
On Solving Linear Systems in

Sublinear Time

Alexandr Andoni, Columbia University

Robert Krauthgamer, Weizmann Institute

Yosef Pogrow, Weizmann Institute  Google

WOLA 2019

Solving Linear Systems

 Input: 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛

 Output: vector 𝑥 that solves 𝐴𝑥 = 𝑏

 Many algorithms, different variants:

 Matrix 𝐴 is sparse, Laplacian, PSD etc.

 Bounded precision (solution 𝑥 is approximate) vs. exact arithmetic

 Significant progress: Linear system in Laplacian matrix 𝐿𝐺 can be

solved approximately in near-linear time ෨𝑂(nnz 𝐿𝐺 ⋅ log
1

𝜖
) [Spielman-

Teng’04, …, Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu’14]

On Solving Linear Systems in Sublinear Time

Our focus: Sublinear running time

2

Sublinear-Time Solver

 Input: 𝐴 ∈ ℝ𝑛×𝑛, 𝑏 ∈ ℝ𝑛 (also 𝜖 > 0) and 𝑖 ∈ [𝑛]

 Output: approximate coordinate ො𝑥𝑖 from (any) solution 𝑥∗ to 𝐴𝑥 = 𝑏

 Accuracy bound ො𝑥 − 𝑥∗ ∞ ≤ 𝜖 𝑥∗ ∞

 Formal requirement: There is a solution 𝑥∗ to the system, such that

∀𝑖 ∈ 𝑛 , Pr ො𝑥𝑖 − 𝑥𝑖
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4

 Follows framework of Local Computation Algorithms (LCA),

previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie’10]

On Solving Linear Systems in Sublinear Time 3

Motivation

 Fast quantum algorithms for solving linear systems and for machine

learning problems [Harrow-Hassidim-Lloyd’09, …]

 Can we match their performance classically?

 Recent success story: quantum  classical algorithm [Tang’18]

 New direction in sublinear-time algorithms

 “Local” computation in numerical problems

 Compare computational models (representation, preprocessing),

accuracy guarantees, input families (e.g., Laplacian vs. PSD)

 Known quantum algorithms have modeling requirements (e.g., quantum

encoding of 𝑏)

On Solving Linear Systems in Sublinear Time 4

Algorithm for Laplacians

 Informally: Can solve Laplacian systems of bounded-degree

expander in polylog(n) time

 Key limitations: sparsity and condition number

 Notation:

 𝐿𝐺 = 𝐷 − 𝐴 is the Laplacian matrix of graph 𝐺

 𝐿𝐺
+ is its Moore-Penrose pseudo-inverse

 Theorem 1: Suppose the input is a 𝑑-regular 𝑛-vertex graph 𝐺,

together with its condition number 𝜅 > 0, 𝑏 ∈ ℝ𝑛, 𝑢 ∈ 𝑛 and 𝜖 > 0.

Our algorithm computes ො𝑥𝑢 ∈ ℝ such that for 𝑥∗ = 𝐿𝐺
+𝑏,

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4
,

and runs in time ෨𝑂(𝑑𝜖−2𝑠3) for 𝑠 = ෨𝑂(𝜅 log 𝑛).

On Solving Linear Systems in Sublinear Time

More inputs? Faster?

5

Some Extensions

 Can replace 𝑛 with 𝑏 0

 Example: Effective resistance can be approximate (in expanders) in

constant running time!

𝑅eff(𝑢, 𝑣) = 𝑒𝑢 − 𝑒𝑣
𝑇𝐿𝐺

+(𝑒𝑢 − 𝑒𝑣)

 Improved running time if

 Graph 𝐺 is preprocessed

 One can sample a neighbor in 𝐺, or

 Extends to Symmetric Diagonally Dominant (SDD) matrix 𝑆

 𝜅 is condition number of 𝐷−1/2𝑆𝐷−1/2

On Solving Linear Systems in Sublinear Time 6

Lower Bound for PSD Systems

 Informally: Solving “similar” PSD systems requires polynomial time

 Similar = bounded condition number and sparsity

 Even if the matrix can be preprocessed

 Theorem 2: For certain invertible PSD matrices 𝑆, with bounded

sparsity 𝑑 and condition number 𝜅, every randomized algorithm

must query 𝑛Ω(1/𝑑
2) coordinates of the input 𝑏.

