\ |
5 /
/

Breaking the Linear-Memory Barrier

in Massively Parallel Computing

MIS on Trees with Strongly Sublinear Memory

Sebastian Brandt, Manuela Fischer, Jara Uitto
ETH Zurich

Model:
Massively Parallel Computing (MPC)

Model:
Massively Parallel Computing (MPC)

parallel computing framework

Model:
Massively Parallel Computing (MPC)

parallel computing framework
inspired by MapReduce

Model:
Massively Parallel Computing (MPC)

parallel computing framework
inspired by MapReduce

Karloff, Suri, Vassilvitskii [SODA’10]

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds
1. Local Computation
at every machine

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Complexity:
number of rounds

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Complexity:
number of rounds

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Complexity:
number of rounds

Massively Parallel Computing (MPC) Model

M machines

S memory per machine

M-S=0(m+n)

Synchronous Rounds

1. Local Computation
at every machine

2. Global Communication
between machines

Complexity:
number of rounds

M machines

Local Memory in MPC

S memory per machine

M-S=0(m+n)

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)
S ———————————————————————————————

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

5(115) O(n) ﬁ(n1+5)

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

6(115) O(n) ﬁ(n”‘S)

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

6(715) O(n) ﬁ(n1+5)

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

often trivial

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

5(n?) B(n) G(n1+0)

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

O(n) &(n) (n1+9)
Linear Memory: Superlinear Memory:
S=0(n) S=0(n'*%),0<86<1
Machines see all nodes. Machines see all nodes.
often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

M machines

Local Memory in MPC

S memory per machine
M-S=0(m+n)

S—I—_>

0(n°) O(n) Q(nl*9)
Linear Memory: Superlinear Memory:
S=0(n) S=0(n'*%),0<86<1
Machines see all nodes. Machines see all nodes.
usual assumption often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

S—I—_>

5(n?)

0(n)

ﬁ(n1+6)

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

usual assumption

often unrealistic

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

S—I—_>

5(n?)

0(n)

ﬁ(n1+6)

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

usual assumption

often unrealistic
= O(n) prohibitively large

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

S—I—_>

5(n?)

0(n)

ﬁ(n1+6)

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

usual assumption

often unrealistic
= O(n) prohibitively large
= sparse graphs trivial

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

S—I—_>

5(n?)

0(n)

ﬁ(n1+6)

Strongly Sublinear Memory:
S=0(n°),0<6<1
No machine sees all nodes.

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

usual assumption

often unrealistic
= O(n) prohibitively large
= sparse graphs trivial

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

S—I—_>

5(n?)

0(n)

ﬁ(n1+6)

Strongly Sublinear Memory:
S=0(n°),0<6<1
No machine sees all nodes.

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

for most problems,
only direct simulation of

LOCAL/PRAM algorithms
known

usual assumption

often unrealistic
= O(n) prohibitively large
= sparse graphs trivial

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

—

5(n?)

0(n)

ﬁ(n1+6)

Strongly Sublinear Memory:
S=0(n°),0<6<1
No machine sees all nodes.

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

for most problems,
only direct simulation of

LOCAL/PRAM algorithms
known

usual assumption

often unrealistic
= O(n) prohibitively large
= sparse graphs trivial

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC M machines

S memory per machine
M-S=0(m+n)

S—I—>

0(n?) B(n) Qn'*?)

Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:

S=5(n5),OS5<1 S =0(n) S=5(n1+5),0<5S1

No machine sees all nodes. Machines see all nodes. Machines see all nodes.

for most problems, usual assumption often trivial

only direct simulation of o

LOCAL/PRAM algorithms often unrealistic for many problems,

oW = O(n) prohibitively large admits O(1)-round algorithms
= sparse graphs trivial based on very simple

Algorithms have been stuck at this linear-memory barrier! sampling approach

Lattanzi et al. [SPAA’11]

Local Memory in MPC

M machines
S memory per machine

M-S=0(m+n)

—

5(n?)

0(n)

ﬁ(n1+6)

Strongly Sublinear Memory:
S=0(n°),0<6<1
No machine sees all nodes.

Linear Memory:
S =0(n)
Machines see all nodes.

Superlinear Memory:
S=0(n'*%),0<86<1
Machines see all nodes.

for most problems,
only direct simulation of

LOCAL/PRAM algorithms
known

usual assumption

often unrealistic
= O(n) prohibitively large
= sparse graphs trivial

Algorithms have been stuck at this linear-memory barrier!

