

parallel computing framework

parallel computing framework inspired by MapReduce

parallel computing framework inspired by MapReduce

Karloff, Suri, Vassilvitskii [SODA'10]

M machines

S memory per machine

S memory per machine

M machines

M machines

S memory per machine

Synchronous Rounds

1. Local Computation at every machine

M machines

S memory per machine

- **1. Local Computation** at every machine
- 2. Global Communication between machines

M machines

S memory per machine

- **1. Local Computation** at every machine
- 2. Global Communication between machines

M machines

S memory per machine

- **1. Local Computation** at every machine
- 2. Global Communication between machines

M machines

S memory per machine

Synchronous Rounds

- **1. Local Computation** at every machine
- 2. Global Communication between machines

Complexity:

M machines

S memory per machine

Synchronous Rounds

- **1. Local Computation** at every machine
- 2. Global Communication between machines

Complexity:

M machines

S memory per machine

Synchronous Rounds

- **1. Local Computation** at every machine
- 2. Global Communication between machines

Complexity:

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

Synchronous Rounds

- **1. Local Computation** at every machine
- **2. Global Communication** between machines

Complexity:

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{O}(n^{\delta})$$
 $\widetilde{\Theta}(n)$ $\widetilde{\Omega}(n^{1+\delta})$

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S
$$\widetilde{\mathrm{O}}(n^{\delta})$$

$$\widetilde{\Theta}(n)$$

$$\widetilde{\Omega}(n^{1+\delta})$$

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{\Theta}(n)$$

$$\widetilde{\Omega}(n^{1+\delta})$$

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{\mathrm{O}}(n^{\delta})$$

$$\widetilde{\Theta}(n)$$

$$\widetilde{\Omega}(n^{1+\delta})$$

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{O}(n^{\delta})$$

$$\widetilde{\Theta}(n)$$

$$\widetilde{\Omega}(n^{1+\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{\mathrm{O}}(n^{\delta})$$

$$\widetilde{\Theta}(n)$$

$$\widetilde{\Omega}(n^{1+\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

usual assumption

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{\mathrm{O}}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

usual assumption

often unrealistic

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

usual assumption

often unrealistic

■ $\widetilde{\mathrm{O}}(n)$ prohibitively large

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S $\widetilde{\mathrm{O}}(n^{\delta})$

 $\widetilde{\Theta}(n)$

 $\widetilde{\Omega}(n^{1+\delta})$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

usual assumption

often unrealistic

- lacksquare $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{\mathrm{O}}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

usual assumption

often unrealistic

- lacksquare $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{\mathrm{O}}(n^{\delta})$$

Strongly Sublinear Memory:

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

 $\widetilde{\Theta}(n)$

Superlinear Memory:

 $\widetilde{\Omega}(n^{1+\delta})$

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

for most problems, only direct simulation of LOCAL/PRAM algorithms known

 $S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$

usual assumption

often unrealistic

- lacksquare $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

 $\widetilde{\Theta}(n)$

 $\widetilde{\Omega}(n^{1+\delta})$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

for most problems, only direct simulation of LOCAL/PRAM algorithms known usual assumption

often unrealistic

- lacksquare $\widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

$$\widetilde{\mathrm{O}}(n^{\delta})$$

Strongly Sublinear Memory:

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

 $S = \tilde{O}(n)$

 $\widetilde{\Theta}(n)$

for most problems, only direct simulation of

 $S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$

LOCAL/PRAM algorithms

known

usual assumption

often unrealistic

- \bullet $\widetilde{O}(n)$ prohibitively large
- sparse graphs trivial

Algorithms have been stuck at this linear-memory barrier!

Superlinear Memory:

 $\widetilde{\Omega}(n^{1+\delta})$

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

often trivial

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{\mathrm{O}}(n^{\delta})$$

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

 $\widetilde{\Theta}(n)$

 $\widetilde{\Omega}(n^{1+\delta})$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

for most problems, only direct simulation of LOCAL/PRAM algorithms known

usual assumption

often unrealistic

- $\blacksquare \widetilde{\mathrm{O}}(n)$ prohibitively large
- sparse graphs trivial

often trivial

for many problems, admits O(1)-round algorithms based on very simple sampling approach *Lattanzi et al.* [SPAA'11]

Algorithms have been stuck at this linear-memory barrier!

