
Sampling Vertices 
Uniformly from a Graph

Flavio Chierichetti       Sapienza University


With subsets of 
Anirban Dasgupta        IIT Gandhinagar

Shahrzad Haddadan   Sapienza University

Silvio Lattanzi              Google Zurich

Ravi Kumar                  Google MTV

Tamás Sarlós               Google MTV



Social Networks

• Social Networks are “large”


• We would like to study their properties


• We need to be able to sample from them



Learning Average Opinions



Learning Average Opinions



Learning Average Opinions



2

Learning Average Opinions



0

00

2

1
3

4

2
2

5

2
1

1

4

Learning Average Opinions



0

00

2

1
3

4

2
2

5

2
1

1

4

Learning Average Opinions

Asking all the users 
is too costly!



Select some people 
uniformly-at-random

and ask them 
their opinion

Learning Average Opinions



Learning Average Opinions

Select some people 
uniformly-at-random

and ask them 
their opinion

d = 1 d = 2



0
1

2
1

Select some people 
uniformly-at-random

and ask them 
their opinion

Learning Average Opinions



0
1

2
1

Select some people 
uniformly-at-random

and ask them 
their opinion

The empirical 
average will be 
close to the real 

average

Learning Average Opinions



Learning Average Opinions



Learning Average Opinions



What is the 
fraction of     ?

Learning Average Opinions



Learning Average Opinions

Select some people 
uniformly-at-random

and ask them 
their opinion



The empirical 
fraction of     will 
be close to the 

real fraction

Learning Average Opinions

Select some people 
uniformly-at-random

and ask them 
their opinion



How do we select 
uniform-at-random profiles 

in a Social Network?

http://s-n.com/001.html

• We can access the SN through a crawling process.


• But we cannot crawl the whole network. 
Then, what can we do?

http://s-n.com/001.html


How do we select 
uniform-at-random profiles 

in a Social Network?

• We can access the SN through a crawling process.


• But we cannot crawl the whole network. 
Then, what can we do?

http://s-n.com/001.html

http://s-n.com/001.html


How do we select 
uniform-at-random profiles 

in a Social Network?

http://s-n.com/005.html

• We can access the SN through a crawling process.


• But we cannot crawl the whole network. 
Then, what can we do?

http://s-n.com/001.html


How do we select 
uniform-at-random profiles 

in a Social Network?

http://s-n.com/011.html

• We can access the SN through a crawling process.


• But we cannot crawl the whole network. 
Then, what can we do?

http://s-n.com/001.html


How do we select 
uniform-at-random profiles 

in a Social Network?

• We can access the SN through a crawling process.


• But we cannot crawl the whole network. 
Then, what can we do?http://s-n.com/012.html

http://s-n.com/001.html


How do we select 
uniform-at-random profiles 

in a Social Network?

• We can access the SN through a crawling process.


• We cannot crawl the whole network. 



Random Walks



Random Walks

1/4 1/4

1/4 1/4



Random Walks



Random Walks

1/3

1/3
1/3



Random Walks



Random Walks



Random Walks



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

Mixing Time T(G)



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

The Mixing Times of many “Social Networks” are small  
[Leskovec et al, ’08]

Mixing Time T(G)



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

Mixing Time T(G)



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

1/18

Mixing Time T(G)



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

1/18

Mixing Time T(G)

4/18



Random Walks

If the process goes on for enough many steps, 
the random node it ends up on will be “random”, 
chosen with probability proportional to its degree

1/18

Mixing Time T(G)

4/18



A Folklore Algorithm
• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



A Folklore Algorithm
• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



A Folklore Algorithm

~ 4/18 · 1/4 = ~ 1/18

• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



A Folklore Algorithm

~ 4/18 · 1/4 = ~ 1/18

• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



~ 4/18 · 1/4 = ~ 1/18

A Folklore Algorithm
• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



~ 1/18
~ 1/18 · 1/1

A Folklore Algorithm
• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



A Folklore Algorithm

~ 1/18
~ 1/18

• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



A Folklore Algorithm

This algorithm returns a node chosen  
(arbitrarily close to) uniformly at random

• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).



