Communication and Memory Efficient Testing of Discrete Distributions

Themis Gouleakis USC \rightarrow MPI

July 21, 2019

Joint work with: Ilias Diakonikolas (USC), Daniel Kane (UCSD) and Sankeerth Rao (UCSD)

Motivation

- Datasets growing \rightarrow too many samples needed!
- Can we do property testing distributedly?

- Insufficient memory!
- Design low memory algorithms!

- We can learn the distribution: $\Omega(n)$ samples.
- Centralized sampling/ unbounded memory: we can test (uniform vs ε-far) with $\Theta\left(\sqrt{n} / \varepsilon^{2}\right)$ samples.
- What if we have memory constraints/unavailable centralized sampling?

DEFINITION AND (CENTRALIZED) PRIOR WORK

Uniformity testing problem
Given samples from a probability distribution p, distinguish $p=U_{n}$ from $\left\|p-U_{n}\right\|_{1}>\varepsilon$ with success probability at least $2 / 3$.

- Sample complexity: $\Theta\left(\frac{\sqrt{n}}{\varepsilon^{2}}\right)$ [Goldreich, Ron 00],[Batu, Fisher, Fortnow, Kumar, Rubinfeld, White 01],[Paninski 08], [Chan, Diakonikolas, Valiant, Valiant 14],
[Diakonikolas, G, Peebles, Price 17]

PRIOR/RELATED WORK

Distributed learning

- Parameter estimation [ZDJW13],[GMN14],[BGMNW16],[JLY16],[HOW18]
- Non-parametric [DGLNOS17],[HMOW18]

Distributed testing

- Single sample per machine with sublogarithmic size messages: [Acharya, Cannone, Tyagi 18]
- Two-party setting: [Andoni, Malkin, Nosatzki 18]
- LOCAL and CONGEST models: [Fisher, Meir, Oshman 18]

Centralized Collision-Based Algorithm

[Goldreich, Ron 00],[Batu, Fisher, Fortnow, Kumar, Rubinfeld, White 01] Problem: Given distribution p over $[n]$, distinguish $p=U_{n}$ from $\left\|p-U_{n}\right\|_{1} \geq \epsilon$.

- m samples
- Node labels: i.i.d samples from p.
- Edges: $\{i, j\} \in E$ iff $L(i)=L(j)$
- Define statistic $Z=\sharp$ edges $\Rightarrow \mathbb{E}[Z]=\binom{m}{2} \cdot\|p\|_{2}^{2}$
- Minimized for $p=U_{n}$
- Idea: Draw enough samples and compare Z to some threshold.

Generic Bipartite Testing Algorithm

ℓ SAMPLES PER MACHINE

Problem: Given distribution p over $\left[n\right.$], distinguish $p=U_{n}$ from $\left\|p-U_{n}\right\|_{1} \geq \epsilon$.

- ℓ samples per machine.
- Node labels: i.i.d samples from p.
- Edges: $\{i, j\} \in E$ iff $\left(i \in S_{1}\right) \wedge\left(j \in S_{2}\right) \wedge(L(i)=L(j))$

Generic Bipartite Testing Algorithm

ℓ SAMPLES PER MACHINE
Problem: Given distribution p over [n], distinguish $p=U_{n}$ from $\left\|p-U_{n}\right\|_{1} \geq \epsilon$.

- ℓ samples per machine.
- Node labels: i.i.d samples from p.
- Edges: $\{i, j\} \in E$ iff $\left(i \in S_{1}\right) \wedge\left(j \in S_{2}\right) \wedge(L(i)=L(j))$
- Define statistic $Z=$ \#edges $\Rightarrow \mathbb{E}[Z]=\left|S_{1}\right| \cdot\left|S_{2}\right| \cdot\|p\|_{2}^{2}$
- Minimized for $p=U_{n}$
- Remark: Suboptimal sample complexity, but can lead to optimal communication complexity in certain cases.

COMMUNICATION MODEL

- Unbounded number of players
- Players can broadcast on the blackboard
- The referee asks questions to players and receives replies.
- Goal: Minimize total number of bits of communication.

A Communication efficient Algorithm

- Idea: Statistic $Z=$ sum of degrees on one side.
- Only the opposite side needs to reveal samples exactly.

- Broadcasted samples: $\ell \cdot\left|S_{1}\right|=\frac{\sqrt{n / \ell}}{\epsilon^{2} \sqrt{\log n}}$
- Not enough for testing.
- And the samples on the right?
- Only degrees d_{k} sent to the referee.
- $O(1)$ bits/message w.l.o.g.
- Communication complexity: $O\left(\frac{\sqrt{n / \ell} \sqrt{\log n}}{\epsilon^{2}}\right)$ bits.
- Matching lower bound of $\Omega\left(\frac{\sqrt{n / \ell} \sqrt{\log n}}{\epsilon^{2}}\right)$ bits for small ℓ.
- Better than naive $O\left(\frac{\sqrt{n} \log n}{\epsilon^{2}}\right)$ bits.

COMMUNICATION EFFICIENT IMPLEMENTATION

Two ALGORITHMS

Case I: $\ell=\tilde{O}\left(n^{1 / 3} / \varepsilon^{4 / 3}\right)$ samples/ machine

- Use cross collisions - bipartite graph
- Communication complexity:
$O\left(\frac{\sqrt{n / \ell} \sqrt{\log n}}{\epsilon^{2}}\right)$ bits.
Case II: $\ell=\tilde{\Omega}\left(n^{1 / 3} / \varepsilon^{4 / 3}\right)$ samples/machine
- Each machine sends that number of local collisions and to the referee.
- The referee computes the total sum Z of the collisions.
- $\mathbb{E}[Z]=\binom{\ell}{2}\|p\|_{2}^{2}$
- Threshold: $\left(1+\varepsilon^{2}\right) \mathbb{E}[Z]$
- Communication complexity: $O\left(\frac{n \log n}{l^{2} \epsilon^{2}}\right)$ bits.

