Breaking the Linear-Memory Barrier in Massively Parallel Computing

MIS on Trees with Strongly Sublinear Memory

Sebastian Brandt, Manuela Fischer, Jara Uitto
ETH Zurich

Model:
Massively Parallel Computing (MPC)

Model:
 Massively Parallel Computing (MPC)

parallel computing framework

Model:
 Massively Parallel Computing (MPC)

parallel computing framework
inspired by MapReduce

Model:
 Massively Parallel Computing (MPC)

parallel computing framework
inspired by MapReduce

Karloff, Suri, Vassilvitskii [SODA'10]

Massively Parallel Computing (MPC) Model

Massively Parallel Computing (MPC) Model

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Complexity: number of rounds

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Complexity:

 number of rounds
Massively Parallel Computing (MPC) Model

M machines
S memory per machine

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Complexity:

number of rounds

Massively Parallel Computing (MPC) Model

M machines
S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

Synchronous Rounds

1. Local Computation at every machine
2. Global Communication between machines

Complexity:

number of rounds

Local Memory in MPC

M machines
S memory per machine
$\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})$

Local Memory in MPC

M machines
S memory per machine
$\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})$

Local Memory in MPC

Local Memory in MPC

Local Memory in MPC

Local Memory in MPC

$$
\begin{array}{c|c|}
\hline \widetilde{\mathrm{O}}\left(n^{\delta}\right) & \begin{array}{l}
\boldsymbol{S} \text { memory per machine } \\
\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})
\end{array} \\
& \begin{array}{l}
\widetilde{\Omega}(n) \\
\begin{array}{l}
\text { Superlinear Memory: } \\
S=\widetilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1 \\
\text { Machines see all nodes. }
\end{array} \\
\hline
\end{array} \\
\begin{array}{l}
\text { often trivial } \\
\text { for many problems, } \\
\text { admits O(1)-round algorithms } \\
\text { based on very simple } \\
\text { sampling approach } \\
\text { Lattanzi et al. [SPAA'11] }
\end{array}
\end{array}
$$

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{\mathrm{O}}\left(n^{\delta}\right)$

$$
\widetilde{\Theta}(n)
$$

$$
\widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{0}\left(n^{\delta}\right)$

$$
\widetilde{\Theta}(n)
$$

$$
\widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{0}\left(n^{\delta}\right)$

$$
\widetilde{\Theta}(n)
$$

$$
\widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
usual assumption
often unrealistic
often trivial
for many problems, admits $\mathrm{O}(1)$-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{0}\left(n^{\delta}\right)$
$\widetilde{\Theta}(n)$

$$
\widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{\mathrm{O}}(n)$ prohibitively large

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits $\mathrm{O}(1)$-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine
$\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})$
$\widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{0}(n)$ prohibitively large
- sparse graphs trivial
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{0}(m+n)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{0}(n)$ prohibitively large
- sparse graphs trivial

Superlinear Memory:

$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits $\mathrm{O}(1)$-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{0}(m+n)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

Superlinear Memory:

$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits $\mathrm{O}(1)$-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{0}\left(n^{\delta}\right)$
$\widetilde{\Theta}(n)$

Linear Memory:

$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

Superlinear Memory:

$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{\mathrm{O}}\left(n^{\delta}\right)$
Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{O}(n)$ prohibitively large
- sparse graphs trivial

Algorithms have been stuck at this linear-memory barrier!

Superlinear Memory:

$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Local Memory in MPC

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$\widetilde{\mathrm{O}}\left(n^{\delta}\right)$
Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.
usual assumption
often unrealistic

- $\widetilde{0}(n)$ prohibitively large
- sparse graphs trivial

Algorithms have been stuck at this linear-memory barrier! Fundamentally?

Superlinear Memory:

$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
often trivial
for many problems, admits O(1)-round algorithms based on very simple sampling approach Lattanzi et al. [SPAA'11]

Breaking the Linear-Memory Barrier:

Breaking the Linear-Memory Barrier: Efficient MPC Graph Algorithms with Strongly Sublinear Memory

Breaking the Linear-Memory Barrier:
 Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$\boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ local memory
$\boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right)$ machines poly $\log \log \boldsymbol{n}$ rounds

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$\boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ local memory
$\boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right)$ machines poly $\log \log \boldsymbol{n}$ rounds

Ghaffari, Kuhn, Uitto [FOCS'19]
Conditional Lower Bound
$\Omega(\log \log n)$ rounds

