
Sublinear Algorithms for
Graph Coloring

Sanjeev Khanna
University of Pennsylvania

Joint work with Sepehr Assadi (Princeton) and Yu Chen (Penn).

Graph Coloring

A 𝐶-coloring of a graph 𝐺 𝑉, 𝐸 assigns each vertex a color
from the palette 1, 2, … , 𝐶 such that there are no
monochromatic edges.

Graph Coloring

A 𝐶-coloring of a graph 𝐺 𝑉, 𝐸 assigns each vertex a color
from the palette 1, 2, … , 𝐶 such that there are no
monochromatic edges.

Graph Coloring

A 𝐶-coloring of a graph 𝐺 𝑉, 𝐸 assigns each vertex a color
from the palette 1, 2, … , 𝐶 such that there are no
monochromatic edges.

n A central problem in graph theory and computer science.
n Applications include scheduling, frequency assignment,

register allocations, etc.
n Vertices represent tasks, edges represent conflicts between tasks.
n A 𝐶-coloring partitions all tasks into 𝐶 classes such that the tasks

inside each class are conflict-free.
n We wish to find a 𝐶-coloring so that 𝐶 is small as possible.

Graph Coloring

But the task of coloring a graph with a minimum number of
colors is a notoriously hard problem.

Theorem [Feige and Kilian ’98, Zuckerman ’06]: For any 𝜖 > 0,
it is NP-hard to approximate the # of colors needed to within a
factor of 𝑛-./.

So in many applications, we instead focus on coloring a graph
using a number of colors based on some graph parameter –
smaller the parameter, fewer the number of colors needed.

Δ + 1 -Coloring of Graphs

The most well-studied example of this approach is (Δ+1)-
coloring where Δ is the maximum vertex degree.

Every graph admits a (Δ+1)-coloring. There is a text-book
greedy algorithm that establishes this:

n Iterate over the vertices in an arbitrary order.
n Assign each vertex a color that is not in its neighborhood.
n Since max degree is Δ, you can never run out of colors.

The (Δ+1) color bound is tight on cliques and odd cycles.

Linear Resource Algorithms

n This greedy coloring algorithm is extremely simple and can
be implemented in linear time and linear space.

n Traditionally, solving a problem in linear time and space
have been the gold standard of computational efficiency.

n But as we design algorithms that operate on very large
data sets, this is often no longer sufficient.

Sublinear Algorithms

Can a (Δ+1)-coloring be found by a sublinear algorithm?

Sublinear means sublinear in the number of edges. The output
of (Δ+1)-coloring is always linear in the number of vertices.

For instance, can a (Δ+1)-coloring be found by an algorithm
that examines only a tiny fraction of edges in the graph?

Based on the computational platform, we may want sublinear
time, space, or communication algorithms.

Sublinear Time Algorithms

Query Model of Computation:

n Degree queries: What is the degree of a vertex 𝑣?
n Pair queries: Is 𝑢, 𝑣 an edge?
n Neighbor queries: Who is the 𝑘67 neighbor of a vertex 𝑣?

Goal is to design algorithms that compute by performing only
a few queries – much smaller than the size of the graph.

Sublinear Space Algorithms

Streaming Model of Computation

n The graph is presented as a stream of edges.
n The algorithm has limited memory to store information

about the edges seen in the stream.
n A natural model when the input is either generated ``on the

fly’’ or is stored on a sequential access device, like a disk.
n The algorithm no longer has random access to the input.

Goal is to design algorithms that use small space -- much
smaller than the input size.

Sublinear Communication Algorithms

MPC Model of Computation
n The edges of the graph are partitioned across multiple

machines in an arbitrary manner.
n Each machine has small memory – much smaller than the

input.
n Computation proceeds in rounds where in each round, a

machine can send and receive information to other
machines (not exceeding its memory).

Goal is to compute in a small number of rounds.

Sublinear Algorithms for Δ + 1 -Coloring

Can a (Δ+1)-coloring be found by a sublinear algorithm?

Computing an exact solution tends to be hard for sublinear
algorithms as they typically gain efficiency by settling for a
suitable notion of approximate solution.

Theorem: Any streaming algorithm for computing a maximal
independent set requires Ω 𝑛9 space. Any query algorithm
for computing a maximal matching requires Ω 𝑛9 time.

Just like (Δ+1)-coloring , a simple greedy strategy gives a
maximal independent set and a maximal matching .

Our Results

Surprisingly, one can obtain highly efficient sublinear
algorithms for (Δ+1)–coloring in all three models.

All our algorithms are randomized and behave as follows:
n either output a valid (Δ+1)–coloring (w.h.p.), or
n output FAIL.

Our algorithms never output an invalid coloring.

