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Distance Computation

• All-pairs shortest paths (APSP)

• Single-source shortest paths (SSSP) 

• Multi-source shortest paths (MSSP)
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• 𝑛 vertices

• Synchronous rounds, Θ(log 𝑛)-bit messages 

• All-to-All communication

• Input and output are local

Input GraphCommunication Network

3

The Congested Clique model



Computing Distances using 
Matrix Multiplication

• 𝐴 – weighted adjacency matrix

• Distance product: 

𝐴2 𝑢, 𝑣 = min
𝑤

𝐴 𝑢,𝑤 + 𝐴 𝑤, 𝑣

• This is the minimum weight path between u and v 
of at most 2 edges
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• Similarly, 𝐴𝑖 𝑢, 𝑣 = minimum weight path 
between 𝑢 and 𝑣 of at most 𝑖 edges (hops). 

• Our goal: compute 𝐴𝑛

Computing Distances using 
Matrix Multiplication
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Computing Distances using 
Matrix Multiplication

• Our goal: compute 𝐴𝑛

• Requires 𝑂 log 𝑛 matrix multiplications:

𝐴 → 𝐴2 → 𝐴4 → … → 𝐴𝑛

• How fast can we multiply matrices?



Computing Distances using 
Matrix Multiplication

𝑂 𝑛1−2/𝜔

= 𝑂 𝑛0.158
Ring [Censor-Hillel, Kaski, 

Korhonen, Lenzen, Paz, 
Suomela ‘15]

𝑂 𝑛1/3 Semiring

Rectangular,
Multiple 
instances, more

[Le Gall ‘16]



Computing Distances using 
Matrix Multiplication

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for 

weighted directed APSP

[Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]෨𝑂 𝑛1/3 Exact weighted directed APSP

𝑂 𝑛0.2096 Exact APSP in directed graphs 
with constant weights

[Le Gall ‘16]



Computing Distances using 
Matrix Multiplication

All complexities are polynomial!

𝑂 𝑛0.158 • Exact unweighted undirected
APSP

• 1 + 𝑜 1 -approximation for 

weighted directed APSP

[Censor-Hillel, Kaski, 
Korhonen, Lenzen, Paz, 
Suomela ‘15]෨𝑂 𝑛1/3 Exact weighted directed APSP

𝑂 𝑛0.2096 Exact APSP in directed graphs 
with constant weights

[Le Gall ‘16]



What about approximations?

• We can compute a spanner: a sparse subgraph that 
approximates the distances.

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for 
weighted undirected APSP



What about approximations?

• We can compute a spanner: a sparse subgraph that 
approximates the distances.

Still polynomial for any constant 𝑘!

෨𝑂 𝑛1/𝑘 2𝑘 − 1 -approximation for 
weighted undirected APSP



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]



Computing Distances in the 
Congested Clique

Can we get constant approximation for APSP 

in sub-polynomial time?

• For SSSP:

𝑂 𝜖−3polylog 𝑛 -round 1 + 𝜖 -approximation

[Becker, Karrenbauer, Krinninger, Lenzen ‘17]

Only for a single source!



Our Results: APSP

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for unweighted 
undirected APSP

• 3 + 𝜖 -approximation for weighted 
undirected APSP

2 − 𝜖 -APSP implies MM [Dor, Halperin, Zwick ‘00
Korhonen, Suomela ‘18]

First polylog constant-factor approximation!



Our Results: MSSP and more

෨𝑂 𝑛1/3 Exact weighted 
SSSP

[Censor-Hillel, Kaski, Korhonen, 
Lenzen, Paz, Suomela ‘15]

𝑂 𝜖−3polylog 𝑛 1 + 𝜖 -SSSP [Becker, Karrenbauer, 
Krinninger, Lenzen ‘17]

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation 
weighted undirected MSSP

with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation  
for diameter

෨𝑂 𝑛1/6 Exact weighted undirected 
SSSP

Previous results:



Our Techniques

• We can multiply sparse matrices faster:

• 𝜌𝐴= density of A, the average number of non-zero entries on 
a row

• Example: 𝑂(1) rounds for 𝑂(𝑛3/2) edges.

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring, Sparse [Censor-Hillel, Leitersdorf, 

Turner ‘18]



Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.



Our Techniques

• We can multiply sparse matrices faster.

• How can we use this?

- Even if 𝐴 is sparse, 𝐴2 can be dense.

- We want to compute distances in general graphs.

Many building blocks for distance computation are 
actually based on computations in sparse graphs



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑



• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑
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Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑
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distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑



Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Multiplication of sparse matrix by dense matrix: 
previous MM algorithm is still polynomial



Building blocks for distance computation

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, compute 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑

× =

𝑆

(𝑑 = 2)

Output matrix is also sparse!

