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Goal: understand networks / graphs.

Step 1. Prove theorems about all graphs.
Step 2. Prove theorems about typical graphs.
Step 2.1. Understand the simplest random graphs:
Erdős–Rényi graphs and random regular graphs.
(Find the “typical” properties: which are true for asymptotically almost all graphs.
OR: Find the local-global limit of random d-regular graphs on n Ñ8 vertices.)

Beginner: matching ratio
Competent: independence ratio
Expert: chromatic number
Genius: homomorphism numbers
(Less than 0.00000001% of people can solve it!)
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What is the matching ratio of random d -regular graphs?
(Size of the maximum matching divided by the number of vertices.)

Theorem. (Nguyen, Onak, 2008) D a local algorithm computing an
almost maximum matching (with εn error) on all graphs with degrees ď d .

Corollary. Random d -regular graphs have an almost perfect matching.
Proof. There is a graph with a perfect matching which is locally
(Benjamini–Schramm) equivalent to random d -regular graphs.

What is the independence ratio αpdq of random d -regular graphs?

Theorem. (Bollobás, 1981) αp3q ă 0.46.
Proof. # ( 3-regular graph on n vertices ) "

# ( 3-regular graph on n vertices ; independent set in it of size 0.46n )

Corollary. No local algorithm can construct an almost maximum
independent set. Not even on all 3-regular random graphs with large girth.
Proof. d-regular random graph and random bipartite graph are locally equivalent.
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Local algorithms
“ Constant-time distributed algorithms « IID factor processes:

we assign a random seed to each vertex, and each vertex applies the
same function on its constant-radius seeded neighborhood.

E.g. v outputs “yes”ðñ @w „ v : seedpvq ă seedpwq.
This constructs an independent set of expected size
ř

vPV

1
1`degpvq “

n
4 for 3-regular graphs.
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Upper bounds for independence ratio of 3-regular random graphs:

Bollobás, 1981: αp3q ă 0.4591
McKay, 1987: αp3q ă 0.4554

Lelarge, Oulamara, 2018: αp3q ă 0.45086 stat. physics!
Balogh, Kostochka, Liu, 2019: αp3q ă 0.454

pCs, 2018++: αp3q ă 0.45087q

Lower bounds only since 2010:

Kardoš, Kráł, Volec, based on Hoppen 0.4352 ă αlocalp3q (exact)
Cs, Gerencsér, Harangi, Virág: 0.4361 ă αlocalp3q (exact)
Cs, Gerencsér, Harangi, Virág: 0.438 ă αlocalp3q (stat)

Hoppen, Wormald 0.4375 ă αlocalp3q (exact)
Cs, based on Hoppen, Wormald: 0.4453 ă αlocalp3q (diff-eq)

Cs, Gerencsér: 0.446 ă αlocalp3q (stat)

To sum up:

0.446 ă αlocalp3q ď αp3q ă 0.451



A graph limit theory motivation
Structure: colored neighborhood distribution of the graph with a
(vertex-)coloring. E.g. independent set, bisection, proper coloring, etc.

Question. (Hatami, Lovász, Szegedy, 2014) Do the d -regular random graphs
have no more structure than what can be constructed by local algorithms?
(Does the sequence of random d -regular graphs local-global converge to the
Bernoulli-graphing of the d -regular tree?)

(We will come back to it later.)
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Bounds for random graphs and for local algorithms

X pvq: the output of the process at vertex v . Let degree d “ 3.

Theorems. (Bowen, 2009; Rahman, Virág, 2017; Backhausz, Szegedy,
2018) Entropy inequalities including:

H
`

X p˝´˝q
˘

ě
2d ´ 2

d
H
`

X p˝q
˘

“
4
3
H
`

X p˝q
˘

Theorem. (Backhausz, Szegedy, Virág, 2015) If the outputs are
real-valued, and distpv ,wq “ r , then

ˇ

ˇcorr
`

X pvq,X pwq
˘
ˇ

ˇ ď pr ` 1´
2r
d
q ¨ pd ´ 1q´r{2 “

1` r
3?