Fundamentally?

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Ghaffari, Kuhn, Uitto [FOCS'19]

Conditional Lower Bound $\Omega(\log \log n)$ rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ poly $\log \log n$ rounds

Imposed Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines

Imposed Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(\log \log n)$ rounds

Imposed Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Imposed Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

enhance LOCAL algorithms with global communication

exponentially faster than LOCAL algorithms due to shortcuts

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

enhance LOCAL algorithms with global communication

exponentially faster than LOCAL algorithms due to shortcuts

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ machines

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

enhance LOCAL algorithms with global communication

exponentially faster than LOCAL algorithms due to shortcuts

Efficient MPC Graph Algorithms with Strongly Sublinear Memory

$$S = O(n^{\delta})$$
 local memory $M = O(m/n^{\delta})$ machines $M = O(m/n^{\delta})$ poly $\log \log n$ rounds

Imposed Locality:

machines see only subset of nodes, regardless of sparsity of graph

Our Approach to Cope with Locality:

- exponentially faster than LOCAL algorithms due to shortcuts
- polynomially less memory than most MPC algorithms

Problem:

Independent Set: set of non-adjacent nodes

Independent Set:

set of non-adjacent nodes

Maximal:

no node can be added without violating independence

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{\mathrm{O}}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O} \left(n^{1+\delta} \right), 0 < \delta \leq 1$$

Machines see all nodes.

Lattanzi et al. [SPAA'11] O(1)

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Ghaffari et al. [PODC'18] $O(\log \log n)$

Lattanzi et al. [SPAA'11] O(1)

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Luby's Algorithm $O(\log n)$

Ghaffari et al. [PODC'18] $O(\log \log n)$

Lattanzi et al. [SPAA'11] O(1)

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{\mathrm{O}}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Luby's Algorithm $O(\log n)$

Ghaffari et al. [PODC'18] $O(\log \log n)$

Lattanzi et al. [SPAA'11] O(1)

MIS: State of the Art on Trees

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Luby's Algorithm $O(\log n)$

Ghaffari et al. [PODC'18] $O(\log \log n)$

Lattanzi et al. [SPAA'11] O(1)

MIS: State of the Art on Trees

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Luby's Algorithm $O(\log n)$

Trivial solution O(1)

Trivial solution O(1)

MIS: State of the Art on Trees

M machines

S memory per machine

$$M \cdot S = \widetilde{O}(m+n)$$

S

$$\widetilde{O}(n^{\delta})$$

 $\widetilde{\Theta}(n)$

$$\widetilde{\Omega}(n^{1+\delta})$$

Strongly Sublinear Memory:

$$S = \tilde{O}(n^{\delta}), 0 \le \delta < 1$$

No machine sees all nodes.

Linear Memory:

$$S = \tilde{O}(n)$$

Machines see all nodes.

Superlinear Memory:

$$S = \tilde{O}(n^{1+\delta}), 0 < \delta \le 1$$

Machines see all nodes.

Our Result $O(\log^3 \log n)$

Trivial solution O(1)

Trivial solution O(1)

 $O(\log^3 \log n)$ -round MPC algorithm

with $\mathbf{S} = \widetilde{\boldsymbol{o}}(\boldsymbol{n}^{\delta})$ memory that w.h.p. computes MIS on trees.

$$\widetilde{O}(\sqrt{\log n})$$
 rounds

$$\mathbf{S} = \widetilde{oldsymbol{o}}(oldsymbol{n}^{oldsymbol{\delta}})$$
 memory

Ghaffari and Uitto [SODA'19]

 $O(\log^3 \log n)$ -round MPC algorithm

with $\mathbf{S} = \widetilde{\boldsymbol{O}}(\boldsymbol{n}^{\delta})$ memory that w.h.p. computes MIS on trees.

$$\widetilde{O}(\sqrt{\log n})$$
 rounds

$$\mathbf{S} = \widetilde{oldsymbol{o}}(oldsymbol{n}^{oldsymbol{\delta}})$$
 memory

Ghaffari and Uitto [SODA'19]

 $O(\log \log n)$ rounds

$$\mathbf{S} = \widetilde{\boldsymbol{o}}(\boldsymbol{n})$$
 memory

Ghaffari et al. [PODC'18]

