On Solving Linear Systems in Sublinear Time

Alexandr Andoni, Columbia University
Robert Krauthgamer, Weizmann Institute
Yosef Pogrow, Weizmann Institute \rightarrow Google
WOLA 2019

Solving Linear Systems

- Input: $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$
- Output: vector x that solves $A x=b$
- Many algorithms, different variants:
- Matrix A is sparse, Laplacian, PSD etc.
- Bounded precision (solution x is approximate) vs. exact arithmetic
- Significant progress: Linear system in Laplacian matrix L_{G} can be solved approximately in near-linear time $\widetilde{O}\left(\mathrm{nnz}\left(L_{G}\right) \cdot \log \frac{1}{\epsilon}\right)$ [SpielmanTeng'04, ..., Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu'14]

Our focus: Sublinear running time

Sublinear-Time Solver

- Input: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ (also $\epsilon>0$) and $i \in[n]$
- Output: approximate coordinate \hat{x}_{i} from (any) solution x^{*} to $A x=b$
- Accuracy bound $\left\|\hat{x}-x^{*}\right\|_{\infty} \leq \epsilon\left\|x^{*}\right\|_{\infty}$
- Formal requirement: There is a solution x^{*} to the system, such that

$$
\forall i \in[n], \quad \operatorname{Pr}\left[\left|\hat{x}_{i}-x_{i}^{*}\right| \leq \epsilon\left\|x^{*}\right\|_{\infty}\right] \geq \frac{3}{4}
$$

- Follows framework of Local Computation Algorithms (LCA), previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie'10]

Motivation

- Fast quantum algorithms for solving linear systems and for machine learning problems [Harrow-Hassidim-Lloyd'09, ...]
- Can we match their performance classically?
- Recent success story: quantum \rightarrow classical algorithm [Tang'18]
- New direction in sublinear-time algorithms
- "Local" computation in numerical problems
- Compare computational models (representation, preprocessing), accuracy guarantees, input families (e.g., Laplacian vs. PSD)
- Known quantum algorithms have modeling requirements (e.g., quantum encoding of b)

Algorithm for Laplacians

- Informally: Can solve Laplacian systems of bounded-degree expander in polylog(n) time
- Key limitations: sparsity and condition number
- Notation:
- $L_{G}=D-A$ is the Laplacian matrix of graph G
- L_{G}^{+}is its Moore-Penrose pseudo-inverse
- Theorem 1: Suppose the input is a d-regular n-vertex graph G, together with its condition number $\kappa>0, b \in \mathbb{R}^{n}, u \in[n]$ and $\epsilon>0$.
Our algorithm computes $\hat{x}_{u} \in \mathbb{R}$ such that for $x^{*}=L_{G}^{+} b$,

$$
\forall u \in[n], \quad \operatorname{Pr}\left[\left|\hat{x}_{u}-x_{u}^{*}\right| \leq \epsilon\left\|x^{*}\right\|_{\infty}\right] \geq \frac{3}{4}
$$

and runs in time $\tilde{O}\left(d \epsilon^{-2} s^{3}\right)$ for $s=\tilde{O}(\kappa \log n)$.
More inputs? Faster?

Some Extensions

- Can replace n with $\|b\|_{0}$
- Example: Effective resistance can be approximate (in expanders) in constant running time!

$$
R_{\mathrm{eff}}(u, v)=\left(e_{u}-e_{v}\right)^{T} L_{G}^{+}\left(e_{u}-e_{v}\right)
$$

- Improved running time if
- Graph G is preprocessed
- One can sample a neighbor in G, or
- Extends to Symmetric Diagonally Dominant (SDD) matrix S
- κ is condition number of $D^{-1 / 2} S D^{-1 / 2}$

Lower Bound for PSD Systems

- Informally: Solving "similar" PSD systems requires polynomial time
- Similar = bounded condition number and sparsity
- Even if the matrix can be preprocessed
- Theorem 2: For certain invertible PSD matrices S, with bounded sparsity d and condition number κ, every randomized algorithm must query $n^{\Omega\left(1 / d^{2}\right)}$ coordinates of the input b.
- Here, the output is $\hat{x}_{u} \in \mathbb{R}$ for a fixed $u \in[n]$, required to satisfy

$$
\begin{aligned}
& \forall u \in[n], \operatorname{Pr}\left[\left|\hat{x}_{u}-x_{u}^{*}\right| \leq \frac{1}{5}\left\|x^{*}\right\|_{\infty}\right] \geq \frac{3}{4}, \\
& \text { for } x^{*}=S^{-1} b .
\end{aligned}
$$