Breaking the Linear-Memory Barrier:
 Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$\boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ local memory
$\boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right)$ machines poly $\log \log \boldsymbol{n}$ rounds

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

- exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

- exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

- exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { local memory } \\
& \boldsymbol{M}=\boldsymbol{O}\left(\boldsymbol{m} / \boldsymbol{n}^{\boldsymbol{\delta}}\right) \text { machines }
\end{aligned}
$$ poly $\log \log \boldsymbol{n}$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

 enhance LOCAL algorithms with global communication

- exponentially faster than LOCAL algorithms due to shortcuts
- polynomially less memory than most MPC algorithms

Problem:

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Independent Set:
set of non-adjacent nodes

Maximal Independent Set (MIS)

Independent Set:
set of non-adjacent nodes
Maximal:
no node can be added without violating independence

MIS: State of the Art
 $S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.
M machines
S memory per machine
$\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})$
$\widetilde{\Omega}\left(n^{1+\delta}\right)$
Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

MIS: State of the Art

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

Lattanzi et al. [SPAA'11] O (1)

MIS: State of the Art

M machines

S memory per machine
$\boldsymbol{M} \cdot \boldsymbol{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{m}+\boldsymbol{n})$
$\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)$
Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

Lattanzi et al. [SPAA'11]
O (1)

MIS: State of the Art

M machines

S memory per machine

$$
M \cdot S=\widetilde{O}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Luby's Algorithm $O(\log n)$

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

Lattanzi et al. [SPAA'11] O (1)

MIS: State of the Art

M machines

S memory per machine

$$
M \cdot S=\widetilde{O}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.
Luby's Algorithm
$O(\log n)$

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
Lattanzi et al. [SPAA'11]
$O(1)$

Ghaffari and Uitto [SODA'19] $\tilde{O}(\sqrt{\log n})$

MIS: State of the Art on Trees

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.
Luby's Algorithm $O(\log n)$

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.
Lattanzi et al. [SPAA'11]
$O(1)$

Ghaffari and Uitto [SODA'19] $\tilde{O}(\sqrt{\log n})$

MIS: State of the Art on Trees

M machines

S memory per machine

$$
M \cdot S=\widetilde{O}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.
Luby's Algorithm
$O(\log n)$

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

Trivial solution
O (1)

Ghaffari and Uitto [SODA'19] $\tilde{O}(\sqrt{\log n})$

MIS: State of the Art on Trees

M machines

S memory per machine

$$
M \cdot S=\widetilde{\boldsymbol{O}}(m+n)
$$

$$
\widetilde{\mathrm{O}}\left(n^{\delta}\right) \quad \widetilde{\Theta}(n) \quad \widetilde{\Omega}\left(n^{1+\delta}\right)
$$

Strongly Sublinear Memory:
$S=\tilde{O}\left(n^{\delta}\right), 0 \leq \delta<1$
No machine sees all nodes.

Linear Memory:
$S=\tilde{O}(n)$
Machines see all nodes.

Superlinear Memory:
$S=\tilde{O}\left(n^{1+\delta}\right), 0<\delta \leq 1$
Machines see all nodes.

Trivial solution
O (1)

Ghaffari and Uitto [SODA'19] $\tilde{O}(\sqrt{\log n})$

Our Result

$\boldsymbol{O}\left(\log ^{3} \log \boldsymbol{n}\right)$-round MPC algorithm
with $\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory that w.h.p. computes MIS on trees.

Our Result

$\widetilde{\boldsymbol{O}}(\sqrt{\log \boldsymbol{n}})$ rounds
 $\mathbf{S}=\widetilde{\boldsymbol{0}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory

Ghaffari and Uitto [SODA'19]
$\boldsymbol{O}\left(\log ^{3} \log \boldsymbol{n}\right)$-round MPC algorithm
with $\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory that w.h.p. computes MIS on trees.

Our Result

$\widetilde{\boldsymbol{O}}(\sqrt{\log \boldsymbol{n}})$ rounds
$\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory
Ghaffari and Uitto [SODA'19]
$\boldsymbol{O}(\log \log \boldsymbol{n})$ rounds
$\mathbf{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{n})$ memory
Ghaffari et al. [PODC'18]
$\boldsymbol{O}\left(\log ^{3} \log \boldsymbol{n}\right)$-round MPC algorithm
with $\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory that w.h.p. computes MIS on trees.