• While True:


• run the random walk for T(G) steps;


• suppose it ends on the node v;


• return v with probability 1/deg(v).

A Folklore Algorithm

One can easily show that this algorithm  
downloads, with high probability, at most  

O(T(G) · AvgDeg(G)) nodes from the network



The Max-Degree Algorithm
• Let D be the max-degree of G.


• Add self-loops to G in order to make it D-regular.


• Run the random walk for D · T(G) steps.


• return the node on which it ends.



The Max-Degree Algorithm
• Let D be the max-degree of G.


• Add self-loops to G in order to make it D-regular.


• Run the random walk for D · T(G) steps.


• return the node on which it ends.



• Let D be the max-degree of G.


• Add self-loops to G in order to make it D-regular.


• Run the random walk for D · T(G) steps.


• return the node on which it ends.

The Max-Degree Algorithm

Running Time: D · T(G)



• Let D be the max-degree of G.


• Add self-loops to G in order to make it D-regular.


• Run the random walk for D · T(G) steps.


• return the node on which it ends.

The Max-Degree Algorithm

# of Downloaded Vertices ≤ AvgDeg(G) · T(G)
Running Time: D · T(G)



Can one do better?
• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16] we analyzed 

various algorithms for selecting a UAR node.


• Some of them were on-par with the Folklore Algorithm, some 
of them were worse.


• In [C., Haddadan, ’18], we show that if an algorithm 
downloads < o(T(G) AvgDeg(G)) nodes from the network, 
then it cannot return anything close to a uniform-at-random 
node.


• That is, the Folklore algorithm is optimal. 



Can one do better?
• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16] we analyzed 

various algorithms for selecting a UAR node.


• Some of them were on-par with the Folklore Algorithm, some 
of them were worse.


• In [C., Haddadan, ’18], we show that if an algorithm 
downloads < o(T(G) AvgDeg(G)) nodes from the network, 
then it cannot return anything close to a uniform-at-random 
node.


• That is, the Folklore algorithm is optimal. 



Two Main Ingredients



Two Main Ingredients

G
H



Two Main Ingredients

G
H

A distribution over graphs G



Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v’

v’1

v’2

v’3

v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v’

v’1

v’2

v’3

v

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



v’

v’1

v’2

v’3

v
cT

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



cT

Decoration Construction  
[C., Haddadan,’18]

• Let G = (V,E) be a graph, with mixing time T.


• The (random) decoration of G is a super-graph H of G constructed as follows:


• for each v in V, flip an iid coin: with probability 1/T, 

• mark node v;


• create a new node v’, and cT new nodes v’i 

• add an edge from v to v’, and an edge to v’ to each v’i



• Let G = (V,E) be a graph, with mixing time T < o(|V|) and 
average degree d > ω(1). 

• Let H be a random decoration of G. 

• Then, with probability 1-o(1), the mixing time S of H 
satisfies α T < S < α’ T, for constants α = α(c) and α’=α’(c).

cT

Decoration Construction  
[C., Haddadan,’18]



• Let G = (V,E) be a graph, with mixing time T < o(|V|) and 
average degree d > ω(1). 

• Let H be a random decoration of G. 

• Then, with probability 1-o(1), the mixing time S of H 
satisfies α T < S < α’ T, for constants α = α(c) and α’=α’(c).

cT

Decoration Construction  
[C., Haddadan,’18]



• Let G = (V,E) be a graph, with mixing time T < o(|V|) and 
average degree d > ω(1). 

• Let H be a random decoration of G. 

• Moreover, with probability 1 - o(1), the number of nodes 
increases by a factor of 1 + Θ(c)

cT1/T

Decoration Construction  
[C., Haddadan,’18]



• Let G = (V,E) be a graph, with mixing time T < o(|V|) and 
average degree d > ω(1). 

• Let H be a random decoration of G. 

