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Social Networks

e Social Networks are “large”
e We would like to study their properties

e \We need to be able to sample from them
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Asking all the users
IS too costly!
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How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process.
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How do we select
uniform-at-random profiles
in a Social Network?

e We can access the SN through a crawling process

e \We cannot crawl the whole network.
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1¢ The Mixing Times of many Somal Netvvorks are smaII
%% [Leskovec eta/ 08] - 5 A 1
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A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).
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A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).
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A Folklore Algorithm

* While True:
e run the random walk for T(G) steps;
* suppose it ends on the node v;

e return v with probability 1/deg(v).

|

- One éan easlily show thah B
. downloads, with high probability, at most |
LO(T(G) - AvgDeg(Q)) nodes from the network
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The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.
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The Max-Degree Algorithm

e Let D be the max-degree of G.
 Add self-loops to G in order to make it D-regular.
* Run the random walk for D - T(G) steps.

e return the node on which it ends.
Running Time: D - T(G)

# of Downloaded Vertices < AvgDeg(G) - T(G)




Can one do better?

e In[C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we analyzed
various algorithms for selecting a UAR node.

e Some of them were on-par with the Folklore Algorithm, some
of them were worse.



Can one do better?

In [C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we analyzed
various algorithms for selecting a UAR node.

Some of them were on-par with the Folklore Algorithm, some
of them were worse.

In [C., Haddadan, ’18], we show that if an algorithm
downloads < o(T(G) AvgDeg(G)) nodes from the network,
then it cannot return anything close to a uniform-at-random

node.

That is, the Folklore algorithm is optimal.
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e Let G = (VE) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

e et H be arandom decoration of G.

* Moreover, with probability 7 - o(7), the average degree
decreases by a factor of 7 + O(c).
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Decoration Construction

[C., Haddadan,’18]

* Let G = (V,E) be a graph, with mixing time T < o(]V]) and
average degree d > w(1).

* Let H be a random decoration of G.
* Then, with probability 7 - o(7):
* the mixing time S of H satisfiesS=0(T),
* the number of nodes increases by a factor of 7 + O( ¢ ),

* the average degree decreases by a factorof 7 + O(c).
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How to Use The Lemma

Let G be some (random) graph, and
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs

By showing that the algorithm cannot detect whether it is running on G or H,
we prove that the algorithm cannot solve a number of problems.
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* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n,

e with such a G, though, the mixing time T is going to be
~ log n.

 Therefore, we pick two independent G(n/2, p)’s, and join
them with a random matching of < n /2 edges
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The Graph G

[C., Haddadan,’18]

* This approach can be made to work with G being a
G(n, d/n) graph, with d ~ log n,

e with such a G, though, the mixing time T is going to be
~ log n.

 Therefore, we pick two independent G(n/2, p)’s, and join
them with a random matching of < n /2 edges,

e the number of edges allows us to control the mixing

time T of the resulting G. ﬁ
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The Graph G

[C., Haddadan,’18]

 Letn be alarge integer. Pick T and d so that

T =d > w(logn), and
T d?2< o(n).

e Then, there exists a distribution over graphs G of ©(n) nodes, having
average degree O(d) and mixing time O(T) such that, no algorithm
accessing o(T d) nodes of G can

return a random node of G with a distribution o(7)-far from the uniform
one in ¢7 distance,

approximate the average value of a bounded function on the nodes to an
o(1) error,

approximate the number of nodes of G to any given constant,

approximate the average degree of G to any given constant.
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Upper Bound

Applications

Average of a
Bounded Function
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Lower Bound

Max-Degree
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Applications

Upper Bound Lower Bound
Average of a O (tmix davg log(d ) e ?) Q(tmix dave log(d 1 )e™?)
Bounded Function Max-Degree
Uniform Sample O (tmix davg log(e™1)) Q(tmix davg)
Max-Degree/Rejection-Sampling
Number of Vertices | O(tumix max{davg, II*|; "~ }log(671)log(e 1)e2) Q(tumix dave)
[Katzir et al.]




Open Questions

e What is the minimum number of node queries to
approximate the number of nodes of G?

 Can the lower bound, and/or the algorithm of [Katzir et al],
be improved?



Open Questions

 In[C., Dasgupta, Kumar, Lattanzi, Sarlos,’16] we also
studied the number of node accesses to return a node
with probability proportional to some power of its degree.

e Can one obtain tight lower and upper bounds for this
problem?