Fundamentally?

often trivial

for many problems,

admits O(1)-round algorithms
based on very simple
sampling approach

Lattanzi et al. [SPAA’11]

Breaking the Linear-Memory Barrier:

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

_)
§ = 0(n®) local memory Ghaffari, Kuhn, Uitto [FOCS’19]
M = o(m/nff) machines Conditional Lower Bound
Q(log log n) rounds

poly log log n rounds

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

P

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,
regardless of sparsity of graph

O
Our Approach to Cope with Locality: @

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph o
Our Approach to Cope with Locality: @

enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph o
Our Approach to Cope with Locality: @

enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory 'ﬁ
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph J{ o
Our Approach to Cope with Locality: @

enhance LOCAL algorithms with global communication

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory 'ﬁ
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph J{)
Our Approach to Cope with Locality: @
enhance LOCAL algorithms with global communication

= exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = O(n‘s) local memory 1
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph J{ o
Our Approach to Cope with Locality: @
enhance LOCAL algorithms with global communication 27:& E’;gégplg]ope for

= exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory 'ﬁ
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph J{)
Our Approach to Cope with Locality: @
enhance LOCAL algorithms with global communication

= exponentially faster than LOCAL algorithms due to shortcuts

Breaking the Linear-Memory Barrier:
Efficient MPC Graph Algorithms with Strongly Sublinear Memory

S = 0(n5) local memory 'ﬁ
M = O(m/n‘s) machines
poly log log n rounds

Imposed Locality:
machines see only subset of nodes,

regardless of sparsity of graph ¢ o
Our Approach to Cope with Locality: @
enhance LOCAL algorithms with global communication

= exponentially faster than LOCAL algorithms due to shortcuts
= polynomially less memory than most MPC algorithms

Problem:

Maximal Independent Set (MIS)

Maximal Independent Set (MIS)

(MIS)

Maximal Independent Set

N

Ve

D

(MIS)

Maximal Independent Set

N>

5

N

\/

~\

.\

Maximal Independent Set (MIS)

24

=

g

'4\

/

“.

~%

Maximal Independent Set (MIS)

. Independent Set:
set of non-adjacent nodes

Maximal:
no node can be added
without violating independence

| (A‘\\
WAL

BN

iy

MIS: State of the Art M machines

S memory per machine
M-S=0(m+n)

S—I—_>

0(n?) B(n) Qn'*?)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.

MIS: State of the Art M machines

S memory per machine
M-S=0(m+n)

S—I—_>

0(n?) B(n) Qn'*?)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.

Lattanzi et al. [SPAA’11]
0(1)

MIS: State of the Art M machines

S memory per machine
M-S=0(m+n)

S—I—_>

6(n?) &(n) G(n'+%)

Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:

S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1

No machine sees all nodes. Machines see all nodes. Machines see all nodes.
Ghaffari et al. [PODC’18] Lattanzi et al. [SPAA’11]
O(loglogn) 0(1)

MIS: State of the Art M machines

S memory per machine
M-S=0(m+n)

S—I—_>

6(115) O(n) ﬁ(n”‘S)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.
Luby’s Algorithm Ghaffari et al. [PODC’18] Lattanzi et al. [SPAA'11]
O(logn) O(loglogn) 0(1)

MIS: State of the Art M machines

S memory per machine
M-S=0(m+n)

S—I—_>

6(115) O(n) ﬁ(n”‘S)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.
Luby’s Algorithm Ghaffari et al. [PODC’18] Lattanzi et al. [SPAA'11]
O(logn) O(loglogn) 0(1)
Ghaffari and Uitto [SODA’19]
5(1/10gn)

MIS: State of the Art on Trees M machines

S memory per machine
M-S=0(m+n)

S—I—_>

0(n?) B(n) Qn'*?)
Strongly Sublinear Memory: Linear Memory: Superlinear Memory:
S=0(n°),0<6<1 S=0(mn) S=0(n'*%),0<6<1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.
Luby’s Algorithm Ghaffari et al. [PODC’18] Lattanzi et al. [SPAA'11]
O(logn) O(loglogn) 0(1)

Ghaffari and Uitto [SODA’19]

5(1/10gn)

MIS: State of the Art on Trees M machines

S memory per machine
M-S=0(m+n)

S—I_—_>

0(n?) B(n) Qn'*?)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n6),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.

Luby’s Algorithm Trivial solution Trivial solution
O(logn) 0(1) 0(1)

Ghaffari and Uitto [SODA’19]

0(,/Togn)

MIS: State of the Art on Trees M machines

S memory per machine
M-S=0(m+n)

S—I_—_>

0(n?) B(n) Qn'*?)
Strongly Sublinear Memory: || Linear Memory: Superlinear Memory:
S=5(n5),OS5<1 S=0(mn) S=5(n1+5),0<5S1
No machine sees all nodes. Machines see all nodes. Machines see all nodes.

Our Result Trivial solution Trivial solution
0(log?logn) 0(1) 0(1)

Ghaffari and Uitto [SODA’19]

0(,/Togn)

Our Result

0(log? log n)-round MPC algorithm

with § = 5(115) memory that w.h.p. computes MIS on trees.

Our Result

O(,/log n) rounds

S = 5(115) memory
Ghaffari and Uitto [SODA'19]

0(log? log n)-round MPC algorithm

with § = 5(115) memory that w.h.p. computes MIS on trees.

Our Result

O(,/log n) rounds 0(log log n) rounds
S = 0(n®) memory S = 0(n) memory
Ghaffari and Uitto [SODA’19] Ghaffariet al. [PODC’18]

0(log? log n)-round MPC algorithm

with § = 5(115) memory that w.h.p. computes MIS on trees.

