Communication and Memory Efficient Testing of Discrete Distributions

Themis Gouleakis

July 21, 2019

Joint work with: *Ilias Diakonikolas (USC), Daniel Kane (UCSD)* and *Sankeerth Rao (UCSD)*

MOTIVATION

- ▶ Datasets growing → too many samples needed!
- ► Can we do *property testing* distributedly?

- ► Insufficient memory!
- Design low memory algorithms!

Is the lottery fair?

- We can **learn** the distribution: $\Omega(n)$ samples.
- ► Centralized sampling/ unbounded memory: we can **test** (uniform vs ε -far) with $\Theta(\sqrt{n}/\varepsilon^2)$ samples.
- ► What if we have memory constraints/unavailable centralized sampling?

DEFINITION AND (CENTRALIZED) PRIOR WORK

Uniformity testing problem

Given samples from a probability distribution p, distinguish $p = U_n$ from $||p - U_n||_1 > \varepsilon$ with success probability at least 2/3.

► Sample complexity: $\Theta\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Goldreich, Ron 00],[Batu, Fisher, Fortnow, Kumar, Rubinfeld, White 01],[Paninski 08], [Chan, Diakonikolas, Valiant, Valiant 14], [Diakonikolas, G, Peebles, Price 17]

PRIOR/RELATED WORK

Distributed learning

- ► Parameter estimation [ZDJW13],[GMN14],[BGMNW16],[JLY16],[HOW18]
- Non-parametric [DGLNOS17],[HMOW18]

Distributed testing

- ➤ Single sample per machine with sublogarithmic size messages: [Acharya, Cannone, Tyagi 18]
- Two-party setting: [Andoni, Malkin, Nosatzki 18]
- ▶ LOCAL and CONGEST models: [Fisher, Meir, Oshman 18]

CENTRALIZED COLLISION-BASED ALGORITHM

[GOLDREICH, RON 00],[BATU, FISHER, FORTNOW, KUMAR, RUBINFELD, WHITE 01]

Problem: Given distribution p over [n], distinguish $p = U_n$ from $||p - U_n||_1 \ge \epsilon$.

- ightharpoonup m samples
- **Node labels:** i.i.d samples from p.
- ▶ Edges: $\{i, j\} \in E \text{ iff } L(i) = L(j)$

- ▶ Define statistic $Z = \# edges \Rightarrow \mathbb{E}[Z] = \binom{m}{2} \cdot \|p\|_2^2$
 - ightharpoonup Minimized for $p = U_n$
- ► **Idea:** Draw *enough* samples and *compare Z* to some threshold.

GENERIC BIPARTITE TESTING ALGORITHM

ℓ SAMPLES PER MACHINE

Problem: Given distribution p over [n], distinguish $p = U_n$ from $||p - U_n||_1 \ge \epsilon$.

- $ightharpoonup \ell$ samples **per machine**.
- **Node labels:** i.i.d samples from p.
- ► Edges: $\{i, j\} \in E \text{ iff}$ $(i \in S_1) \land (j \in S_2) \land (L(i) = L(j))$

GENERIC BIPARTITE TESTING ALGORITHM

 ℓ Samples per machine

Problem: Given distribution p over [n], distinguish $p = U_n$ from $||p - U_n||_1 \ge \epsilon$.

- $ightharpoonup \ell$ samples **per machine**.
- **Node labels:** i.i.d samples from p.
- ► Edges: $\{i, j\} \in E$ iff $(i \in S_1) \land (j \in S_2) \land (L(i) = L(j))$

- ▶ Define statistic $Z = \#edges \Rightarrow \mathbb{E}[Z] = |S_1| \cdot |S_2| \cdot ||p||_2^2$
 - ▶ Minimized for $p = U_n$
- ► **Remark:** *Suboptimal* sample complexity, but can lead to *optimal* communication complexity in certain cases.

COMMUNICATION MODEL

- Unbounded number of players
- ► Players can *broadcast* on the blackboard
- ► The referee asks questions to players and receives replies.

▶ **Goal:** Minimize total number of *bits* of communication.

A COMMUNICATION EFFICIENT ALGORITHM

- ▶ **Idea:** Statistic Z = sum of degrees on one side.
 - ► *Only* the opposite side needs to reveal samples exactly.

- ▶ Broadcasted samples: $\ell \cdot |S_1| = \frac{\sqrt{n/\ell}}{\epsilon^2 \sqrt{\log n}}$ ▶ Not enough for testing.
- ► And the samples on the right?
 - ▶ Only **degrees** d_k sent to the referee.
 - ightharpoonup O(1) bits/message w.l.o.g.
- ► Communication complexity: $O\left(\frac{\sqrt{n/\ell}\sqrt{\log n}}{\epsilon^2}\right)$ bits.
 - ► Matching lower bound of $\Omega\left(\frac{\sqrt{n/\ell}\sqrt{\log n}}{\epsilon^2}\right)$ bits for small ℓ .
- ▶ Better than naive $O\left(\frac{\sqrt{n}\log n}{\epsilon^2}\right)$ bits.

COMMUNICATION EFFICIENT IMPLEMENTATION

TWO ALGORITHMS

- ► Use cross collisions bipartite graph
- ► Communication complexity:

$$O\left(\frac{\sqrt{n/\ell}\sqrt{\log n}}{\epsilon^2}\right)$$
 bits.