Result 1: Sublinear Space Algorithms

Theorem 1: There is a :𝑂(𝑛) space single-pass streaming
algorithm for computing a (Δ+1)-coloring.

n Ω(𝑛) space is needed just to store the solution.
n Best previous bound was O(𝑛9) space.
n Our algorithm works even for dynamic graph streams

where the stream consists of an arbitrary sequence of edge
insertions and deletions.
n Again surprising because for the related maximal matching

problem, any algorithm for computing maximal matching in
dynamic streams provably requires =Ω(𝑛2) space.

Result 2: Sublinear Time Algorithms

Theorem 2: There is an :𝑂(𝑛?/9) time algorithm for computing
a (Δ+1)-coloring. Moreover, Ω(𝑛?/9) queries are necessary.

§ No algorithm better than the greedy algorithm was known
previously.

§ The queries performed by our algorithm are chosen non-
adaptively.

§ In contrast, the Ω(𝑛?/9) lower bound holds even for
adaptive algorithms.

Result 3: Sublinear Communication Algorithms

Theorem 3 : There is an O(1) round MPC algorithm for
computing a (Δ+1)-coloring where each machine has :𝑂(𝑛)
memory.

n If we assume public randomness, then our algorithm
requires only a single round.

n Prior to our work, the state of the art was
n 𝑂(log log Δ log∗ 𝑛) round algorithm with :𝑂(𝑛) memory [Parter ’18].
n Parallel to our work, round-complexity improved to
𝑂(log∗ 𝑛) rounds [Parter and Su ’18].

n For the distinctly easier problem of (Δ + o(Δ))-coloring, an O(1)
round algorithm with 𝑛-EF(-) memory [Harvey et al. ’18].

Recent Work

Sublinear algorithms for degeneracy-dependent graph
coloring [Bera, Chakrabarti, Ghosh’19].

Sublinear algorithms for (Δ+1)-coloring in congested clique
model, MPC model, and centralized local computation
model [Chang, Fischer, Ghaffari, Uitto, Zheng ’19].

How Do We Design These
Sublinear Algorithms?

Palette Sparsification Theorem

The theorem below is at the heart of all three results.

Palette Sparsification Theorem: Suppose each vertex in a
graph 𝐺 independently samples O(log 𝑛) colors uniformly at
random from 1, 2, … , Δ + 1 . Then w.h.p. there is a valid
coloring of the graph 𝐺 such that each vertex is assigned one
of its sampled colors.

n A (Δ+1)-coloring can be found using a highly sparsified
palette of colors.

n The sparsification is oblivious to the structure of the graph!

Palette Sparsification Illustrated

Palette Sparsification Illustrated

Palette Sparsification Illustrated

A Meta-Algorithm for Δ + 1 -Coloring

Input: A graph 𝐺 𝑉, 𝐸 with max degree Δ.

n At each vertex 𝑣 ∈ 𝑉, sample Θ(log 𝑛) colors, say 𝐿 𝑣 ,
independently and uniformly at random.

n Let 𝐸JKLMNOJ6 be the set of all edges 𝑢, 𝑣 ∈ 𝐸 such that
𝐿 𝑢 ∩ 𝐿 𝑣 ≠ ∅.

n Construct the conflict graph 𝐺JKLMNOJ6 𝑉, 𝐸JKLMNOJ6 .

n Find a proper list-coloring of 𝐺JKLMNOJ6 with 𝐿 𝑣 being the
color list of vertex 𝑣 ∈ 𝑉.

Properties of the Conflict Graph

n By construction, any list-coloring of 𝐺JKLMNOJ6 , if one exists,
is a valid coloring of the input graph 𝐺.

n By Palette Sparsification theorem, with high probability
there exists a list-coloring of 𝐺JKLMNOJ6.

n So the problem of (Δ+1)-coloring the input graph 𝐺 can be
reduced to the problem of list-coloring the graph 𝐺JKLMNOJ6.

n Moreover, the process for constructing the graph
𝐺JKLMNOJ6 is non-adaptive.

But what have we gained?

The Graph 𝐺JKLMNOJ6 is Very Sparse

n For every edge (𝑢, 𝑣) in 𝐺, the probability that it appears in

𝐺JKLMNOJ6 is ≈ 𝑂(log 𝑛) × 𝑂 UVW L
X = 𝑂 UVWZ L

X .

n Thus the expected number of edges in 𝐺JKLMNOJ6 is:

𝑛Δ ×𝑂 UVWZ L
X = 𝑂 𝑛 log9 𝑛 edges.

Palette sparsification theorem thus allows non-adaptive
sparsification of a graph with O(𝑛Δ) edges to a graph with
:𝑂(𝑛) edges while preserving a (Δ+1)-coloring w.h.p.