𝑆



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

• (𝑆, 𝑑, 𝑘)-source detection: for each vertex, 
distances to 𝑘 nearest sources in 𝑆, up to hop 𝑑
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Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest 
vertices to each vertex 



Building blocks for distance computation

• 𝑘-nearest: for each vertex, compute distances to 𝑘
nearest vertices

× =

𝑘 𝑘

It’s enough to look only at the 𝑘 closest 
vertices to each vertex: also in the output

𝑘

We don’t know the identity of the 𝑘 closest vertices before the computation 



New Matrix Multiplication algorithm

• Previous algorithm:

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇

1/3

𝑛1/3
Semiring, 
Sparse

[Censor-Hillel, Leitersdorf, 
Turner ‘18]

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring, 
Sparse

[Censor-Hillel, Dory, 
Korhonen, Leitersdorf, ‘19]

× =𝑆 𝑇 𝑃



New Matrix Multiplication algorithm

• Our algorithm:

𝑂 1 +
𝜌𝑆𝜌𝑇𝜌𝑃

1/3

𝑛2/3
Semiring, 
Sparse

[Censor-Hillel, Dory, 
Korhonen, Leitersdorf, ‘19]

• Depends also on the sparsity of the output matrix
• Even if we don’t know the structure of the output matrix, 

we can sparsify the output matrix on-the-fly, keeping only 
𝜌𝑃 smallest entries for each row



Application: Distance Tools

𝑘-nearest: 

𝑂
𝑘

𝑛2/3
+ log 𝑛 log 𝑘 rounds  𝑂(log2 𝑛) for 𝑘 = 𝑛2/3

× =

𝑘 𝑘 𝑘



Application: Distance Tools

× =

𝑆 𝑆

• To exploit the sparsity we need 𝒅 = 𝒏 multiplications -
too expensive!

(𝑆, 𝑑, 𝑘)-source detection: 

𝑂
𝑚1/3|𝑆|2/3

𝑛
+ 1 𝑑 rounds (𝑚 = number of edges ) 



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

𝐺
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Enough to look at 𝛽-hop distances!



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in   
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get  𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in   
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get  𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Can we get a poly-logarithmic complexity?



Solution: Hopsets

Our goal: to have small 𝛽 and small running time 𝑡

What is known?

• We can get  𝛽 = 𝑡 = 𝑂
log log 𝑛

𝜖

log log 𝑛

[Elkin, Neiman ‘17]

Yes! we can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in   
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺



Solution: Hopsets

(𝛽, 𝜖)-hopset 𝐻: 
A graph 𝐻 = 𝑉, 𝐸′ , such that the 𝛽-hop distances in 
𝐺 ∪ 𝐻 give 1 + 𝜖 -approximation for the distances in 𝐺

Our goal: to have small 𝛽 and small running time 𝑡

• We can get: 𝛽 = 𝑂
log 𝑛

𝜖
, 𝑡 = 𝑂

log2 𝑛

𝜖

Idea: using our distance tools we can implement 
efficiently the hopset construction of [Elkin, Neiman ‘17]
[Huang, Pettie ‘19] [Thorup, Zwick ‘06]



Applications: MSSP

Complexity: 𝑂
𝑆 2/3

𝑛1/3
+ log 𝑛

log 𝑛

𝜖

poly-logarithmic for 𝑺 = 𝑶 𝒏

(𝑆, 𝑑, 𝑘)- source 
detection

Hopsets

1 + 𝜖 -MSSP



Applications: weighted APSP

Complexity: 𝑂
log2 𝑛

𝜖

k-nearest 
neighbors

1 + 𝜖 -MSSP

3 + 𝜖 -APSP



Applications: APSP, diameter

Complexity: 𝑂
log2 𝑛

𝜖

k-nearest 
neighbors

1 + 𝜖 -MSSP

3 + 𝜖 -APSP

3/2 -diameter



Applications: unweighted APSP

Complexity: 𝑂
log2 𝑛

𝜖

k-nearest 
neighbors

1 + 𝜖 -
MSSP

2 + 𝜖 -APSP

(𝑆, 𝑑, 𝑘)-
source 

detection

Sparse Matrix 
multiplication



Conclusion

• We show a fast algorithm for matrix multiplication 
that depends on the sparsity and is output-sensitive.

• Allows to build efficient distance tools.

• Together with hopsets: polylog algorithms for MSSP, 
APSP.



Summary

𝑂 log2𝑛/𝜖 • 2 + 𝜖 -approximation for 
unweighted undirected APSP

• 3 + 𝜖 -approximation for weighted 
undirected APSP

𝑂 log2𝑛/𝜖 1 + 𝜖 -approximation for weighted 

undirected MSSP with 𝑂(𝑛1/2) sources

𝑂 log2𝑛/𝜖 Near 3/2 -approximation for diameter

෨𝑂 𝑛1/6 Exact weighted undirected SSSP



Open Questions

• Additional applications for distance tools 

• Can we get a (2 + 𝜖)-approximation for 
weighted APSP?

• Can we get sub-polynomial algorithm for 
exact SSSP? Or directed SSSP?


