
On Solving Linear Systems in

Sublinear Time

Alexandr Andoni, Columbia University

Robert Krauthgamer, Weizmann Institute

Yosef Pogrow, Weizmann Institute Google

WOLA 2019

Solving Linear Systems

 Input: 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛

 Output: vector 𝑥 that solves 𝐴𝑥 = 𝑏

 Many algorithms, different variants:

 Matrix 𝐴 is sparse, Laplacian, PSD etc.

 Bounded precision (solution 𝑥 is approximate) vs. exact arithmetic

 Significant progress: Linear system in Laplacian matrix 𝐿𝐺 can be

solved approximately in near-linear time ෨𝑂(nnz 𝐿𝐺 ⋅ log
1

𝜖
) [Spielman-

Teng’04, …, Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu’14]

On Solving Linear Systems in Sublinear Time

Our focus: Sublinear running time

2

Sublinear-Time Solver

 Input: 𝐴 ∈ ℝ𝑛×𝑛, 𝑏 ∈ ℝ𝑛 (also 𝜖 > 0) and 𝑖 ∈ [𝑛]

 Output: approximate coordinate ො𝑥𝑖 from (any) solution 𝑥∗ to 𝐴𝑥 = 𝑏

 Accuracy bound ො𝑥 − 𝑥∗ ∞ ≤ 𝜖 𝑥∗ ∞

 Formal requirement: There is a solution 𝑥∗ to the system, such that

∀𝑖 ∈ 𝑛 , Pr ො𝑥𝑖 − 𝑥𝑖
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4

 Follows framework of Local Computation Algorithms (LCA),

previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie’10]

On Solving Linear Systems in Sublinear Time 3

Motivation

 Fast quantum algorithms for solving linear systems and for machine

learning problems [Harrow-Hassidim-Lloyd’09, …]

 Can we match their performance classically?

 Recent success story: quantum classical algorithm [Tang’18]

 New direction in sublinear-time algorithms

 “Local” computation in numerical problems

 Compare computational models (representation, preprocessing),

accuracy guarantees, input families (e.g., Laplacian vs. PSD)

 Known quantum algorithms have modeling requirements (e.g., quantum

encoding of 𝑏)

On Solving Linear Systems in Sublinear Time 4

Algorithm for Laplacians

 Informally: Can solve Laplacian systems of bounded-degree

expander in polylog(n) time

 Key limitations: sparsity and condition number

 Notation:

 𝐿𝐺 = 𝐷 − 𝐴 is the Laplacian matrix of graph 𝐺

 𝐿𝐺
+ is its Moore-Penrose pseudo-inverse

 Theorem 1: Suppose the input is a 𝑑-regular 𝑛-vertex graph 𝐺,

together with its condition number 𝜅 > 0, 𝑏 ∈ ℝ𝑛, 𝑢 ∈ 𝑛 and 𝜖 > 0.

Our algorithm computes ො𝑥𝑢 ∈ ℝ such that for 𝑥∗ = 𝐿𝐺
+𝑏,

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤ 𝜖 𝑥∗ ∞ ≥

3

4
,

and runs in time ෨𝑂(𝑑𝜖−2𝑠3) for 𝑠 = ෨𝑂(𝜅 log 𝑛).

On Solving Linear Systems in Sublinear Time

More inputs? Faster?

5

Some Extensions

 Can replace 𝑛 with 𝑏 0

 Example: Effective resistance can be approximate (in expanders) in

constant running time!

𝑅eff(𝑢, 𝑣) = 𝑒𝑢 − 𝑒𝑣
𝑇𝐿𝐺

+(𝑒𝑢 − 𝑒𝑣)

 Improved running time if

 Graph 𝐺 is preprocessed

 One can sample a neighbor in 𝐺, or

 Extends to Symmetric Diagonally Dominant (SDD) matrix 𝑆

 𝜅 is condition number of 𝐷−1/2𝑆𝐷−1/2

On Solving Linear Systems in Sublinear Time 6

Lower Bound for PSD Systems

 Informally: Solving “similar” PSD systems requires polynomial time

 Similar = bounded condition number and sparsity

 Even if the matrix can be preprocessed

 Theorem 2: For certain invertible PSD matrices 𝑆, with bounded

sparsity 𝑑 and condition number 𝜅, every randomized algorithm

must query 𝑛Ω(1/𝑑
2) coordinates of the input 𝑏.