Applications to Sublinear Algorithms

A One-Pass :𝑂(𝑛) Space Streaming Algorithm

n At the start, each vertex 𝑣 samples Θ(log 𝑛) colors
independently and uniformly at random – let 𝐿 𝑣 be the
set of colors sampled by vertex 𝑣.

n When an edge (𝑢, 𝑣) arrives in the stream, we now
determine its membership in the conflict graph by a simple
test: if 𝐿 𝑢 ∩ 𝐿 𝑣 ≠ ∅, add (𝑢, 𝑣) to 𝐸JKLMNOJ6.

n At the end of the stream, we list color the graph
𝐺JKLMNOJ6 𝑉, 𝐸JKLMNOJ6 .

A One-Pass :𝑂(𝑛) Space Streaming Algorithm

n Total space used by our algorithm is :𝑂(𝑛) :
n we need space to store the color lists 𝐿 𝑣 , which is a

total of :𝑂(𝑛) space, and
n the size of 𝐸JKLMNOJ6 which is also :𝑂(𝑛) space.

n The graph 𝐺JKLMNOJ6 can be colored in :𝑂(𝑛) time.

n We can maintain the set 𝐸JKLMNOJ6 in :𝑂(𝑛) space even for
dynamic streams where the graph is revealed by an
arbitrary sequence of edge insertions and deletions.

An :𝑂(𝑛?/9) Sublinear Time Algorithm

In the streaming model, the algorithm gets to see each edge
once and can decide whether or not it belongs to the conflict
graph.

Challenge: How do we identify the edges in the conflict graph
without examining each edge in the graph at least once?

We will show that the graph 𝐺JKLMNOJ6 can be created by
performing only :𝑂(𝑛9/Δ) queries.

An :𝑂(𝑛?/9) Sublinear Time Algorithm

Claim: The graph 𝐺JKLMNOJ6 can be created in :𝑂(𝑛9/Δ) queries.

n It suffices that for each color 𝑐 ∈ 1 . . Δ + 1 , we find all
edges 𝑢, 𝑣 such that 𝑢 and 𝑣 both sample color 𝑐.

n For each color 𝑐 ∈ 1 . . Δ + 1 , let ΧJ = 𝑣 𝑐 ∈ 𝐿(𝑣)}.

𝑋- 𝑋9 𝑋XE-

An :𝑂(𝑛?/9) Sublinear Time Algorithm

Our Plan: Query all pairs of vertices in each set ΧJ to find all
edges in 𝐺JKLMNOJ6.

n For each color 𝑐 ∈ 1 . . Δ + 1 , a vertex samples it with
probability ≈ UVW L

X .

n So	w.h.p.	the	size	of	each	set	ΧJ is	𝑂(𝑛 log 𝑛/Δ).

Total # of queries = (Δ + 1) × [𝑂(𝑛 log 𝑛/Δ)]9 = :𝑂(𝑛9/Δ).

An :𝑂(𝑛?/9) Sublinear Time Algorithm

Claim: A (Δ+1)-coloring can be found in :𝑂(𝑛?/9) time.

n If Δ ≤ 𝑛-/9, then we can use the standard 𝑂 𝑛 Δ time
greedy algorithm.

n Otherwise, Δ > 𝑛-/9, and we can use the previous claim to
create 𝐺JKLMNOJ6 in :𝑂(𝑛9/Δ) = :𝑂(𝑛?/9) time.

Omitted detail: The graph 𝐺JKLMNOJ6 can also be list-colored in
:𝑂(𝑛?/9) time.

A 1-Round MPC Algorithm

MPC Model of Computation
n The edges of the graph are partitioned across multiple

machines in an arbitrary manner.
n Each machine has :𝑂(𝑛) memory.
n Computation proceeds in rounds where in each round, a

machine can send and receive :𝑂(𝑛) bits of information.

Let us assume for simplicity that machines share public
randomness. This assumption can be eliminated by adding
𝑂(1) additional rounds.

An 1-Round MPC Algorithm

n Each machine checks which edges in its input belong to the
conflict graph 𝐺JKLMNOJ6.

n We designate one machine as special, and all other
machines now send the edges in 𝐺JKLMNOJ6 that are in their
input. Total communication to the special machine is :𝑂(𝑛).

n The special machine now computes a list-coloring of
𝐺JKLMNOJ6.

How Do We Prove The Palette
Sparsification Theorem?

Proof Idea for Palette Sparsification

Suppose we only have low degree vertices in our graph – a
vertex is low degree if its degree is at most (Δ/2).
n Each uncolored vertex samples a color at random.
n We process uncolored vertices one by one and assign the

sampled color to an uncolored vertex if none of its
neighbors have same color.

n Repeat the steps above until all vertices are colored.

Each vertex has a constant probability of being colored in a
single round. So after 𝑂(log 𝑛) rounds, w.h.p. all vertices are
colored, proving the palette sparsification theorem.