Case II: $\ell = \tilde{\Omega}(n^{1/3}/\varepsilon^{4/3})$ samples/machine

- ► Each machine sends that number of **local** collisions and to the referee.
- ► The referee computes the total sum *Z* of the collisions.
 - $ightharpoonup \mathbb{E}[Z] = \binom{\ell}{2} ||p||_2^2$
 - ► Threshold: $(1 + \varepsilon^2)\mathbb{E}[Z]$
- ► Communication complexity:

$$O\left(\frac{n\log n}{\ell^2\epsilon^4}\right)$$
 bits.

MEMORY EFFICIENT IMPLEMENTATION

IN THE ONE-PASS STREAMING MODEL

Model:

One-pass streaming algorithm: The samples arrive in a **stream** and the algorithm can access them **only once**.

Memory constraint: At most m bits for some $m \ge \log n/\varepsilon^6$

- ▶ Use $N_1 = m/2 \log n$ samples to get the multiset of labels S_1 .
- ▶ Use collision information from $N_2 = \Theta(n \log n/(m\varepsilon^4))$ other samples (i.e the multiset of labels S_2).

Remarks:

- We can store $\sum_{k=1}^{r} d_k$, $1 \le r \le N_2$ in a single pass.
- ► For $m = \Omega(\sqrt{n} \log n/\varepsilon^2)$, we simply run the classical collision-based tester using the first $O(\sqrt{n}/\varepsilon^2)$ samples.

SUMMARY OF RESULTS

	Sample Complexity Bounds with Memory Constraints					
Property	Upper Bound	Lower Bound 1	Lower Bound 2			
Uniformity	$O\left(\frac{n\log n}{marepsilon^4} ight)$	$\Omega\left(\frac{n\log n}{m\varepsilon^4}\right)$	$\Omega\left(\frac{n}{m\varepsilon^2}\right)$			
Conditions	$n^{0.9} \gg m \gg \log(n)/\varepsilon^2$	$m = \tilde{\Omega}(\frac{n^{0.34}}{\varepsilon^{8/3}} + \frac{n^{0.1}}{\varepsilon^4})$	Unconditional			
Closeness	$O(n\sqrt{\log(n)}/(\sqrt{m}\varepsilon^2))$	-	-			
Conditions	$\tilde{\Theta}(\min(n, n^{2/3}/\varepsilon^{4/3})) \gg m \gg \log(n)$	-	-			

	Communication Complexity Bounds					
Property	UB 1	UB 2	LB 1	LB 2	LB 3	
Uniformity	$O\left(\frac{\sqrt{n\log(n)/\ell}}{\varepsilon^2}\right)$	$O\left(\frac{n\log(n)}{\ell^2\varepsilon^4}\right)$	$\Omega\left(\frac{\sqrt{n\log(n)/\ell}}{\varepsilon^2}\right)$	$\Omega(\frac{\sqrt{n/\ell}}{\varepsilon})$	$\Omega(\frac{n}{\ell^2 \varepsilon^2 \log n})$	
Conditions	$\frac{\varepsilon^8 n}{\log n} \gg \ell \gg \frac{\varepsilon^{-4}}{n^{0.9}}$	$\ell \ll \frac{\sqrt{n}}{\varepsilon^2}$	$\varepsilon^{4/3} n^{0.3} \gg \ell$	$\ell = \tilde{O}\left(\frac{n^{1/3}}{\varepsilon^{4/3}}\right)$	$\ell = \tilde{\Omega}\left(\frac{n^{1/3}}{\varepsilon^{4/3}}\right)$	
Closeness	$O\left(\frac{n^{2/3}\log^{1/3}(n)}{\ell^{2/3}\varepsilon^{4/3}}\right)$	-	-	-	-	
Conditions	$n\varepsilon^4/\log(n)\gg \ell$	-	-	-	-	

LOWER BOUNDS (ONE PASS)

k samples, m bits of memory, ℓ samples per machine

- 1. Memory:
 - $\blacktriangleright k \cdot m = \Omega(\frac{n}{\varepsilon^2})$
 - ▶ Under technical assumptions: $k \cdot m = \Omega(\frac{n \log n}{\varepsilon^4})$

Reduction (low communication \Rightarrow low memory)

- ightharpoonup samples/machine: ℓ
- bits of communication: t

Store samples of the **next player only** $\Rightarrow t + \ell \log n$ -memory

- 2. Communication $(\ell = O\left(\frac{n^{1/3}}{\varepsilon^{4/3}(\log n)^{1/3}}\right))$ -one pass:
 - $ightharpoonup \Omega\left(\frac{\sqrt{n/\ell}}{\varepsilon}\right)$ samples.
 - Under assumptions: $\Omega\left(\frac{\sqrt{n\log n/\ell}}{\varepsilon^2}\right)$
- 3. Communication $(\ell = \Omega\left(\frac{n^{1/3}}{\varepsilon^{4/3}(\log n)^{1/3}}\right))$ -one pass:
 - ▶ $\Omega\left(\frac{n}{\ell^2 \varepsilon^2 \log n}\right)$ samples.

SUMMARY-OPEN PROBLEMS

- We described a bipartite collision-based algorithm for uniformity.
 - ► Then applied it to memory constrained and distributed settings.
- Showed matching lower bounds for certain parameter regimes.
 - An asymptotically optimal algorithm becomes (provably) suboptimal as ℓ grows.

Open Problems:

- ► Do the lower bounds still hold if multiple passes are allowed?
- ► Is there an algorithm with a better communication-sample complexity trade-off?