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Solving Linear Systems

 Input: 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛

 Output: vector 𝑥 that solves 𝐴𝑥 = 𝑏

 Many algorithms, different variants:

 Matrix 𝐴 is sparse, Laplacian, PSD etc.

 Bounded precision (solution 𝑥 is approximate) vs. exact arithmetic

 Significant progress: Linear system in Laplacian matrix 𝐿𝐺 can be 

solved approximately in near-linear time ෨𝑂(nnz 𝐿𝐺 ⋅ log
1

𝜖
) [Spielman-

Teng’04, …, Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu’14] 
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Our focus: Sublinear running time
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Sublinear-Time Solver

 Input: 𝐴 ∈ ℝ𝑛×𝑛, 𝑏 ∈ ℝ𝑛 (also 𝜖 > 0) and 𝑖 ∈ [𝑛]

 Output: approximate coordinate ො𝑥𝑖 from (any) solution 𝑥∗ to 𝐴𝑥 = 𝑏

 Accuracy bound ො𝑥 − 𝑥∗ ∞ ≤ 𝜖 𝑥∗ ∞

 Formal requirement: There is a solution 𝑥∗ to the system, such that 

∀𝑖 ∈ 𝑛 , Pr ො𝑥𝑖 − 𝑥𝑖
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4

 Follows framework of Local Computation Algorithms (LCA), 

previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie’10]
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Motivation

 Fast quantum algorithms for solving linear systems and for machine 

learning problems [Harrow-Hassidim-Lloyd’09, …] 

 Can we match their performance classically? 

 Recent success story: quantum  classical algorithm [Tang’18]

 New direction in sublinear-time algorithms

 “Local” computation in numerical problems 

 Compare computational models (representation, preprocessing), 

accuracy guarantees, input families (e.g., Laplacian vs. PSD)  

 Known quantum algorithms have modeling requirements (e.g., quantum 

encoding of 𝑏)
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Algorithm for Laplacians

 Informally: Can solve Laplacian systems of bounded-degree 

expander in polylog(n) time

 Key limitations: sparsity and condition number 

 Notation:

 𝐿𝐺 = 𝐷 − 𝐴 is the Laplacian matrix of graph 𝐺

 𝐿𝐺
+ is its Moore-Penrose pseudo-inverse 

 Theorem 1: Suppose the input is a 𝑑-regular 𝑛-vertex graph 𝐺, 

together with its condition number 𝜅 > 0, 𝑏 ∈ ℝ𝑛, 𝑢 ∈ 𝑛 and 𝜖 > 0. 

Our algorithm computes ො𝑥𝑢 ∈ ℝ such that for 𝑥∗ = 𝐿𝐺
+𝑏, 

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4
,

and runs in time ෨𝑂(𝑑𝜖−2𝑠3) for 𝑠 = ෨𝑂(𝜅 log 𝑛). 
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More inputs? Faster?
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Some Extensions

 Can replace 𝑛 with 𝑏 0

 Example: Effective resistance can be approximate (in expanders) in 

constant running time!

𝑅eff(𝑢, 𝑣) = 𝑒𝑢 − 𝑒𝑣
𝑇𝐿𝐺

+(𝑒𝑢 − 𝑒𝑣)

 Improved running time if 

 Graph 𝐺 is preprocessed 

 One can sample a neighbor in 𝐺, or 

 Extends to Symmetric Diagonally Dominant (SDD) matrix 𝑆

 𝜅 is condition number of 𝐷−1/2𝑆𝐷−1/2
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Lower Bound for PSD Systems

 Informally: Solving “similar” PSD systems requires polynomial time

 Similar = bounded condition number and sparsity

 Even if the matrix can be preprocessed 

 Theorem 2: For certain invertible PSD matrices 𝑆, with bounded 

sparsity 𝑑 and condition number 𝜅, every randomized algorithm

must query 𝑛Ω(1/𝑑
2) coordinates of the input 𝑏. 

