
Breaking the Linear-Memory Barrier
in Massively Parallel Computing

MIS on Trees with Strongly Sublinear Memory

Sebastian Brandt, Manuela Fischer, Jara Uitto
ETH Zurich

Massively Parallel Computing (MPC)
Model:

Massively Parallel Computing (MPC)
Model:

parallel computing framework
inspired by MapReduce

Massively Parallel Computing (MPC)
Model:

parallel computing framework
inspired by MapReduce

Massively Parallel Computing (MPC)
Model:

Karloff, Suri, Vassilvitskii [SODA’10]

parallel computing framework
inspired by MapReduce

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Complexity:
number of rounds

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Complexity:
number of rounds

Massively Parallel Computing (MPC) Model

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Complexity:
number of rounds

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Massively Parallel Computing (MPC) Model

𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Synchronous Rounds
1. Local Computation

at every machine
2. Global Communication

between machines

Complexity:
number of rounds

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

usual assumption

unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

for most problems,
only direct simulation of
LOCAL/PRAM algorithms
known

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

for most problems,
only direct simulation of
LOCAL/PRAM algorithms
known

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

Algorithms have been stuck at this linear-memory barrier!

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

for most problems,
only direct simulation of
LOCAL/PRAM algorithms
known

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

Local Memory in MPC 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

usual assumption

often unrealistic
▪ ෩O(𝑛) prohibitively large
▪ sparse graphs trivial

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

Algorithms have been stuck at this linear-memory barrier!

Fundamentally?

often trivial

for many problems,
admits O(1)-round algorithms
based on very simple
sampling approach
Lattanzi et al. [SPAA’11]

for most problems,
only direct simulation of
LOCAL/PRAM algorithms
known

Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Ghaffari, Kuhn, Uitto [FOCS’19]
Conditional Lower Bound
Ω log log 𝑛 rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

best we can hope for
GKU [FOCS’19]

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Efficient MPC Graph Algorithms with Strongly Sublinear Memory
Breaking the Linear-Memory Barrier:

𝑺 = 𝑶 𝒏𝜹 local memory

𝑴 = 𝑶 𝒎/𝒏𝜹 machines

poly log log 𝒏 rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Our Approach to Cope with Locality:
enhance LOCAL algorithms with global communication

▪ exponentially faster than LOCAL algorithms due to shortcuts
▪ polynomially less memory than most MPC algorithms

Maximal Independent Set (MIS)
Problem:

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

Independent Set:
set of non-adjacent nodes

Maximal:
no node can be added
without violating independence

Maximal Independent Set (MIS)

Independent Set:
set of non-adjacent nodes

Maximal:
no node can be added
without violating independence

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Lattanzi et al. [SPAA’11]
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Lattanzi et al. [SPAA’11]
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Luby’s Algorithm
𝑂(log 𝑛)

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Lattanzi et al. [SPAA’11]
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Luby’s Algorithm
𝑂(log 𝑛)

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Ghaffari and Uitto [SODA’19]
෨𝑂 log 𝑛

Lattanzi et al. [SPAA’11]
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art on Trees 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Luby’s Algorithm
𝑂(log 𝑛)

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Ghaffari and Uitto [SODA’19]
෨𝑂 log 𝑛

Lattanzi et al. [SPAA’11]
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art on Trees 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Luby’s Algorithm
𝑂(log 𝑛)

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Ghaffari and Uitto [SODA’19]
෨𝑂 log 𝑛

Lattanzi et al. [SPAA’11]
𝑂 1

Trivial solution
𝑂 1

Trivial solution
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

෩Θ(𝑛) ෩Ω 𝑛1+𝛿෩O 𝑛𝛿
S

MIS: State of the Art on Trees 𝑴 machines

𝑺 memory per machine

𝑴 ⋅ 𝑺 = ෩𝑶 (𝒎 + 𝒏)

Strongly Sublinear Memory:

𝑆 = ෨𝑂 𝑛𝛿 , 0 ≤ 𝛿 < 1

No machine sees all nodes.