2r

Both inequalities are sharp and valid for random graphs, in some sense.
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Theorems. (Cs, Harangi, Virág: Entropy and Expansion, 2019+)
Generalizations of these inequalities for local algorithms:

§ not just for trees (large-girth graphs, random graphs) but for
(quasi-)transitive (regular) graphs, e.g. Cayley-graphs:

E
´

H
`

X p˝´˝q
˘

¯

ě

´

1`
edge-Cheeger

d

¯

¨ E
´

H
`

X p˝q
˘

¯

§ for a broader class of comparison sets (like edge vs. vertex)

§ for other general uncertainty functions (like entropy and variance)

§ where locality is generalized to other seed-vertex accessibility graphs
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Recall: 0.446 ă αlocalp3q ď αp3q ă 0.451

Can we construct an almost maximum independent set for d -regular
graphs by a local algorithm? – Results suggest that maybe yes for
d “ 3.

Why are we focusing on 3-regular graphs? – Because the problem is
essentially the same for d ě 3, and d “ 3 is the easiest case.

Except that:

The problem is very different depending on d ,
and d “ 3 seems to be the hardest case.

(But we did not know it before.)

Theorem. (Gamarnik, Sudan, 2017, (Rahman, Virág)) For d large enough,
the independence ratio of a random d -regular graph is 2 logpdq

d , while local
algorithms can find only logpdq

d . (Multiplied by 1` od p1q.)

But this implies really nothing for small degree d .
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Phase transitions: If we want to understand the structure of water, we need to
know that it has different phases (ice, water, vapor, etc.) depending on pressure
and temperature. (The 19th solid state of water was just discovered...)



The phase diagram of independent sets, based on
theorems, conjectures and best guesses

5 10 15 20 25 30 35 40
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|independent set|

|V(G)|

deg

satisfiability threshold
5. Condensated, multiple replica symmetry breaking, unknown phase(s)
4. Condensated, 1 replica symmetry breaking
3. Clustered but not condensated
2. No clustering, multiple Gibbs measures on trees
1. No clustering, unique Gibbs measure on trees



A graph limit theory motivation
Structure: colored neighborhood distribution of the graph with a
(vertex-)coloring. E.g. independent set, bisection, proper coloring, etc.

Question. (Hatami, Lovász, Szegedy, 2014) Do the d -regular random graphs
have no more structure than what can be constructed by local algorithms?
(Does the sequence of random d -regular graphs local-global converge to the
Bernoulli-graphing of the d -regular tree?)

Theorem. (Gamarnik, Sudan, 2017, (Rahman, Virág)) No. For d large enough,
the independence ratio of a random d -regular graph is 2 logpdq

d , while local
algorithms can find only logpdq

d . (Multiplied by 1` odp1q.)

Leaves open:

§ Are random graphs the least structured d -regular large-girth graphs?

§ Are there locally unconstructible structures which are present in all / almost
all d -regular large-girth graphs?

§ Are polynomial-time algorithms more efficient than local algorithms?

§ How do these depend on the degree d?



Ongoing research with Ferenc Bencs and Viktor Harangi

Theorem. (Bollobás) αp3q ă 0.46 and upper bounds for every αpdq.
Proof. If # ( d-regular graph on n vertices ) " # ( d-regular graph on n vertices ;
independent set in it of size α ¨ n ), then αpdq ă α.
Equivalent forms of the proof. For typical processes we have:

H
`

X p˝´˝q
˘

ě 2d´2
d H

`

X p˝q
˘

and H
`

X pd-starq
˘

ě d
2 H

`

X p˝´˝q
˘

This is not sharp, because if D independent set of size αn, then typically there are many
of them.

Let us define clusters of independent sets and apply this first moment approximation
for them. By some reason, this should be sharp!

Cluster (of 1-replica symmetry breaking): vertices V ˚ and edges E˚, where
§ these are pairwise vertex-disjoint;
§ neighbours of V ˚ are uncovered by V ˚ Y E˚;
§ each uncovered node v P V ˚ Y E˚ has at least 2 neighbours in V ˚.

EG
ˇ

ˇ

 

pV ˚,E˚q is a cluster in G : |V ˚| ` |E˚| “ α ¨ n
(ˇ

ˇ

«
ÿ

∆pXp˚qq

en
`

HpXp˚qq´ d
2 HpXp˝´˝qq

˘

« sup
∆pXp˚qq

en
`

HpXp˚qq´ d
2 HpXp˝´˝qq

˘
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