Information-
theory and

i aeT Information theoretic and algorithmic aspects
Dlver of binary and quantitative group testing in the
sublinear regime

Oliver Gebhard

Goethe-University Frankfurt

gebhard@math.uni-frankfurt.de

Joint work with
A. Coja-Oghlan, M.Hahn-Klimroth, P. Loick
and
M.Hahn-Klimroth, D. Kaaser, P. Loick



Overview

Information-
theory and
algorithms for
GT and QGT

Basic setup

Binary group testing

Quantitative group testing



Basic

Information-
theory and
algorithms for
GT and QGT

Basic setup




Basic

Information-
theory and
algorithms for
GT and QGT

Basic setup




Information-
theory and
algorithms for
GT and QGT

Basic setup

Basic setup

m Goal:Are we able to identify the sick individuals?



Basic setup

Basic setup

XXX XXX X



Basic setup

Information-
theory and
algorithms for
GT and QGT

Oliver

Gebhard

Basic setup

XXX XZXX X

m Goal:Are we able to reduce the number of tests?



Basic setup

Information-
theory and
algorithms for
GT and QGT

Basic setup




Basic setup

Information-
theory and
algorithms for
GT and QGT

Basic setup
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m Quantitative: Number of sick individuals?
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m Options to choose the underlying testing procedure

Number of stages
Pooling procedure

m To Do: Rigorous Analysis of the choice
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m Counting Bound implies m > k - loga(n/k).
Binary grou
et m Baldassini et al: Adaptive testing strategies achieve this
bound.

m Question: Is non-adaptive group testing able to achieve
the bound as well?
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Theorem 1 [CGHL18]
Let mj,r = ' log(n)
inf min{l,%log(2)}log(2)

m < (1 —€)mjpr: No algorithm exists to output the right
configuration for the constant weight pooling

m > (1 + e)mjr: There exist an algorithm, which outputs
the right configuration w.h.p.
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e m Lower Bound: Derive the value m*, below which
infected /uninfected individuals occur that may swap status

without harming the test result
Binary group ) .
testing m Upper Bound: Derive the value m** above which no

satisfying assignment beside the original one exists

Small overlap argument: Analyse probability that
configuration with certain overlap fulfills the test result
Large overlap argument: Analyse probability that positive

(negative) tests stay positive (negative)

*

m m*, m** set conditions to derive the m;,r(n, @) as stated
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m Allemann: multi-stage algorithm at the predicted lower
Blnar grolp bound
m Aldridge, Scarlett et. al.: Sub-optimal non-adaptive
strategies available
m Most promising algorithms: SCOMP, Definite Defective
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m Conjecture: SCOMP outperforms the Definite Defective

m We refute the conjecture by showing that the algorithms
Sl fail at the same point

Theorem 2 [CGHL18]

Let myz(n,0) = %,0 <f<1lande>0:

For m < (1 -¢€)myig(n,0), both SCOMP and DD fail to output
o w.h.p.
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Gebhard m DD work iff every infected individual is in at least one test
with only uninfected individuals that are themselves in at
Binary group least one test with only other uninfected individuals

- m Additional SCOMP step is a Greedy Vertex Cover

m Show w.h.p.: Local structure of infected/ uninfected
individuals in remaining graph look the same

m SCOMP fails in first step w.h.p.
= SCOMP and DD have the same algorithmic threshold
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Oliver

Selfiere m Alaoui et. al.: For the linear case Information Theoretic
phase transition and efficient algorithm at lower bound
established

Quantitative m For sub-linear regime: Information Theory not entirely
group testing understood (Djackov) and only sub-optimal algorithms
available (Karimi et. al.) .
m Contribution:
Establish sharp phase transition in the sublinear regime
(i.e. we show the achievability).

Introduce a Greedy Algorithm that outperforms the best
known one in certain sparsity levels
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Minf = 220
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For m < (1-¢e)mjur(n,0): No algorithm that outputs o
exists

For m> (1 + €)mjpr(n,0): An algorithm exists that
outputs o with high probability
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m Derive a m* s.t. for m > m* no second satisfying
assignment exists
e m Analyse it for small and high overlaps
Quantitative . .
group testing Large overlap: Analyse changes via Balls and Bins
Small overlap: Analyse changes as returning random walk

m Analysis establishes conditions for mj,r
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<J‘:\‘jh::r\ InPUt: g’y’ k ~
Output: Estimation & for 5.

1. For every x; for i € [n] calculate W; = ¥ :cs,. yj
Quantitative 2 Set \Ul = \UI . m_/2
group testing ! Ai
3. Order the individuals i in decreasing order due to W’
4. Declare the first k ordered individuals as infected, declare
the other individuals as healthy

Theorem 4 [GHKL19]
Define mpyn(n,0) = it%klog(n/k). The MN-Algorithm
outputs the correct configuration w.h.p. if m> myy
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m Seperate the distribution of V; for uninfected and infected
individuals.

m Union bound over all k infected and n— k uninfected
QENHEDTE individuals.

group testing
m Applying the Chernoff Bound and optimizing w.r.t. the
seperating-parameter gives the (sufficient) condition on

mpmn -
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m Dashed lines:
Asymptotic
prediction of the

- required number of
tests.

success rate
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