• Moreover, with probability 1 - o(1), the average degree 
decreases by a factor of 1 + Θ(c).

cT1/T

Decoration Construction  
[C., Haddadan,’18]



• Let G = (V,E) be a graph, with mixing time T < o(|V|) and 
average degree d > ω(1). 

• Let H be a random decoration of G. 

• Then, with probability 1 - o(1): 

• the mixing time S of H satisfies S = Θ( T ), 

• the number of nodes increases by a factor of 1 + Θ( c ), 

• the average degree decreases by a factor of 1 + Θ( c ).

Decoration Construction  
[C., Haddadan,’18]



How to Use The Lemma

G
Let G be some (random) graph, and 

let H a (random) decoration of G



G H

How to Use The Lemma

Let G be some (random) graph, and 
let H a (random) decoration of G



G H

How to Use The Lemma

Let G be some (random) graph, and 
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs



G

How to Use The Lemma

Let G be some (random) graph, and 
let H a (random) decoration of G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs



G

We flip a fair coin, and run the (generic) algorithm on one of the two graphs

H
Let G be some (random) graph, and 

let H a (random) decoration of G

How to Use The Lemma

By showing that the algorithm cannot detect whether it is running on G or H,

we prove that the algorithm cannot solve a number of problems.



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time is going to be 
O(log n).


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time is going to be 
O(log n).


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time is going to be 
O(log n).


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time is going to be 
O(log n).


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time is going to be 
O(log n).


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The edges towards 
stars will make up 

a 1 / (T d) fraction of 
the visited edges

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time T is going to be 
~ log n.


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allow us to control the mixing time 
T of G.

The edges towards 
stars will make up 

a 1 / (T d) fraction of 
the visited edges

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time T is going to be 
~ log n.


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges


• the number of edges allow us to control the mixing time 
T of the resulting G.

The Graph G 
[C., Haddadan,’18]



• This approach can be made to work with G being a 
G(n, d/n) graph, with d ~ log n,


• with such a G, though, the mixing time T is going to be 
~ log n.


• Therefore, we pick two independent G(n/2, p)’s, and join 
them with a random matching of < n / 2 edges,


• the number of edges allows us to control the mixing 
time T of the resulting G.

The Graph G 
[C., Haddadan,’18]



• Let n be a large integer. Pick T and d so that


• T ≥ d > ω(log n), and


• T d2 < o(n). 

• Then, there exists a distribution over graphs G of Θ(n) nodes, having 
average degree Θ(d) and mixing time Θ(T) such that, no algorithm 
accessing o(T d) nodes of G can


• return a random node of G with a distribution o(1)-far from the uniform 
one in ℓ1 distance,


• approximate the average value of a bounded function on the nodes to an 
o(1) error,


• approximate the number of nodes of G to any given constant, 

• approximate the average degree of G to any given constant.

The Graph G 
[C., Haddadan,’18]



• Let n be a large integer. Pick T and d so that


• T ≥ d > ω(log n), and


• T d2 < o(n). 

• Then, there exists a distribution over graphs G of Θ(n) nodes, having 
average degree Θ(d) and mixing time Θ(T) such that, no algorithm 
accessing o(T d) nodes of G can


• return a random node of G with a distribution o(1)-far from the uniform 
one in ℓ1 distance,


• approximate the average value of a bounded function on the nodes to an 
o(1) error,


• approximate the number of nodes of G to any given constant, 

• approximate the average degree of G to any given constant.

The Graph G 
[C., Haddadan,’18]



• Let n be a large integer. Pick T and d so that


• T ≥ d > ω(log n), and


• T d2 < o(n). 

• Then, there exists a distribution over graphs G of Θ(n) nodes, having 
average degree Θ(d) and mixing time Θ(T) such that, no algorithm 
accessing o(T d) nodes of G can


• return a random node of G with a distribution o(1)-far from the uniform 
one in ℓ1 distance,


• approximate the average value of a bounded function on the nodes to an 
o(1) error,


• approximate the number of nodes of G to any given constant, 

• approximate the average degree of G to any given constant.

The Graph G 
[C., Haddadan,’18]



• Let n be a large integer. Pick T and d so that


• T ≥ d > ω(log n), and


• T d2 < o(n). 