Our Result

O(,/log n) rounds 0(log log n) rounds
S = 0(n®) memory S = 0(n) memory
Ghaffari and Uitto [SODA’19] Ghaffariet al. [PODC’18]

0(log? log n)-round MPC algorithm

with § = 5(115) memory that w.h.p. computes MIS on trees.

Conditional 2(log log n)-round lower bound for § = 5(n6)

Ghaffari, Kuhn, and Uitto [FOCS 19]

Algorithm

Algorithm Outline

Algorithm Outline

Algorithm Outline

1) Shattering

Algorithm Outline

1) Shattering

main LOCAL technique
Beck [RSA’91]

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA'91]

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA'91]

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA'91]

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation

Algorithm Outline

1) Shattering

break graph into small components

main LOCAL technique
Beck [RSA’91]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation

Algorithm Outline

1) Shattering

break graph into small components

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation

Algorithm Outline o

1) Shattering

break graph into small components

ii) LOCAL Shattering Ghaffari [SO DA’ZDO

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation

Algorithm Outline o

1) Shattering

break graph into small components

i) Degree Reduction
ii) LOCAL Shattering Ghaffari [SO DA’ZDO

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components
iif) Local Computation

Polynomial Degree Reduction:
Subsample-and-Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample

Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample

Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
0

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph

= gather connected components 0

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components g

-

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components g

" |ocally compute random 2-coloring

-

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components g

" |ocally compute random 2-coloring

)\

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer

compute random MIS in subsampled graph
" gather connected components
" |ocally compute random 2-coloring

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components o

= |ocally compute random 2-coloring | IR

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components o

= |ocally compute random 2-coloring | IR
" add a color class to MIS

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer o
compute random MIS in subsampled graph
" gather connected components o

" |ocally compute random 2-coloring
" add a color class to MIS

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
" |ocally compute random 2-coloring
= add a color class to MIS

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors

independence due to restriction to trees!

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors

independence due to restriction to trees!

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors
" thus w.h.p. has at least one MIS neighbor

Polynomial Degree Reduction:
Subsample-and-Conquer

Subsample
subsample nodes independently

Conquer
compute random MIS in subsampled graph

" gather connected components
= |ocally compute random 2-coloring | IR
= add a color class to MIS

Non-subsampled High-Degree Node
" w.h.p. has many subsampled neighbors
" thus w.h.p. has at least one MIS neighbor
= hence will be from the graph

Algorithm Outline

1) Shattering

break graph into small components
i) Degree Reduction /terated Subsample-and-Conquer
ii) LOCAL Shattering Ghaffari [SODA'16]

2) Post-Shattering
solve problem on remaining components

i) Gathering of Components Distributed Union-Find
iif) Local Computation

Conclusion
and
Open Questions

MODEL: Sublinear-Memory MPC
S = 5(n5) local memory
poly log log n rounds

MODEL:

Sublinear-Memory MPC
S = 5(n5) local memory
poly log log n rounds

MODEL:

APPROACH:

Sublinear-Memory MPC
S = 5(n5) local memory
poly log log n rounds

LOCAL algorithms &
global communication

MODEL: Sublinear-Memory MPC
S = 5(n5) local memory
poly log log n rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

MODEL: Sublinear-Memory MPC
S = 5(n5) local memory
poly log log n rounds

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS
on trees

MODEL: Sublinear-Memory MPC 7 N N
S = 0(n?®) local memory O,f /WJ \i

poly log log n rounds N o) JAN

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering

PROBLEM: MIS other graph problems?
on trees more general graph families?

MODEL: Sublinear-Memory MPC "o N ([e
S = 0(n?®) local memory O,f N \i

poly log log n rounds N o) JAN

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering
PROBLEM: MIS other graph problems?
on trees more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

MODEL: Sublinear-Memory MPC "o N ([e
S = 0(n?®) local memory O,f N \i

poly log log n rounds N o) JAN

APPROACH: LOCAL algorithms &
global communication

TECHNIQUE: Shattering other LOCAL techniques?
PROBLEM: MIS other graph problems?
on trees more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

MODEL: Sublinear-Memory MPC "o N ([e
S = 0(n?®) local memory O,f N \i

poly log log n rounds N o) JAN

APPROACH: LOCAL algorithms &

T other approaches?
global communication

TECHNIQUE: Shattering other LOCAL techniques?
PROBLEM: MIS other graph problems?
on trees more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

Thank you!

MODEL: Sublinear-Memory MPC "o N ([e ~
S = 0(n?®) local memory O,f N \i
poly log log n rounds . o))L y
APPROACH: LOCAL algorithms &

T other approaches?
global communication

TECHNIQUE: Shattering other LOCAL techniques?
PROBLEM: MIS other graph problems?
on trees more general graph families?

MIS & Matching for locally sparse graphs
in follow-up work [PODC’19]