 Here, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

5
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝑆−1𝑏.

 In particular, 𝑆 may be preprocessed

On Solving Linear Systems in Sublinear Time 7

Dependence on Condition Number

 Informally: Quadratic dependence on 𝜅 is necessary

 Our algorithmic bound ෩O(𝜅3) is near-optimal, esp. when matrix 𝑆 can be

preprocessed

 Theorem 3: For certain graphs 𝐺 of maximum degree 4 and any

condition number 𝜅 > 0, every randomized algorithm (for 𝐿𝐺) with

accuracy 𝜖 =
1

log 𝑛
must probe ෩Ω(𝜅2) coordinates of the input 𝑏.

 Again, the output is ො𝑥𝑢 ∈ ℝ for a fixed 𝑢 ∈ 𝑛 , required to satisfy

∀𝑢 ∈ 𝑛 , Pr ො𝑥𝑢 − 𝑥𝑢
∗ ≤

1

log 𝑛
𝑥∗ ∞ ≥

3

4
,

for 𝑥∗ = 𝐿𝐺
+𝑏.

 In particular, 𝐺 may be preprocessed

On Solving Linear Systems in Sublinear Time 8

Algorithmic Techniques

 Famous Monte-Carlo method of von Neumann and Ulam:

Write matrix inverse by power series

∀ 𝑋 < 1, 𝐼 − 𝑋 −1 = σ𝑡≥0𝑋
𝑡

then estimate it by random walks (in 𝑋) with unbiased expectation

 Inverting a Laplacian 𝐿𝐺 = 𝑑𝐼 − 𝐴 corresponds to summing walks in 𝐺

 For us: view 𝑒𝑢
𝑇 σ𝑡≥0𝐴

𝑡𝑏 as sum over all walks, estimate it by sampling

(random walks)

 Need to control: number of walks and their length

 Large powers 𝑡 > 𝑡∗ contribute relatively little (by condition number)

 Estimate truncated series (𝑡 ≤ 𝑡∗) by short random walks (by Chebyshev’s

inequality)

On Solving Linear Systems in Sublinear Time 9

Related Work – All Algorithmic

 Similar techniques were used before in related contexts but under

different assumptions, models and analyses:

 Probabilistic log-space algorithms for approximating 𝐿𝐺
+ [Doron-Le Gall-

Ta-Shma’17]

 Asks for entire matrix, uses many long random walks (independent of 𝜅)

 Local solver for Laplacian systems with boundary conditions [Chung-

Simpson’15]

 Solver relies on a different power series and random walks

 Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren’16]

 Polynomial time nnz 𝑆 2/3 under assumptions like bounded matrix norm and

random 𝑢 ∈ 𝑛

 Local solver for Pagerank [Bressan-Peserico-Pretto’18, Borgs-Brautbar-

Chayes-Teng’14]

 Polynomial time O(𝑛2/3) and O(nd 1/2) for certain matrices (non-symmetric

but by definition are diagonally-dominant)

On Solving Linear Systems in Sublinear Time 10

Lower Bound Techniques

 PSD lower bound: Take Laplacian of 2𝑑-regular expander but with:

 high girth,

 edges signed ±1 at random, and

 𝑂(𝑑) on the diagonal (PSD but not Laplacian)

 The graph looks like a tree locally

 Up to radius Θ log 𝑛 around 𝑢

 Set 𝑏𝑤 = ±1 for 𝑤 at distance 𝑟, and 0 otherwise

 Signs have small bias 𝛿 ≈ 𝑑−𝑟/2

 Recovering it requires reading Ω(𝛿−2) entries

 Using inversion formula, 𝑥𝑢 ≈ average of 𝑏𝑤‘s

 Condition number lower bound: Take two 3-regular expanders

connected by a matching of size 𝑛/𝜅

 Let 𝑏𝑤 = ±1 with slight bias inside each expander

On Solving Linear Systems in Sublinear Time

𝑟

𝑏𝑤 = ±1

𝑏𝑤 = 0

𝑏𝑤 = 0

𝑢

11

Further Questions

 Accuracy guarantees

 Different norms?

 Condition number of 𝑆 instead of 𝐷−1/2𝑆𝐷−1/2?

 Other representations (input/output models)?

 Access the input 𝑏 via random sampling?

 Sample from the output 𝑥?

 Other numerical problems?

On Solving Linear Systems in Sublinear Time

Thank You!

12