• Then, there exists a distribution over graphs G of Θ(n) nodes, having 
average degree Θ(d) and mixing time Θ(T) such that, no algorithm 
accessing o(T d) nodes of G can


• return a random node of G with a distribution o(1)-far from the uniform 
one in ℓ1 distance,


• approximate the average value of a bounded function on the nodes to an 
o(1) error,


• approximate the number of nodes of G to any given constant, 

• approximate the average degree of G to any given constant.
1

The Graph G 
[C., Haddadan,’18]

0



• Let n be a large integer. Pick T and d so that


• T ≥ d > ω(log n), and


• T d2 < o(n). 

• Then, there exists a distribution over graphs G of Θ(n) nodes, having 
average degree Θ(d) and mixing time Θ(T) such that, no algorithm 
accessing o(T d) nodes of G can


• return a random node of G with a distribution o(1)-far from the uniform 
one in ℓ1 distance,


• approximate the average value of a bounded function on the nodes to an 
o(1) error,


• approximate the number of nodes of G to any given constant, 

• approximate the average degree of G to any given constant.

The Graph G 
[C., Haddadan,’18]



Applications

Upper Bound Lower Bound

Average of a O(tmix davg log(δ−1)ϵ−2) Ω(tmix davg log(δ−1)ϵ−2)
Bounded Function (Theorem 2.2, with an Algorithm of [2]) (Theorem 2.3)

Uniform Sample O(tmix davg log(ϵ−1)) Ω(tmix davg)
( [2] ) (Theorem 2.1)

Number of Vertices O(tmix max{davg, |Π1|−1/2
2 } log(δ−1) log(ϵ−1)ϵ−2) Ω(tmix davg)
( [11] ) (Theorem 2.4)

Average Degree O(D2 tmix davg log(δ−1)ϵ−2) Ω(tmix davg)
(Application of Theorem 2.2) (Theorem 2.4)

Table 1: Upper bounds and lower bounds on number of queried vertices for algorithms which
explore the graph using a neighborhood oracle and a seed vertex. As mentioned before, tmix is
the mixing time of the lazy random walk on the graph, davg is its average degree, D is an upper
bound on its maximum degree, Π1 is its stationary distribution, and ϵ and δ are the precision
parameters. The lower bounds for estimating the number of vertices and the average degree
hold for any constant approximation.

Following the framework of [2], we consider two measures of time complexity. First the
number of downloaded vertices, and second the number of steps the algorithm takes to produce
the output. Note that accessing an already downloaded vertex has a negligible cost, and hence,
the most relevant cost of the algorithm is the number of downloaded vertices. As mentioned in
the introduction, the algorithms considered in [2] and in this paper, only require space to store
constantly many vertices, while our lower bound results hold regardless of the space complexity
of the algorithms

Our Contribution. We begin by discussing the problem of producing an approximately-
uniform sample vertex from an unknown graph (Problem 1); showing that some algorithm
presented in the literature are optimal (Theorem 2.1). Then, we proceed to the problem of
estimating favg for a bounded function F : VG → [0, 1] (Problem 2). We extend the positive
results of [2]; we particularly study one algorithm, the “Maximum Degree algorithm”, which we
show to be optimal in the number of downloaded vertices. This algorithm requires knowledge of
some constant approximation of the graph’s mixing time, and and upper bound on its maximum
degree — we also mention in the Appendix three other algorithms, two of which had been
proposed in [2], that give non-optimal bounds for some of the problems we consider. We also
show new lower bounds for constant approximations of the order and the average degree of a
graph. A summary of our contribution is presented in Table 1.

In Section 3, we prove our lower bound results on the number of oracle calls for the following
problems: sampling a vertex, learning the order, and the average degree of the graph. Estima-
tions of these parameters in a graph are intertwined meaning with a knowledge about one of
them the complexity of estimating the other one changes. For instance, Goldreich and Ron [10]
show that, if a uniform sample generator is accessible at zero cost (alternatively, if the order
of graph is precisely known), then the average degree is computable in

√

|VG |/davg steps. Our
lower bounds for the aforementioned problems hold if the algorithm has no ϵ−approximation of
the order, and of the average degree of the graph. On the other hand, the lower bound we obtain
for an ϵ−approximation of a bounded function’s average holds even if the graph’s structure is
precisely known.