 Here, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy 

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

5
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝑆−1𝑏. 

 In particular, 𝑆 may be preprocessed 
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Dependence on Condition Number

 Informally: Quadratic dependence on 𝜅 is necessary 

 Our algorithmic bound ෩O(𝜅3) is near-optimal, esp. when matrix 𝑆 can be 

preprocessed 

 Theorem 3: For certain graphs 𝐺 of maximum degree 4 and any

condition number 𝜅 > 0, every randomized algorithm (for 𝐿𝐺) with 

accuracy 𝜖 =
1

log 𝑛
must probe ෩Ω(𝜅2) coordinates of the input 𝑏. 

 Again, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy 

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

log 𝑛
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝐿𝐺
+𝑏. 

 In particular, 𝐺 may be preprocessed 
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Algorithmic Techniques

 Famous Monte-Carlo method of von Neumann and Ulam:

Write matrix inverse by power series

∀ 𝑋 < 1, 𝐼 − 𝑋 −1 = σ𝑡≥0𝑋
𝑡

then estimate it by random walks (in 𝑋) with unbiased expectation 

 Inverting a Laplacian 𝐿𝐺 = 𝑑𝐼 − 𝐴 corresponds to summing walks in 𝐺

 For us: view 𝑒𝑢
𝑇 σ𝑡≥0𝐴

𝑡𝑏 as sum over all walks, estimate it by sampling 

(random walks) 

 Need to control: number of walks and their length

 Large powers 𝑡 > 𝑡∗ contribute relatively little (by condition number)

 Estimate truncated series (𝑡 ≤ 𝑡∗) by short random walks (by Chebyshev’s

inequality)
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Related Work – All Algorithmic

 Similar techniques were used before in related contexts but under 

different assumptions, models and analyses: 

 Probabilistic log-space algorithms for approximating 𝐿𝐺
+ [Doron-Le Gall-

Ta-Shma’17] 

 Asks for entire matrix, uses many long random walks (independent of 𝜅)

 Local solver for Laplacian systems with boundary conditions [Chung-

Simpson’15]

 Solver relies on a different power series and random walks

 Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren’16] 

 Polynomial time nnz 𝑆 2/3 under assumptions like bounded matrix norm and 

random 𝑢 ∈ 𝑛

 Local solver for Pagerank [Bressan-Peserico-Pretto’18, Borgs-Brautbar-

Chayes-Teng’14] 

 Polynomial time O(𝑛2/3) and O( nd 1/2) for certain matrices (non-symmetric 

but by definition are diagonally-dominant) 
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Lower Bound Techniques

 PSD lower bound: Take Laplacian of 2𝑑-regular expander but with: 

 high girth, 

 edges signed ±1 at random, and

 𝑂( 𝑑) on the diagonal (PSD but not Laplacian)

 The graph looks like a tree locally 

 Up to radius Θ log 𝑛 around 𝑢

 Set 𝑏𝑤 = ±1 for 𝑤 at distance 𝑟, and 0 otherwise 

 Signs have small bias 𝛿 ≈ 𝑑−𝑟/2

 Recovering it requires reading Ω(𝛿−2) entries

 Using inversion formula, 𝑥𝑢 ≈ average of 𝑏𝑤‘s

 Condition number lower bound: Take two 3-regular expanders 

connected by a matching of size 𝑛/𝜅

 Let 𝑏𝑤 = ±1 with slight bias inside each expander 
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𝑟

𝑏𝑤 = ±1

𝑏𝑤 = 0

𝑏𝑤 = 0

𝑢
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Further Questions

 Accuracy guarantees

 Different norms?

 Condition number of 𝑆 instead of 𝐷−1/2𝑆𝐷−1/2?

 Other representations (input/output models)?

 Access the input 𝑏 via random sampling? 

 Sample from the output 𝑥?

 Other numerical problems?
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Thank You! 
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