Fast Approximate Shortest Paths in the Congested Clique

Michal Dory, Technion

Joint work with: Keren Censor-Hillel (Technion), Janne Korhonen (IST Austria), Dean Leitersdorf (Technion)

Distance Computation

- All-pairs shortest paths (APSP)
- Single-source shortest paths (SSSP)
- Multi-source shortest paths (MSSP)

The Congested Clique model

Communication Network Input Graph

- n vertices
- Synchronous rounds, $\Theta(\log n)$-bit messages
- All-to-All communication
- Input and output are local

Computing Distances using Matrix Multiplication

- A - weighted adjacency matrix
- Distance product:

$$
A^{2}[u, v]=\min _{w} A(u, w)+A(w, v)
$$

- This is the minimum weight path between u and v of at most 2 edges

Computing Distances using Matrix Multiplication

- Similarly, $A^{i}[u, v]=$ minimum weight path between u and v of at most i edges (hops).
- Our goal: compute A^{n}

Computing Distances using Matrix Multiplication

- Our goal: compute A^{n}
- Requires $O(\log n)$ matrix multiplications:

$$
A \rightarrow A^{2} \rightarrow A^{4} \rightarrow \ldots \rightarrow A^{n}
$$

- How fast can we multiply matrices?

Computing Distances using Matrix Multiplication

$O\left(n^{1-2 / \omega}\right)$ $=O\left(n^{0.158}\right)$	Ring	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$O\left(n^{1 / 3}\right)$	Semiring	[Le Gall '16]
	Rectangular, Multiple instances, more	

Computing Distances using Matrix Multiplication

$O\left(n^{0.158}\right)$	• Exact unweighted undirected APSP $(1+o(1))$-approximation for weighted directed APSP	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$\tilde{O}\left(n^{1 / 3}\right)$	Exact weighted directed APSP	[Le Gall '16]
$O\left(n^{0.2096}\right)$	Exact APSP in directed graphs with constant weights	[16

Computing Distances using Matrix Multiplication

$O\left(n^{0.158}\right)$	• Exact unweighted undirected APSP $(1+o(1))$-approximation for weighted directed APSP	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$\tilde{O}\left(n^{1 / 3}\right)$	Exact weighted directed APSP	[Le Gall '16]
$O\left(n^{0.2096}\right)$	Exact APSP in directed graphs with constant weights	[16

All complexities are polynomial!

What about approximations?

- We can compute a spanner: a sparse subgraph that approximates the distances.

$$
\begin{array}{c|l}
\hline \tilde{O}\left(n^{1 / k}\right) & \begin{array}{l}
(2 k-1) \text {-approximation for } \\
\text { weighted undirected APSP }
\end{array} \\
\hline
\end{array}
$$

What about approximations?

- We can compute a spanner: a sparse subgraph that approximates the distances.

$$
\begin{array}{c|l}
\hline \tilde{O}\left(n^{1 / k}\right) & \begin{array}{l}
(2 k-1) \text {-approximation for } \\
\text { weighted undirected APSP }
\end{array} \\
\hline
\end{array}
$$

Still polynomial for any constant k !

Computing Distances in the Congested Clique

Can we get constant approximation for APSP in sub-polynomial time?

Computing Distances in the Congested Clique

Can we get constant approximation for APSP in sub-polynomial time?

- For SSSP:
$O\left(\epsilon^{-3}\right.$ polylog $\left.n\right)$-round $(1+\epsilon)$-approximation
[Becker, Karrenbauer, Krinninger, Lenzen '17]

Computing Distances in the Congested Clique

Can we get constant approximation for APSP

 in sub-polynomial time?- For SSSP:
$O\left(\epsilon^{-3}\right.$ polylog $\left.n\right)$-round $(1+\epsilon)$-approximation
[Becker, Karrenbauer, Krinninger, Lenzen '17]

Only for a single source!