Number of downloads to produce a close-to-uniform sample. We prove a lower bound
of Ω(tmix davg), thus, showing that the rejection algorithm and the maximum degree algorithm
suggested in the literature [2] are optimal (Theorem 2.1).

4

Max-Degree

Max-Degree/Rejection-Sampling

[Katzir et al.]



Applications

Upper Bound Lower Bound

Average of a O(tmix davg log(δ−1)ϵ−2) Ω(tmix davg log(δ−1)ϵ−2)
Bounded Function (Theorem 2.2, with an Algorithm of [2]) (Theorem 2.3)

Uniform Sample O(tmix davg log(ϵ−1)) Ω(tmix davg)
( [2] ) (Theorem 2.1)

Number of Vertices O(tmix max{davg, |Π1|−1/2
2 } log(δ−1) log(ϵ−1)ϵ−2) Ω(tmix davg)
( [11] ) (Theorem 2.4)

Average Degree O(D2 tmix davg log(δ−1)ϵ−2) Ω(tmix davg)
(Application of Theorem 2.2) (Theorem 2.4)

Table 1: Upper bounds and lower bounds on number of queried vertices for algorithms which
explore the graph using a neighborhood oracle and a seed vertex. As mentioned before, tmix is
the mixing time of the lazy random walk on the graph, davg is its average degree, D is an upper
bound on its maximum degree, Π1 is its stationary distribution, and ϵ and δ are the precision
parameters. The lower bounds for estimating the number of vertices and the average degree
hold for any constant approximation.

Following the framework of [2], we consider two measures of time complexity. First the
number of downloaded vertices, and second the number of steps the algorithm takes to produce
the output. Note that accessing an already downloaded vertex has a negligible cost, and hence,
the most relevant cost of the algorithm is the number of downloaded vertices. As mentioned in
the introduction, the algorithms considered in [2] and in this paper, only require space to store
constantly many vertices, while our lower bound results hold regardless of the space complexity
of the algorithms

Our Contribution. We begin by discussing the problem of producing an approximately-
uniform sample vertex from an unknown graph (Problem 1); showing that some algorithm
presented in the literature are optimal (Theorem 2.1). Then, we proceed to the problem of
estimating favg for a bounded function F : VG → [0, 1] (Problem 2). We extend the positive
results of [2]; we particularly study one algorithm, the “Maximum Degree algorithm”, which we
show to be optimal in the number of downloaded vertices. This algorithm requires knowledge of
some constant approximation of the graph’s mixing time, and and upper bound on its maximum
degree — we also mention in the Appendix three other algorithms, two of which had been
proposed in [2], that give non-optimal bounds for some of the problems we consider. We also
show new lower bounds for constant approximations of the order and the average degree of a
graph. A summary of our contribution is presented in Table 1.

In Section 3, we prove our lower bound results on the number of oracle calls for the following
problems: sampling a vertex, learning the order, and the average degree of the graph. Estima-
tions of these parameters in a graph are intertwined meaning with a knowledge about one of
them the complexity of estimating the other one changes. For instance, Goldreich and Ron [10]
show that, if a uniform sample generator is accessible at zero cost (alternatively, if the order
of graph is precisely known), then the average degree is computable in

√

|VG |/davg steps. Our
lower bounds for the aforementioned problems hold if the algorithm has no ϵ−approximation of
the order, and of the average degree of the graph. On the other hand, the lower bound we obtain
for an ϵ−approximation of a bounded function’s average holds even if the graph’s structure is
precisely known.

Number of downloads to produce a close-to-uniform sample. We prove a lower bound
of Ω(tmix davg), thus, showing that the rejection algorithm and the maximum degree algorithm
suggested in the literature [2] are optimal (Theorem 2.1).