Our Result

$\widetilde{\boldsymbol{O}}(\sqrt{\log \boldsymbol{n}})$ rounds
$\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory
Ghaffari and Uitto [SODA'19]
$\boldsymbol{O}(\log \log \boldsymbol{n})$ rounds
$\mathbf{S}=\widetilde{\boldsymbol{O}}(\boldsymbol{n})$ memory
Ghaffari et al. [PODC'18]
$\boldsymbol{O}\left(\log ^{3} \log \boldsymbol{n}\right)$-round MPC algorithm
with $\mathbf{S}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$ memory that w.h.p. computes MIS on trees.

Conditional $\boldsymbol{\Omega}(\log \log \boldsymbol{n})$-round lower bound for $\mathbf{S}=\widetilde{\boldsymbol{0}}\left(\boldsymbol{n}^{\boldsymbol{\delta}}\right)$
Ghaffari, Kuhn, and Uitto [FOCS'19]

Algorithm

Algorithm Outline

Algorithm Outline

Algorithm Outline

1) Shattering

Algorithm Outline

1) Shattering
main LOCAL technique Beck [RSA'91]

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]
2) Post-Shattering
solve problem on remaining components

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]
2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

2) Post-Shattering

solve problem on remaining components
i) Gathering of Components

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

2) Post-Shattering

solve problem on remaining components

i) Gathering of Components

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]

2) Post-Shattering

solve problem on remaining components

i) Gathering of Components
ii) Local Computation

Algorithm Outline

1) Shattering
break graph into small components
main LOCAL technique Beck [RSA'91]
2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
ii) Local Computation

Algorithm Outline

1) Shattering
break graph into small components
2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
ii) Local Computation

Algorithm Outline

1) Shattering

break graph into small components
ii) LOCAL Shattering Ghaffari [SODA'16]
2) Post-Shattering
solve problem on remaining components
graphinto smal
i) Gathering of Components
ii) Local Computation

Algorithm Outline

1) Shattering

break graph into small components
i) Degree Reduction
ii) LOCAL Shattering Ghaffari [SODA'16]
2) Post-Shattering
solve problem on remaining components
i) Gathering of Components
ii) Local Computation

Polynomial Degree Reduction:

Subsample-and-Conquer

Polynomial Degree Reduction:
 Subsample-and-Conquer

Subsample

Conquer

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

Conquer

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

Polynomial Degree Reduction: Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

- gather connected components

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently
Conquer compute random MIS in subsampled graph

- gather connected components

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

 compute random MIS in subsampled graph- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors
- thus w.h.p. has at least one MIS neighbor

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring \square
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors
- thus w.h.p. has at least one MIS neighbor
- hence will be removed from the graph

Algorithm Outline

1) Shattering

break graph into small components
i) Degree Reduction Iterated Subsample-and-Conquer
ii) LOCAL Shattering Ghaffari [SODA'16]

2) Post-Shattering

solve problem on remaining components
i) Gathering of Components Distributed Union-Find
ii) Local Computation

Conclusion

 and Open QuestionsModel: Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

Model:
Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

Model:
Sublinear-Memory MPC $S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms \& global communication

Model:
Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms \& global communication

TECHNIQUE: Shattering

Model:

Sublinear-Memory MPC

$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms \& global communication

Technique: Shattering

Problem: MIS
on trees

Model:

Sublinear-Memory MPC

$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms \& global communication

Technique: Shattering

Problem: MIS
on trees
other graph problems?
more general graph families?

Model:
Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds global communication
APPROACH: LOCAL algorithms \&
Technique: Shattering
Problem: MIS
on trees

other graph problems?
more general graph families?

Model: Sublinear-Memory MPC $S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds global communication
Approach: LOCAL algorithms \&
Technique:
Problem: MIS
on trees
Shattering

other LOCAL techniques?
other graph problems?
more general graph families?
MIS \& Matching for locally sparse graphs in follow-up work [PODC'19]

Model:

Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

Approach: LOCAL algorithms \& global communication

Technique:
Shattering
other LOCAL techniques?
$\begin{array}{ll}\text { Problem: } & \text { MIS } \\ \text { on trees }\end{array}$
other graph problems?
more general graph families?
MIS \& Matching for locally sparse graphs in follow-up work [PODC'19]

Model:

Sublinear-Memory MPC
$S=\tilde{O}\left(n^{\delta}\right)$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms \& global communication
other approaches?

Technique:
Shattering
other LOCAL techniques?
$\begin{array}{ll}\text { Problem: } & \text { MIS } \\ \text { on trees }\end{array}$
other graph problems?
more general graph families?
MIS \& Matching for locally sparse graphs in follow-up work [PODC'19]

