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poly log log n rounds

Imposed Locality:
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Our Approach to Cope with Locality: @
enhance LOCAL algorithms with global communication

= exponentially faster than LOCAL algorithms due to shortcuts
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Maximal Independent Set (MIS)

. Independent Set:
set of non-adjacent nodes

Maximal:
no node can be added
without violating independence
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Our Result

O(,/log n ) rounds 0(log log n) rounds
S = 0(n®) memory S = 0(n) memory
Ghaffari and Uitto [SODA’19] Ghaffariet al. [PODC’18]

0(log? log n)-round MPC algorithm

with § = 5(115) memory that w.h.p. computes MIS on trees.

Conditional 2(log log n)-round lower bound for § = 5(n6)

Ghaffari, Kuhn, and Uitto [FOCS 19]
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1) Shattering

break graph into small components

i) Degree Reduction
ii) LOCAL Shattering Ghaffari [SO DA’ZDO

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation
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Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
=  add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors
" thus w.h.p. has at least one MIS neighbor
= hence will be from the graph




Algorithm Outline

1) Shattering

break graph into small components
i) Degree Reduction /terated Subsample-and-Conquer
ii) LOCAL Shattering Ghaffari [SODA'16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components Distributed Union-Find
iif) Local Computation



Conclusion
and
Open Questions
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