On Solving Linear Systems in Sublinear Time

Alexandr Andoni, Columbia University

Robert Krauthgamer, Weizmann Institute

Yosef Pogrow, Weizmann Institute → Google

WOLA 2019

Solving Linear Systems

- Input: $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$
- Output: vector x that solves Ax = b
- Many algorithms, different variants:
 - Matrix A is sparse, Laplacian, PSD etc.
 - Bounded precision (solution x is approximate) vs. exact arithmetic
- Significant progress: Linear system in Laplacian matrix L_G can be solved approximately in near-linear time $\tilde{O}(\text{nnz}(L_G) \cdot \log \frac{1}{\epsilon})$ [Spielman-Teng'04, ..., Cohen-Kyng-Miller-Pachocky-Peng-Rao-Xu'14]

Our focus: Sublinear running time

Sublinear-Time Solver

- Input: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ (also $\epsilon > 0$) and $i \in [n]$
- Output: approximate coordinate x̂_i from (any) solution x* to Ax = b
 □ Accuracy bound ||x̂ x*||_∞ ≤ ε||x*||_∞
- Formal requirement: There is a solution x^* to the system, such that $\forall i \in [n], \qquad \Pr[|\hat{x}_i x_i^*| \le \epsilon ||x^*||_{\infty}] \ge \frac{3}{4}$
- Follows framework of Local Computation Algorithms (LCA), previously used for graph problems [Rubinfeld-Tamir-Vardi-Xie'10]

Motivation

- Fast quantum algorithms for solving linear systems and for machine learning problems [Harrow-Hassidim-Lloyd'09, ...]
 - Can we match their performance classically?
 - Recent success story: quantum → classical algorithm [Tang'18]
- New direction in sublinear-time algorithms
 - "Local" computation in numerical problems
 - Compare computational models (representation, preprocessing), accuracy guarantees, input families (e.g., Laplacian vs. PSD)
 - Known quantum algorithms have modeling requirements (e.g., quantum encoding of b)

Algorithm for Laplacians

- Informally: Can solve Laplacian systems of bounded-degree expander in polylog(n) time
 - Key limitations: sparsity and condition number

Notation:

- $L_G = D A$ is the Laplacian matrix of graph G
- L_G^+ is its Moore-Penrose pseudo-inverse
- Theorem 1: Suppose the input is a d-regular n-vertex graph G, together with its condition number $\kappa > 0$, $b \in \mathbb{R}^n$, $u \in [n]$ and $\epsilon > 0$. Our algorithm computes $\hat{x}_u \in \mathbb{R}$ such that for $x^* = L_G^+ b$,

$$\forall u \in [n], \qquad \Pr[|\hat{x}_u - x_u^*| \le \epsilon ||x^*||_{\infty}] \ge \frac{3}{4},$$

and runs in time $\tilde{O}(d\epsilon^{-2}s^3)$ for $s = \tilde{O}(\kappa \log n)$.

More inputs? Faster?

Some Extensions

- Can replace n with $||b||_0$
 - Example: Effective resistance can be approximate (in expanders) in constant running time!

$$R_{\text{eff}}(u, v) = (e_u - e_v)^T L_G^+(e_u - e_v)$$

- Improved running time if
 - Graph G is preprocessed
 - One can sample a neighbor in G, or
- Extends to Symmetric Diagonally Dominant (SDD) matrix S
 - $\sim \kappa$ is condition number of $D^{-1/2}SD^{-1/2}$

Lower Bound for PSD Systems

- Informally: Solving "similar" PSD systems requires polynomial time
 - Similar = bounded condition number and sparsity
 - Even if the matrix can be preprocessed
- Theorem 2: For certain invertible PSD matrices S, with bounded sparsity d and condition number κ , every randomized algorithm must query $n^{\Omega(1/d^2)}$ coordinates of the input b.
- Here, the output is $\hat{x}_u \in \mathbb{R}$ for a fixed $u \in [n]$, required to satisfy

$$\forall u \in [n], \qquad \Pr\left[|\hat{x}_u - x_u^*| \le \frac{1}{5} \|x^*\|_{\infty}\right] \ge \frac{3}{4},$$
for $x^* = S^{-1}b$.

