4

Decoration Construction

[C., Haddadan,’18]

e Let G = (VE) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

e et H be arandom decoration of G.

* Then, with probability 7-o(7), the mixing time S of H
satisfiesa T <S<a’ T,

24
24
24
4
4
4
4
4
4
4

Decoration Construction

[C., Haddadan,’18]

e Let G = (VE) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

e et H be arandom decoration of G.

* Moreover, with probability 7 - o(7), the number of nodes
increases by a factor of 7 + O(c)

24
24
24
4
4
4
4
4
4
4

Decoration Construction

[C., Haddadan,’18]

e Let G = (VE) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

e et H be arandom decoration of G.

* Moreover, with probability 7 - o(7), the average degree
decreases by a factor of 7 + O(c).

24
24
24
4
4
4
4
4
4
4

Decoration Construction

[C., Haddadan,’18]

* Let G = (V,E) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

* Let H be a random decoration of G.
* Then, with probability 7 - o(7):
* the mixing time S of H satisfiesS=0(T),
* the number of nodes increases by a factor of 7 + O(¢),

* the average degree decreases by a factorof 7 + O(c).

How to Use The Lemma

G

Let G be some (random) graph

How to Use The Lemma

@—

G H

Let G be some (random) graph, and
let H a (random) decoration of G

How to Use The Lemma

Let G be some (random) graph, and
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs

How to Use The Lemma

Let G be some (random) graph, and
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs

How to Use The Lemma

Let G be some (random) graph, and
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs

By showing that the algorithm cannot detect whether it is running on G or H,
we prove that the algorithm cannot solve a number of problems.

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n

O O O
O - ° ©
o © o o
o © o0
O o o
0
0 5 0
0
O O

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n

O O O
O - ° ©
o © 0 o
o © o
O o o
0
0 5 0
0
O O

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n

O O O
O - ° ©
o © o o
e ° o
© o o
0
0 5 0
0
O O

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n

The edges towards
stars will make up

a 1/ (T d) fraction of
the visited edges

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n,

e with such a G, though, the mixing time T is going to be
~ log n.

The edges towards
stars will make up

a 1/ (T d) fraction of
the visited edges

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n,

e with such a G, though, the mixing time T is going to be
~ log n.

 Therefore, we pick two independent G(n/2, p)’s, and join
them with a random matching of < n /2 edges

B

The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n,

e with such a G, though, the mixing time T is going to be
~ log n.

 Therefore, we pick two independent G(n/2, p)’s, and join
them with a random matching of < n /2 edges,

e the number of edges allows us to control the mixing

time T of the resulting G. ﬁ

The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that
e T>d>uw(logn), and
e T d2<o(n).

The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that
e T>d>uw(logn), and
e T d2<o(n).

e Then, there exists a distribution over graphs G of ©(n) nodes, having
average degree O(d) and mixing time O(T) such that, no algorithm

accessing o(T d) nodes of G can

e return a random node of G with a distribution o(7)-far from the uniform
one in ¢ distance

The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that
e T>d>uw(logn), and
e T d2<o(n).

e Then, there exists a distribution over graphs G of ©(n) nodes, having
average degree O(d) and mixing time O(T) such that, no algorithm

accessing o(T d) nodes of G can

e return a random node of G with a distribution o(7)-far from the uniform
one in ¢7 distance,

e approximate the average value of a bounded function on the nodes to an
o(1) error

The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that
e T>d>uw(logn), and
e T d2<o(n).

e Then, there exists a distribution over graphs G of ©(n) nodes, having
average degree O(d) and mixing time O(T) such that, no algorithm

accessing o(T d) nodes of G can

e return a random node of G with a distribution o(7)-far from the uniform
one in ¢7 distance,

e approximate the average value of a bounded function on the nodes to an
o(1) error

The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that

T =d > w(logn), and
T d?2< o(n).

e Then, there exists a distribution over graphs G of ©(n) nodes, having
average degree O(d) and mixing time O(T) such that, no algorithm
accessing o(T d) nodes of G can

return a random node of G with a distribution o(7)-far from the uniform
one in ¢7 distance,

approximate the average value of a bounded function on the nodes to an
o(1) error,

approximate the number of nodes of G to any given constant,

approximate the average degree of G to any given constant.

Applications

Upper Bound

Average of a
Bounded Function

O (tmix davg log(d) e ?)
Max-Degree

Uniform Sample

O (tmix davg log(e_ !))
Max-Degree/Rejection-Sampling

- .
L ‘gftel od o
b QARAGAE 2 ol fl e
R i > 2
: 29 A
L= [

Upper Bound

Applications

Average of a
Bounded Function

Uniform Sample

O (tmix davg log(d) e ?)

Lower Bound

Max-Degree
O (tmix davg log(e™1))

Q(tmix dave log(d 1)e™?)

Max-Degree/Rejection-Sampling

Q (tmix davg)

® L f’. = g
O ST BT e
A -Li“

fTe _t lelg

= mi

-0
= e)
— [
—— i =30

Applications

Upper Bound Lower Bound
Average of a O (tmix davg log(d) e ?) Q(tmix dave log(d 1)e™?)
Bounded Function Max-Degree
Uniform Sample O (tmix davg log(e™1)) Q(tmix davg)
Max-Degree/Rejection-Sampling
Number of Vertices | O(tumix max{davg, II*|; "~ }log(671)log(e 1)e2) Q(tumix dave)
[Katzir et al.]

Open Questions

e What is the minimum number of node queries to
approximate the number of nodes of G?

 Can the lower bound, and/or the algorithm of [Katzir et al],
be improved?

Open Questions

 In[C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we also
studied the number of node accesses to return a node
with probability proportional to some power of its degree.

e Can one obtain tight lower and upper bounds for this
problem?