Linear Memory:
𝑆 = ෨𝑂 𝑛
Machines see all nodes.

Luby’s Algorithm
𝑂(log 𝑛)

Ghaffari et al. [PODC’18]
𝑂(log log 𝑛)

Ghaffari and Uitto [SODA’19]
෨𝑂 log 𝑛

Lattanzi et al. [SPAA’11]
𝑂 1

Trivial solution
𝑂 1

Our Result
𝑂 log3 log 𝑛

Trivial solution
𝑂 1

Superlinear Memory:

𝑆 = ෨𝑂 𝑛1+𝛿 , 0 < 𝛿 ≤ 1

Machines see all nodes.

Our Result

𝑶(𝐥𝐨𝐠𝟑 𝐥𝐨𝐠𝒏)-round MPC algorithm

with 𝐒 = ෩𝑶 𝒏𝜹 memory that w.h.p. computes MIS on trees.

Our Result

𝑶(𝐥𝐨𝐠𝟑 𝐥𝐨𝐠𝒏)-round MPC algorithm

with 𝐒 = ෩𝑶 𝒏𝜹 memory that w.h.p. computes MIS on trees.

෩𝑶 𝐥𝐨𝐠 𝒏 rounds

𝐒 = ෩𝑶 𝒏𝜹 memory
Ghaffari and Uitto [SODA’19]

Our Result

𝑶(𝐥𝐨𝐠𝟑 𝐥𝐨𝐠𝒏)-round MPC algorithm

with 𝐒 = ෩𝑶 𝒏𝜹 memory that w.h.p. computes MIS on trees.

෩𝑶 𝐥𝐨𝐠 𝒏 rounds

𝐒 = ෩𝑶 𝒏𝜹 memory
Ghaffari and Uitto [SODA’19]

𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 rounds

𝐒 = ෩𝑶 𝒏 memory
Ghaffari et al. [PODC’18]

Our Result

𝑶(𝐥𝐨𝐠𝟑 𝐥𝐨𝐠𝒏)-round MPC algorithm

with 𝐒 = ෩𝑶 𝒏𝜹 memory that w.h.p. computes MIS on trees.

෩𝑶 𝐥𝐨𝐠 𝒏 rounds

𝐒 = ෩𝑶 𝒏𝜹 memory
Ghaffari and Uitto [SODA’19]

𝑶 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒏 rounds

𝐒 = ෩𝑶 𝒏 memory
Ghaffari et al. [PODC’18]

Conditional 𝛀(𝐥𝐨𝐠 𝐥𝐨𝐠𝒏)-round lower bound for 𝐒 = ෩𝑶 𝒏𝜹

Ghaffari, Kuhn, and Uitto [FOCS’19]

Algorithm

Algorithm Outline

Algorithm Outline

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

main LOCAL technique
Beck [RSA’91]

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

independence due to restriction to trees!

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

independence due to restriction to trees!

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

Non-subsampled High-Degree Node
▪ w.h.p. has many subsampled neighbors
▪ thus w.h.p. has at least one MIS neighbor
▪ hence will be removed from the graph

Subsample-and-Conquer
Polynomial Degree Reduction:

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

▪ gather connected components
▪ locally compute random 2-coloring
▪ add a color class to MIS

1) Shattering
break graph into small components

i) Degree Reduction

ii) LOCAL Shattering Ghaffari [SODA’16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

ii) Local Computation

Algorithm Outline

Distributed Union-Find

Iterated Subsample-and-Conquer

Conclusion
and

Open Questions

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

other graph problems?
more general graph families?

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

other graph problems?
more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

other graph problems?
more general graph families?

other LOCAL techniques?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

other graph problems?
more general graph families?

other LOCAL techniques?

other approaches?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

MODEL: Sublinear-Memory MPC

𝑆 = ෨𝑂 𝑛𝛿 local memory

poly log log 𝑛 rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

other graph problems?
more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

other LOCAL techniques?

Thank you!

other approaches?