- In particular, S may be preprocessed

Dependence on Condition Number

- Informally: Quadratic dependence on κ is necessary
- Our algorithmic bound $\widetilde{\mathrm{O}}\left(\kappa^{3}\right)$ is near-optimal, esp. when matrix S can be preprocessed
- Theorem 3: For certain graphs G of maximum degree 4 and any condition number $\kappa>0$, every randomized algorithm (for L_{G}) with accuracy $\epsilon=\frac{1}{\log n}$ must probe $\widetilde{\Omega}\left(\kappa^{2}\right)$ coordinates of the input b.
- Again, the output is $\hat{x}_{u} \in \mathbb{R}$ for a fixed $u \in[n]$, required to satisfy

$$
\forall u \in[n], \quad \operatorname{Pr}\left[\left|\hat{x}_{u}-x_{u}^{*}\right| \leq \frac{1}{\log n}\left\|x^{*}\right\|_{\infty}\right] \geq \frac{3}{4},
$$

for $x^{*}=L_{G}^{+} b$.

- In particular, G may be preprocessed

Algorithmic Techniques

- Famous Monte-Carlo method of von Neumann and Ulam:

Write matrix inverse by power series

$$
\forall\|X\|<1, \quad(I-X)^{-1}=\sum_{t \geq 0} X^{t}
$$

then estimate it by random walks (in X) with unbiased expectation

- Inverting a Laplacian $L_{G}=d I-A$ corresponds to summing walks in G
- For us: view $e_{u}^{T} \sum_{t \geq 0} A^{t} b$ as sum over all walks, estimate it by sampling (random walks)
- Need to control: number of walks and their length
- Large powers $t>t^{*}$ contribute relatively little (by condition number)
- Estimate truncated series $\left(t \leq t^{*}\right)$ by short random walks (by Chebyshev's inequality)

Related Work - All Algorithmic

- Similar techniques were used before in related contexts but under different assumptions, models and analyses:
- Probabilistic log-space algorithms for approximating L_{G}^{+}[Doron-Le Gall-Ta-Shma'17]
- Asks for entire matrix, uses many long random walks (independent of κ)
- Local solver for Laplacian systems with boundary conditions [ChungSimpson'15]
- Solver relies on a different power series and random walks
- Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren'16]
- Polynomial time nnz $(S)^{2 / 3}$ under assumptions like bounded matrix norm and random $u \in[n]$
- Local solver for Pagerank [Bressan-Peserico-Pretto'18, Borgs-Brautbar-Chayes-Teng'14]
- Polynomial time $O\left(n^{2 / 3}\right)$ and $O\left((n d)^{1 / 2}\right)$ for certain matrices (non-symmetric but by definition are diagonally-dominant)

Lower Bound Techniques

- PSD lower bound: Take Laplacian of $2 d$-regular expander but with:
- high girth,
- edges signed ± 1 at random, and
- $O(\sqrt{d})$ on the diagonal (PSD but not Laplacian)
- The graph looks like a tree locally
- Up to radius $\Theta(\log n)$ around u
- Set $b_{w}= \pm 1$ for w at distance r, and 0 otherwise
- Signs have small bias $\delta \approx d^{-r / 2}$
- Recovering it requires reading $\Omega\left(\delta^{-2}\right)$ entries
- Using inversion formula, $x_{u} \approx$ average of b_{w} 's

- Condition number lower bound: Take two 3-regular expanders connected by a matching of size n / κ
- Let $b_{w}= \pm 1$ with slight bias inside each expander

Further Questions

- Accuracy guarantees
- Different norms?
- Condition number of S instead of $D^{-1 / 2} S D^{-1 / 2}$?
- Other representations (input/output models)?
- Access the input b via random sampling?
- Sample from the output x ?
- Other numerical problems?

Thank You!