 Here, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

5
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝑆−1𝑏.

 In particular, 𝑆 may be preprocessed

On Solving Linear Systems in Sublinear Time 7

Dependence on Condition Number

 Informally: Quadratic dependence on 𝜅 is necessary

 Our algorithmic bound ෩O(𝜅3) is near-optimal, esp. when matrix 𝑆 can be

preprocessed

 Theorem 3: For certain graphs 𝐺 of maximum degree 4 and any

condition number 𝜅 > 0, every randomized algorithm (for 𝐿𝐺) with

accuracy 𝜖 =
1

log 𝑛
must probe ෩Ω(𝜅2) coordinates of the input 𝑏.

 Again, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

log 𝑛
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝐿𝐺
+𝑏.

 In particular, 𝐺 may be preprocessed

On Solving Linear Systems in Sublinear Time 8

Algorithmic Techniques

 Famous Monte-Carlo method of von Neumann and Ulam:

Write matrix inverse by power series

∀ 𝑋 < 1, 𝐼 − 𝑋 −1 = σ𝑡≥0𝑋
𝑡

then estimate it by random walks (in 𝑋) with unbiased expectation

 Inverting a Laplacian 𝐿𝐺 = 𝑑𝐼 − 𝐴 corresponds to summing walks in 𝐺

 For us: view 𝑒𝑢
𝑇 σ𝑡≥0𝐴

𝑡𝑏 as sum over all walks, estimate it by sampling

(random walks)

 Need to control: number of walks and their length

 Large powers 𝑡 > 𝑡∗ contribute relatively little (by condition number)

 Estimate truncated series (𝑡 ≤ 𝑡∗) by short random walks (by Chebyshev’s

inequality)

On Solving Linear Systems in Sublinear Time 9

Related Work – All Algorithmic

 Similar techniques were used before in related contexts but under

different assumptions, models and analyses:

 Probabilistic log-space algorithms for approximating 𝐿𝐺
+ [Doron-Le Gall-

Ta-Shma’17]

 Asks for entire matrix, uses many long random walks (independent of 𝜅)

 Local solver for Laplacian systems with boundary conditions [Chung-

Simpson’15]

 Solver relies on a different power series and random walks

 Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren’16]

 Polynomial time nnz 𝑆 2/3 under assumptions like bounded matrix norm and

random 𝑢 ∈ 𝑛

 Local solver for Pagerank [Bressan-Peserico-Pretto’18, Borgs-Brautbar-

Chayes-Teng’14]

 Polynomial time O(𝑛2/3) and O(nd 1/2) for certain matrices (non-symmetric

but by definition are diagonally-dominant)

On Solving Linear Systems in Sublinear Time 10

Lower Bound Techniques

 PSD lower bound: Take Laplacian of 2𝑑-regular expander but with:

 high girth,

 edges signed ±1 at random, and

 𝑂(𝑑) on the diagonal (PSD but not Laplacian)

 The graph looks like a tree locally

 Up to radius Θ log 𝑛 around 𝑢

 Set 𝑏𝑤 = ±1 for 𝑤 at distance 𝑟, and 0 otherwise

 Signs have small bias 𝛿 ≈ 𝑑−𝑟/2

 Recovering it requires reading Ω(𝛿−2) entries

 Using inversion formula, 𝑥𝑢 ≈ average of 𝑏𝑤‘s

 Condition number lower bound: Take two 3-regular expanders

connected by a matching of size 𝑛/𝜅

 Let 𝑏𝑤 = ±1 with slight bias inside each expander

On Solving Linear Systems in Sublinear Time

𝑟

𝑏𝑤 = ±1

𝑏𝑤 = 0

𝑏𝑤 = 0

𝑢

11

Further Questions

 Accuracy guarantees

 Different norms?

 Condition number of 𝑆 instead of 𝐷−1/2𝑆𝐷−1/2?

 Other representations (input/output models)?

 Access the input 𝑏 via random sampling?

 Sample from the output 𝑥?

 Other numerical problems?

On Solving Linear Systems in Sublinear Time

Thank You!

12