4

Max-Degree

Max-Degree/Rejection-Sampling

[Katzir et al.]



Applications

Upper Bound Lower Bound

Average of a O(tmix davg log(δ−1)ϵ−2) Ω(tmix davg log(δ−1)ϵ−2)
Bounded Function (Theorem 2.2, with an Algorithm of [2]) (Theorem 2.3)

Uniform Sample O(tmix davg log(ϵ−1)) Ω(tmix davg)
( [2] ) (Theorem 2.1)

Number of Vertices O(tmix max{davg, |Π1|−1/2
2 } log(δ−1) log(ϵ−1)ϵ−2) Ω(tmix davg)
( [11] ) (Theorem 2.4)

Average Degree O(D2 tmix davg log(δ−1)ϵ−2) Ω(tmix davg)
(Application of Theorem 2.2) (Theorem 2.4)

Table 1: Upper bounds and lower bounds on number of queried vertices for algorithms which
explore the graph using a neighborhood oracle and a seed vertex. As mentioned before, tmix is
the mixing time of the lazy random walk on the graph, davg is its average degree, D is an upper
bound on its maximum degree, Π1 is its stationary distribution, and ϵ and δ are the precision
parameters. The lower bounds for estimating the number of vertices and the average degree
hold for any constant approximation.

Following the framework of [2], we consider two measures of time complexity. First the
number of downloaded vertices, and second the number of steps the algorithm takes to produce
the output. Note that accessing an already downloaded vertex has a negligible cost, and hence,
the most relevant cost of the algorithm is the number of downloaded vertices. As mentioned in
the introduction, the algorithms considered in [2] and in this paper, only require space to store
constantly many vertices, while our lower bound results hold regardless of the space complexity
of the algorithms

Our Contribution. We begin by discussing the problem of producing an approximately-
uniform sample vertex from an unknown graph (Problem 1); showing that some algorithm
presented in the literature are optimal (Theorem 2.1). Then, we proceed to the problem of
estimating favg for a bounded function F : VG → [0, 1] (Problem 2). We extend the positive
results of [2]; we particularly study one algorithm, the “Maximum Degree algorithm”, which we
show to be optimal in the number of downloaded vertices. This algorithm requires knowledge of
some constant approximation of the graph’s mixing time, and and upper bound on its maximum
degree — we also mention in the Appendix three other algorithms, two of which had been
proposed in [2], that give non-optimal bounds for some of the problems we consider. We also
show new lower bounds for constant approximations of the order and the average degree of a
graph. A summary of our contribution is presented in Table 1.

In Section 3, we prove our lower bound results on the number of oracle calls for the following
problems: sampling a vertex, learning the order, and the average degree of the graph. Estima-
tions of these parameters in a graph are intertwined meaning with a knowledge about one of
them the complexity of estimating the other one changes. For instance, Goldreich and Ron [10]
show that, if a uniform sample generator is accessible at zero cost (alternatively, if the order
of graph is precisely known), then the average degree is computable in

√

|VG |/davg steps. Our
lower bounds for the aforementioned problems hold if the algorithm has no ϵ−approximation of
the order, and of the average degree of the graph. On the other hand, the lower bound we obtain
for an ϵ−approximation of a bounded function’s average holds even if the graph’s structure is
precisely known.

Number of downloads to produce a close-to-uniform sample. We prove a lower bound
of Ω(tmix davg), thus, showing that the rejection algorithm and the maximum degree algorithm
suggested in the literature [2] are optimal (Theorem 2.1).

4

Max-Degree

Max-Degree/Rejection-Sampling

[Katzir et al.]



Open Questions

• What is the minimum number of node queries to 
approximate the number of nodes of G? 

• Can the lower bound, and/or the algorithm of [Katzir et al], 
be improved?



Open Questions

• In [C., Dasgupta, Kumar, Lattanzi, Sarlós,’16] we also 
studied the number of node accesses to return a node 
with probability proportional to some power of its degree.


• Can one obtain tight lower and upper bounds for this 
problem?