Our Results: APSP

$O\left(\log ^{2} n / \epsilon\right) \quad \cdot(2+\epsilon)$-approximation for unweighted undirected APSP

- $(3+\epsilon)$-approximation for weighted undirected APSP

First polylog constant-factor approximation!
($2-\epsilon$)-APSP implies MM
[Dor, Halperin, Zwick ‘00
Korhonen, Suomela '18]

Our Results: MSSP and more

$O\left(\log ^{2} n / \epsilon\right)$	$(1+\epsilon)$-approximation weighted undirected MSSP with $O\left(n^{1 / 2}\right)$ sources
$O\left(\log ^{2} n / \epsilon\right)$	Near $(3 / 2)$-approximation for diameter
$\tilde{O}\left(n^{1 / 6}\right)$	Exact weighted undirected SSSP

Previous results:

$\tilde{O}\left(n^{1 / 3}\right)$	Exact weighted SSSP	[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15]
$O\left(\epsilon^{-3}\right.$ polylog $\left.n\right)$	$(1+\epsilon)$-SSSP	$[B e c k e r, ~ K a r r e n b a u e r, ~$ Krinninger, Lenzen '17]

Our Techniques

- We can multiply sparse matrices faster:

$$
\begin{array}{|l|l|l}
\hline o\left(1+\frac{\left(\rho_{S} \rho_{T}\right)^{1 / 3}}{n^{1 / 3}}\right) & \text { Semiring, Sparse } & \begin{array}{l}
\text { [Censor-Hillel, Leitersdorf, } \\
\text { Turner '18] }
\end{array} \\
\hline
\end{array}
$$

- $\rho_{A}=$ density of A , the average number of non-zero entries on a row
- Example: $O(1)$ rounds for $O\left(n^{3 / 2}\right)$ edges.

Our Techniques

- We can multiply sparse matrices faster.
- How can we use this?
- Even if A is sparse, A^{2} can be dense.
- We want to compute distances in general graphs.

Our Techniques

- We can multiply sparse matrices faster.
- How can we use this?
- Even if A is sparse, A^{2} can be dense.
- We want to compute distances in general graphs.

Many building blocks for distance computation are actually based on computations in sparse graphs

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

Multiplication of sparse matrix by dense matrix: previous MM algorithm is still polynomial

Building blocks for distance computation

- (S, d, k)-source detection: for each vertex, compute distances to k nearest sources in S, up to hop d

Output matrix is also sparse!

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices
- (S, d, k)-source detection: for each vertex, distances to k nearest sources in S, up to hop d

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices

It's enough to look only at the k closest vertices to each vertex

Building blocks for distance computation

- k-nearest: for each vertex, compute distances to k nearest vertices

It's enough to look only at the k closest vertices to each vertex: also in the output

New Matrix Multiplication algorithm

- Previous algorithm:

$o\left(1+\frac{\left(\rho_{S} \rho_{T}\right)^{1 / 3}}{n^{1 / 3}}\right)$	$\begin{array}{l}\text { Semiring, } \\ \text { Sparse }\end{array}$	$\begin{array}{l}\text { [Censor-Hillel, Leitersdorf, } \\ \text { Turner '18] }\end{array}$

- Our algorithm:

$O\left(1+\frac{\left(\rho_{S} \rho_{T} \rho_{P}\right)^{1 / 3}}{n^{2 / 3}}\right)$	Semiring, Sparse	[Censor-Hillel, Dory, Korhonen, Leitersdorf, '19]

New Matrix Multiplication algorithm

- Our algorithm:

$O\left(1+\frac{\left(\rho_{S} \rho_{T} \rho_{P}\right)^{1 / 3}}{n^{2 / 3}}\right) \left\lvert\,$	Semiring,
Sparse	\quad
:---	
Korhonen, Leitersdorf, '19]	\right.

- Depends also on the sparsity of the output matrix
- Even if we don't know the structure of the output matrix, we can sparsify the output matrix on-the-fly, keeping only ρ_{P} smallest entries for each row

Application: Distance Tools

k-nearest:
$O\left(\left(\frac{k}{n^{2 / 3}}+\log n\right) \log k\right)$ rounds $\square O\left(\log ^{2} n\right)$ for $k=n^{2 / 3}$

Application: Distance Tools

(S, d, k)-source detection:
$O\left(\left(\frac{m^{1 / 3}|S|^{2 / 3}}{n}+1\right) d\right)$ rounds ($m=$ number of edges)

- To exploit the sparsity we need $d=n$ multiplications too expensive!