MEMORY EFFICIENT IMPLEMENTATION

In THE ONE-PASS STREAMING MODEL

Model:

One-pass streaming algorithm: The samples arrive in a stream and the algorithm can access them only once.

Memory constraint: At most m bits for some $m \geq \log n / \varepsilon^{6}$

- Use $N_{1}=m / 2 \log n$ samples to get the multiset of labels S_{1}.
- Use collision information from $N_{2}=\Theta\left(n \log n /\left(m \varepsilon^{4}\right)\right)$ other samples (i.e the multiset of labels S_{2}).

Remarks:

- We can store $\sum_{k=1}^{r} d_{k}, 1 \leq r \leq N_{2}$ in a single pass.
- For $m=\Omega\left(\sqrt{n} \log n / \varepsilon^{2}\right)$, we simply run the classical collision-based tester using the first $O\left(\sqrt{n} / \varepsilon^{2}\right)$ samples.

SUMMARY OF RESULTS

	Sample Complexity Bounds with Memory Constraints				
Property	Upper Bound	Lower Bound 1	Lower Bound 2		
Uniformity	$O\left(\frac{n \log n}{m \varepsilon^{4}}\right)$	$\Omega\left(\frac{n \log n}{m \varepsilon^{4}}\right)$	$\Omega\left(\frac{n}{m \varepsilon^{2}}\right)$		
Conditions	$n^{0.9} \gg m \gg \log (n) / \varepsilon^{2}$	$m=\tilde{\Omega}\left(\frac{n^{0.34}}{\varepsilon^{8 / 3}}+\frac{n^{0.1}}{\varepsilon^{4}}\right)$	Unconditional		
Closeness	$O\left(n \sqrt{\log (n)} /\left(\sqrt{m} \varepsilon^{2}\right)\right)$	-		-	
Conditions	$\Theta\left(\min \left(n, n^{2 / 3} / \varepsilon^{4 / 3}\right)\right) \gg m \gg \log (n)$	-	-		
Communication Complexity Bounds					
Property	UB 1	UB 2	LB 1	LB 2	LB 3
Uniformity	$O\left(\frac{\sqrt{n \log (n) / \ell}}{\varepsilon^{2}}\right)$	$O\left(\frac{n \log (n)}{\ell^{2} \varepsilon^{4}}\right)$	$\Omega\left(\frac{\sqrt{n \log (n) / \ell}}{\varepsilon^{2}}\right)$	$\Omega\left(\frac{\sqrt{n / \ell}}{\varepsilon}\right)$	$\Omega\left(\frac{n}{\ell^{2} \varepsilon^{2} \log n}\right)$
Conditions	$\frac{\varepsilon^{8} n}{\log n} \gg \ell \gg \frac{\varepsilon^{-4}}{n^{0.9}}$	$\ell \ll \frac{\sqrt{n}}{\varepsilon^{2}}$	$\varepsilon^{4 / 3} n^{0.3} \gg \ell$	$\ell=\tilde{O}\left(\frac{n^{1 / 3}}{\varepsilon^{4 / 3}}\right)$	$\ell=\tilde{\Omega}\left(\frac{n^{1 / 3}}{\varepsilon^{4 / 3}}\right)$
Closeness	$O\left(\frac{n^{2 / 3} \log { }^{1 / 3}(n)}{\ell^{2 / 3} \varepsilon^{4 / 3}}\right)$	-	-	-	-
Conditions	$n \varepsilon^{4} / \log (n) \gg \ell$	-	-	-	-

Lower Bounds (One Pass)

k SAMPLES, m BITS OF MEMORY, ℓ SAMPLES PER MACHINE

1. Memory:

- $k \cdot m=\Omega\left(\frac{n}{\varepsilon^{2}}\right)$
- Under technical assumptions: $k \cdot m=\Omega\left(\frac{n \log n}{\varepsilon^{4}}\right)$

Reduction (low communication \Rightarrow low memory)

- samples/machine: ℓ
- bits of communication: t

Store samples of the next player only $\Rightarrow t+\ell \log n$-memory
2. Communication $\left(\ell=O\left(\frac{n^{1 / 3}}{\varepsilon^{4 / 3}(\log n)^{1 / 3}}\right)\right.$)-one pass:

- $\Omega\left(\frac{\sqrt{n / \ell}}{\varepsilon}\right)$ samples.
- Under assumptions: $\Omega\left(\frac{\sqrt{n \log n / \ell}}{\varepsilon^{2}}\right)$

3. Communication $\left(\ell=\Omega\left(\frac{n^{1 / 3}}{\varepsilon^{4 / 3}(\log n)^{1 / 3}}\right)\right.$)-one pass:

- $\Omega\left(\frac{n}{\ell^{2} \varepsilon^{2} \log n}\right)$ samples.

SUMMARY-OPEN PROBLEMS

- We described a bipartite collision-based algorithm for uniformity.
- Then applied it to memory constrained and distributed settings.
- Showed matching lower bounds for certain parameter regimes.
- An asymptotically optimal algorithm becomes (provably) suboptimal as ℓ grows.
Open Problems:
- Do the lower bounds still hold if multiple passes are allowed?
- Is there an algorithm with a better communication-sample complexity trade-off?