In particular, S may be preprocessed

Dependence on Condition Number

- Informally: Quadratic dependence on κ is necessary
 - Our algorithmic bound $\widetilde{O}(\kappa^3)$ is near-optimal, esp. when matrix S can be preprocessed
- Theorem 3: For certain graphs G of maximum degree 4 and G condition number K > 0, every randomized algorithm (for G) with accuracy G = G must probe G (G) coordinates of the input G.
- Again, the output is $\hat{x}_u \in \mathbb{R}$ for a fixed $u \in [n]$, required to satisfy

$$\forall u \in [n], \qquad \Pr\left[|\hat{x}_u - x_u^*| \le \frac{1}{\log n} \|x^*\|_{\infty}\right] \ge \frac{3}{4},$$
for $x^* = L_G^+ b$.

In particular, G may be preprocessed

Algorithmic Techniques

Famous Monte-Carlo method of von Neumann and Ulam:

Write matrix inverse by power series

$$\forall ||X|| < 1,$$
 $(I - X)^{-1} = \sum_{t \ge 0} X^t$

then estimate it by random walks (in X) with unbiased expectation

- Inverting a Laplacian $L_G = dI A$ corresponds to summing walks in G
 - For us: view $e_u^T \sum_{t\geq 0} A^t b$ as sum over all walks, estimate it by sampling (random walks)
- Need to control: number of walks and their length
 - Large powers $t > t^*$ contribute relatively little (by condition number)
 - Estimate truncated series $(t \le t^*)$ by short random walks (by Chebyshev's inequality)

Related Work – All Algorithmic

- Similar techniques were used before in related contexts but under different assumptions, models and analyses:
 - Probabilistic log-space algorithms for approximating L_G^+ [Doron-Le Gall-Ta-Shma'17]
 - Asks for entire matrix, uses many long random walks (independent of κ)
 - Local solver for Laplacian systems with boundary conditions [Chung-Simpson'15]
 - Solver relies on a different power series and random walks
 - Local solver for PSD systems [Shyamkumar-Banerjee-Lofgren'16]
 - Polynomial time $nnz(S)^{2/3}$ under assumptions like bounded matrix norm and random $u \in [n]$
 - Local solver for Pagerank [Bressan-Peserico-Pretto'18, Borgs-Brautbar-Chayes-Teng'14]
 - Polynomial time $O(n^{2/3})$ and $O((nd)^{1/2})$ for certain matrices (non-symmetric but by definition are diagonally-dominant)

Lower Bound Techniques

- PSD lower bound: Take Laplacian of 2d-regular expander but with:
 - high girth,
 - edges signed ±1 at random, and
 - $\bigcirc O(\sqrt{d})$ on the diagonal (PSD but not Laplacian)
- The graph looks like a tree locally
 - □ Up to radius $\Theta(\log n)$ around u
- Set $\frac{b_w}{b_w} = \pm 1$ for w at distance r, and 0 otherwise
 - □ Signs have small bias $\delta \approx d^{-r/2}$
 - Recovering it requires reading $\Omega(\delta^{-2})$ entries
- Using inversion formula, $x_u \approx$ average of b_w 's

- Condition number lower bound: Take two 3-regular expanders connected by a matching of size n/κ
 - Let $b_w = \pm 1$ with slight bias inside each expander

Further Questions

- Accuracy guarantees
 - Different norms?
 - Condition number of S instead of $D^{-1/2}SD^{-1/2}$?
- Other representations (input/output models)?
 - Access the input b via random sampling?
 - Sample from the output x?
- Other numerical problems?

Thank You!