Solution: Hopsets

(β, ϵ)-hopset H :
A graph $H=\left(V, E^{\prime}\right)$, such that the β-hop distances in $G \cup H$ give $(1+\epsilon)$-approximation for the distances in G

Enough to look at β-hop distances!

Solution: Hopsets

(β, ϵ)-hopset H :
A graph $H=\left(V, E^{\prime}\right)$, such that the β-hop distances in $G \cup H$ give $(1+\epsilon)$-approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

- We can get $\beta=t=O\left(\frac{\log \log n}{\epsilon}\right)^{\log \log n}$
[Elkin, Neiman '17]

Solution: Hopsets

(β, ϵ)-hopset H :
A graph $H=\left(V, E^{\prime}\right)$, such that the β-hop distances in $G \cup H$ give $(1+\epsilon)$-approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

- We can get $\beta=t=O\left(\frac{\log \log n}{\epsilon}\right)^{\log \log n}$
[Elkin, Neiman '17]

Can we get a poly-logarithmic complexity?

Solution: Hopsets

(β, ϵ)-hopset H :
A graph $H=\left(V, E^{\prime}\right)$, such that the β-hop distances in $G \cup H$ give $(1+\epsilon)$-approximation for the distances in G

Our goal: to have small β and small running time t

What is known?

- We can get $\beta=t=O\left(\frac{\log \log n}{\epsilon}\right)^{\log \log n}$
[Elkin, Neiman '17]

Yes! we can get: $\beta=O\left(\frac{\log n}{\epsilon}\right), t=O\left(\frac{\log ^{2} n}{\epsilon}\right)$

Solution: Hopsets

(β, ϵ)-hopset H :
A graph $H=\left(V, E^{\prime}\right)$, such that the β-hop distances in $G \cup H$ give $(1+\epsilon)$-approximation for the distances in G

Our goal: to have small β and small running time t

- We can get: $\beta=O\left(\frac{\log n}{\epsilon}\right), t=O\left(\frac{\log ^{2} n}{\epsilon}\right)$

Idea: using our distance tools we can implement efficiently the hopset construction of [Elkin, Neiman '17] [Huang, Pettie '19] [Thorup, Zwick '06]

Applications: MSSP

(S, d, k)- source detection

Hopsets

$$
(1+\epsilon)-\mathrm{MSSP}
$$

Complexity: $O\left(\left(\frac{|S|^{2 / 3}}{n^{1 / 3}}+\log n\right) \frac{\log n}{\epsilon}\right)$
\square poly-logarithmic for $|S|=\boldsymbol{O}(\sqrt{n})$

Applications: weighted APSP

$(1+\epsilon)-\mathrm{MSSP}$

k-nearest neighbors

Complexity: $O\left(\frac{\log ^{2} n}{\epsilon}\right)$

Applications: APSP, diameter

```
(1 + \epsilon)-MSSP
```


k-nearest neighbors

(3/2)-diameter

Complexity: $O\left(\frac{\log ^{2} n}{\epsilon}\right)$

Applications: unweighted APSP

Conclusion

- We show a fast algorithm for matrix multiplication that depends on the sparsity and is output-sensitive.
- Allows to build efficient distance tools.
- Together with hopsets: polylog algorithms for MSSP, APSP.

Summary

$O\left(\log ^{2} n / \epsilon\right)$	$\cdot(2+\epsilon)$-approximation for unweighted undirected APSP $(3+\epsilon)$-approximation for weighted undirected APSP
$O\left(\log ^{2} n / \epsilon\right)$	$(1+\epsilon)$-approximation for weighted undirected MSSP with $O\left(n^{1 / 2}\right)$ sources
$O\left(\log ^{2} n / \epsilon\right)$	Near (3/2)-approximation for diameter
$\tilde{O}\left(n^{1 / 6}\right)$	Exact weighted undirected SSSP

Open Questions

- Additional applications for distance tools
- Can we get a $(2+\epsilon)$-approximation for weighted APSP?
- Can we get sub-polynomial algorithm for exact SSSP? Or directed SSSP?