 $O(\log^3 \log n)$ -round MPC algorithm

with $\mathbf{S} = \widetilde{\boldsymbol{o}}(\boldsymbol{n}^{\delta})$ memory that w.h.p. computes MIS on trees.

$$\widetilde{O}(\sqrt{\log n})$$
 rounds

$$\mathbf{S} = \widetilde{oldsymbol{o}}(oldsymbol{n}^{oldsymbol{\delta}})$$
 memory

Ghaffari and Uitto [SODA'19]

 $O(\log \log n)$ rounds

$$\mathbf{S} = \widetilde{\boldsymbol{o}}(\boldsymbol{n})$$
 memory

Ghaffari et al. [PODC'18]

 $O(\log^3 \log n)$ -round MPC algorithm

with $\mathbf{S} = \widetilde{\boldsymbol{o}}(\boldsymbol{n}^{\delta})$ memory that w.h.p. computes MIS on trees.

Conditional $\Omega(\log \log n)$ -round lower bound for $\mathbf{S} = \widetilde{m{o}}(n^{\delta})$

Ghaffari, Kuhn, and Uitto [FOCS'19]

Algorithm

1) Shattering

1) Shattering

main LOCAL technique Beck [RSA'91]

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

2) Post-Shattering

solve problem on remaining components

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

2) Post-Shattering solve problem on remaining components

i) Gathering of Components

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

2) Post-Shattering solve problem on remaining components

i) Gathering of Components

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

2) Post-Shattering solve problem on remaining components

i) Gathering of Components

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

- i) Gathering of Components
- ii) Local Computation

1) Shattering

break graph into small components

main LOCAL technique Beck [RSA'91]

- i) Gathering of Components
- ii) Local Computation

1) Shattering

break graph into small components

- i) Gathering of Components
- ii) Local Computation

1) Shattering

break graph into small components

ii) LOCAL Shattering Ghaffari [SODA'16]

- i) Gathering of Components
- ii) Local Computation

1) Shattering

break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA'16]

- i) Gathering of Components
- ii) Local Computation

Subsample-and-Conquer

Subsample-and-Conquer

Subsample

Subsample-and-Conquer

Subsample

Subsample-and-Conquer

Subsample subsample nodes independently

Subsample-and-Conquer

Subsample subsample nodes independently

Subsample-and-Conquer

Subsample subsample nodes independently

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

gather connected components

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

gather connected components

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors
- thus w.h.p. has at least one MIS neighbor

Polynomial Degree Reduction:

Subsample-and-Conquer

Subsample

subsample nodes independently

Conquer

compute random MIS in subsampled graph

- gather connected components
- locally compute random 2-coloring
- add a color class to MIS

Non-subsampled High-Degree Node

- w.h.p. has many subsampled neighbors
- thus w.h.p. has at least one MIS neighbor
- hence will be removed from the graph

Algorithm Outline

1) Shattering

break graph into small components

- i) Degree Reduction Iterated Subsample-and-Conquer
- ii) LOCAL Shattering Ghaffari [SODA'16]

2) Post-Shattering

solve problem on remaining components

- i) Gathering of Components Distributed Union-Find
- ii) Local Computation

Conclusion and Open Questions

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

TECHNIQUE: Shattering

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH: LOCAL algorithms &

global communication

TECHNIQUE: Shattering

PROBLEM: MIS

on trees

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms &

global communication

TECHNIQUE:

Shattering

PROBLEM:

MIS

on trees

other graph problems? more general graph families?

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

TECHNIQUE: Shattering

PROBLEM: MIS

on trees

other graph problems? more general graph families?

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

TECHNIQUE:

Shattering

other LOCAL techniques?

PROBLEM:

MIS on trees

other graph problems? more general graph families?

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

other approaches?

TECHNIQUE:

Shattering

other LOCAL techniques?

PROBLEM:

MIS

on trees

other graph problems? more general graph families?

Thank you!

MODEL: Sublinear-Memory MPC

 $S = \tilde{O}(n^{\delta})$ local memory poly $\log \log n$ rounds

APPROACH:

LOCAL algorithms & global communication

other approaches?

TECHNIQUE:

Shattering

other LOCAL techniques?

PROBLEM:

MIS on trees

other graph problems? more general graph families?