Proof Idea for Palette Sparsification

Now suppose we only have high degree vertices.

n If we were to use the previous approach to color a clique
on Δ + 1 vertices, then you provably need Ω Δ rounds,
and hence a palette of Ω Δ colors.

n We need some coordination to find a coloring in this case.

n We will view the (Δ+1)-coloring problem as a matching
problem.

Coloring the Clique 𝐾XE-

Original Graph Palette Graph

(Δ+1)-coloring: Find a perfect matching in the palette graph.
Palette Sparsification Theorem: random subgraphs of the
complete palette graph contain a perfect matching.

Coloring the Clique 𝐾XE-

Original Graph Palette Graph

(Δ+1)-coloring: Find a perfect matching in the palette graph.
Palette Sparsification Theorem: random subgraphs of the
complete palette graph contain a perfect matching.

Coloring 𝐾XE- Minus a Perfect Matching

Original Graph Palette Graph

(Δ+1)-coloring: Find a constrained b-matching in the palette graph.
Palette Sparsification Theorem: random subgraphs of the
complete palette graph contain a constrained b-matching.

Coloring 𝐾XE- Minus a Perfect Matching

Original Graph Palette Graph

(Δ+1)-coloring: Find a constrained b-matching in the palette graph.
Palette Sparsification Theorem: random subgraphs of the
complete palette graph contain a constrained b-matching.

The General Case

§ Handling almost-clique like structures in generality is a key
challenge for proving the palette sparsification theorem.
§ The goal is to find a constrained b-matching where every vertex on

left is matched to exactly one color on the right, and the set of
vertices assigned to any color form an independent set in 𝐺.

§ Furthermore, we also need to find an approach that can
interpolate between these two views on any graph.
§ Simulating a greedy algorithm for low degree graphs.
§ Solving a constrained b-matching problem on almost-cliques.

Our approach: decompose the graph into sparse and dense
regions and apply the appropriate view to each region.

A Network Decomposition Theorem

We extend a decomposition result of Harris, Schneider, and
Su 2016 for distributed (Δ+1)-coloring.

Theorem 4 [Extended HSS Decomposition]: For any 𝜖 ∈ (0,1),
a graph can be decomposed into structures below:
Sparse vertices: neighborhood of each sparse vertex is
missing at least 𝜖 X

9 edges.
Almost cliques: Each almost clique C contains 1 ± 𝜖 Δ
vertices s.t.
§ Every vertex in C has at most 𝜖Δ non-neighbors in C.
§ Every vertex in C has at most 𝜖Δ neighbors outside C.

Proving Palette Sparsification Theorem

§ Fix an extended HSS decomposition for a small value of 𝜖.

§ First color the sparse vertices using the greedy strategy.

§ Next process almost-cliques one by one and list-color using
the constrained b-matching view: the challenging part.

§ While we only need an existence argument for proving the
palette sparsification theorem, this constructive proof
strategy can be turned into an efficient algorithm into each
of the three sublinear models considered here.

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Proving Palette Sparsification Theorem

Strengthening the Palette
Sparsification Theorem?

Palette Sparsification with Fewer Colors

Could we establish palette sparsification theorem by
sampling only O(1) colors at each vertex?

Claim: There exist graphs such that if each vertex samples
𝑜 log 𝑛 colors, then almost certainly no feasible coloring
exists among sampled colors.

§ Suppose 𝐺 consists of 𝑛/ log 𝑛 copies of the graph 𝐾UVW L.
§ Then if each vertex samples 𝑜 log 𝑛 colors, then almost

certainly some clique fails to sample log 𝑛 distinct colors.
§ So almost certainly no valid coloring exists among

sampled colors.

Palette Sparsification for 𝐶-Coloring

Does a similar sparsification result hold for 𝐶-colorable
graphs for 𝐶 ≤ Δ?

Claim: There exist Δ-colorable graphs such that unless each
vertex samples Ω(Δt.u) colors, w.h.p. there is no feasible
coloring exists among the sampled colors.

§ Consider the graph 𝐾XE-and remove an edge between
any pair 𝑢, 𝑣 of vertices – this is a Δ-colorable graph.

§ In any Δ-coloring, 𝑢 and 𝑣 must receive the same color.
§ But unless each of 𝑢 and 𝑣 samples at least Ω(Δt.u)colors,

this is unlikely.

Concluding Remarks

§ We showed a non-adaptive sparsification result for (Δ+1)-
coloring.

§ Any graph can be sparsified to a graph with :𝑂(𝑛) edges
such that list-coloring the sparsified graph is equivalent
to (Δ+1)-coloring the original graph.

§ The sparsification can be used to obtain essentially
optimal sublinear algorithms for three well-studied
models of sublinear algorithms:
§ Streaming model for sublinear space,
§ Query model for sublinear time, and
§ MPC model for sublinear communication.

Thank you !

