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Solving Linear Systems

= Input: A € R and b € R"
= Output: vector x that solves Ax = b

= Many algorithms, different variants:
o Matrix A is sparse, Laplacian, PSD etc.
o Bounded precision (solution x is approximate) vs. exact arithmetic

= Significant progress: Linear system in Laplacian matrix L, can be
solved approximately in near-linear time O(nnz(L;) - log i) [Spielman-
Teng'04, ..., Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu'14]

[Our focus: Sublinear running time ]
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Sublinear-Time Solver

= Input: A € R b e R" (alsoe > 0)and i € [n]
= Output: approximate coordinate x; from (any) solution x* to Ax = b
a Accuracy bound || — x*||o < €]lx*]|oo

= Formal requirement: There is a solution x* to the system, such that

Vi € [n], Pr(|%; — x7| < ellxlleo) =2

= Follows framework of Local Computation Algorithms (LCA),
previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie'10]
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Motivation

= Fast quantum algorithms for solving linear systems and for machine
learning problems [Harrow-Hassidim-Lloyd'09, ...]
o Can we match their performance classically?
o Recent success story: quantum -> classical algorithm [Tang’18]

= New direction in sublinear-time algorithms
o “Local” computation in numerical problems

o Compare computational models (representation, preprocessing),
accuracy guarantees, input families (e.g., Laplacian vs. PSD)

o Known quantum algorithms have modeling requirements (e.g., quantum
encoding of b)
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Algorithm for Laplacians

= Informally: Can solve Laplacian systems of bounded-degree
expander in polylog(n) time
o Key limitations: sparsity and condition number

= Notation:
o Lg; =D — Ais the Laplacian matrix of graph G
o L¢ is its Moore-Penrose pseudo-inverse

= Theorem 1: Suppose the input is a d-regular n-vertex graph G,
together with its condition number k > 0, b € R", u € [n] and € > 0.

Our algorithm computes %, € R such that for x* = L b,

-~ * * 3
vuelnl,  Prlif, —xl <ellcllo] =3

and runs in time 0(de~2s%) for s = O(x logn).

[More Inputs? Faster?]
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Some Extensions

= Can replace n with ||b]|,

o Example: Effective resistance can be approximate (in expanders) in
constant running time!

Refr(uw, v) = (e — ey)" L (ey — €y)

= Improved running time if
o Graph G is preprocessed
o One can sample a neighbor in G, or

= Extends to Symmetric Diagonally Dominant (SDD) matrix S
a K is condition number of D~1/25p~1/2
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Lower Bound for PSD Systems

= Informally: Solving “similar” PSD systems requires polynomial time
o Similar = bounded condition number and sparsity
o Even if the matrix can be preprocessed

= Theorem 2: For certain invertible PSD matrices S, with bounded
sparsity d and condition number x, every randomized algorithm

must query n2(1/4*) coordinates of the input b.

= Here, the output is X, € R for a fixed u € [n], required to satisfy
~ % 1 % 3
vu € [n], Pr 1%, — xil < zllxlle| = 2,

for x* = S™1b.
= |In particular, S may be preprocessed
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Dependence on Condition Number

= Informally: Quadratic dependence on k IS necessary

a Our algorithmic bound O0(x?3) is near-optimal, esp. when matrix S can be
preprocessed

= Theorem 3: For certain graphs ¢ of maximum degree 4 and any
condition number k¥ > 0, every randomized algorithm (for L) with

accuracy € = @ must probe Q(x?) coordinates of the input b.

= Again, the output is x,, € R for a fixed u € [n], required to satisfy

Yu € [n], Pr||x, — x| < .

3
ES >_
<=l 22,

for x* = Lb.
= |In particular, G may be preprocessed
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Algorithmic Techniques

= Famous Monte-Carlo method of von Neumann and Ulam:
Write matrix inverse by power series
viX|l <1, (I =X = Y0 X"
then estimate it by random walks (in X) with unbiased expectation

= Inverting a Laplacian L; = dI — A corresponds to summing walks in G

a For us: view el ¥ ,.,A'h as sum over all walks, estimate it by sampling
(random walks)

= Need to control: number of walks and their length
o Large powers t > t* contribute relatively little (by condition number)

o Estimate truncated series (t < t*) by short random walks (by Chebyshev’s
inequality)
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Related Work — All Algorithmic

= Similar techniques were used before in related contexts but under
different assumptions, models and analyses:

Q

Probabilistic log-space algorithms for approximating L [Doron-Le Gall-
Ta-Shma'l7]

= Asks for entire matrix, uses many long random walks (independent of k)
Local solver for Laplacian systems with boundary conditions [Chung-
Simpson’l5]

= Solver relies on a different power series and random walks

Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren’16]

= Polynomial time nnz(S)?/? under assumptions like bounded matrix norm and
random u € [n]

Local solver for Pagerank [Bressan-Peserico-Pretto’18, Borgs-Brautbar-
Chayes-Teng'14]

= Polynomial time 0(n?/3) and 0((nd)/?) for certain matrices (non-symmetric
but by definition are diagonally-dominant)
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Lower Bound Techniques

= PSD lower bound: Take Laplacian of 2d-regular expander but with:
a high girth, u
o edges signed +1 at random, and
a  0(V/d) on the diagonal (PSD but not Laplacian)
= The graph looks like a tree locally
o Up to radius ©(log n) around u

= Setbh, = +1 for w at distance r, and 0 otherwise

o Signs have small bias § ~ d~7/?
o Recovering it requires reading (.(6 %) entries

= Using inversion formula, x,, = average of b,,'s

= Condition number lower bound: Take two 3-regular expanders
connected by a matching of size n/k

o Let b, = +1 with slight bias inside each expander
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Further Questions

= Accuracy guarantees

o Different norms?
a  Condition number of S instead of D~1/25p~1/29

Other representations (input/output models)?
o Access the input b via random sampling?
o Sample from the output x?

Other numerical problems?

‘Thank You! |
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