Daisies and Their Applications

Oded Lachish

Based on joint works with Eldar Fischer, Tom Gur and Yadu Vadusev
Setting

- Sublinear algorithms
- Complexity parameter: Query complexity
 - Property testing
 - (relaxed) Locally decodable codes

Querying versus Sampling
Querying – “smart” selection of queries that depends on the goal.
Sampling – every bit is sampled independently with the same probability.
Querying versus Sampling

Querying –

“smart” selection of queries that depends on the goal.

Result - **optimal use of queries**, but

queries are not guaranteed to be reusable!

Sampling –

every bit is sampled independently with the same probability.

Result - **wasteful use of queries**, but

queries are reusable!

We are interested in converting Querying algorithms to sampling algorithms
Converting Querying to Sampling

Implications (mostly due to reusability):

- GL’19 - Lower bounds on relaxed locally decodable codes
- FLV’14 – for every testable property there exists a non-trivial tester:
 - Multi-testing – can use \(o(n) \) samples for testing \(n \) testable properties
 - Privacy – query oracle can’t tell which property is tested
 - Union of very a large number of testable properties is non-trivially testable
Conversion: naïve idea

Setting:
- Input alphabet is $\{0, 1\}$
- Querying algorithm is non-adaptive and can be viewed as selecting a set of queries from a distribution over sets of queries of size q

Todo:
- Prove a volume lemma or two – the union of sets in the support that are “good” is large (their union is linear in the input size n)
- Prove that, with high probability, a set of samples contains a “good” set of queries
Very wishful thinking

The sets in the support of the distribution are pairwise disjoint.

Sampling should work if

• The union of the “good” sets is linear in the input size

• Sampler probability is about is about $n - \frac{1}{q}$
Problem: Sunflowers

- A family of sets S is a *sunflower* if there exists a set K such that the intersection of every pair of distinct sets in A, B in S is K.

What if the support of the querying algorithm is a sunflower.

The probability of sampling the Kernel is too small. So, forget about seeing a set from the support.
Actually sunflowers are nice

What if the support of the querying algorithm is a sunflower.

The probability of sampling the Kernel is too small. So forget about support.

- However, there is a good chance of sampling a whole petal, and
- in the settings of our interest, changing a few bits in the input doesn’t change the results of the algorithms by much (or at least nothing we can’t handle)
Sunflowers

- Suppose the problem was checking whether a crossword puzzle is filled correctly or far from that.
- Every set is supposed to be a natural language word.
- If it is far from being filled correctly, for every guess of the letter in the kernel, with high probability, the sample is going to contain a petal that rules it out.
The PROBLEM with sunflowers

- The support may not be a sunflower.
- Ideally, we would like to partition the family of sets into \(poly(q) \) disjoint sunflowers.

Solution: look for other flowers
Daisies (Wikipedia)

- “The species habitually colonises lawns”, and
- “is difficult to eradicate by mowing – hence the term 'lawn daisy'. Wherever it appears it is often considered an invasive weed.”
- “The flower heads are composite”
Simple Daisy

- A family of sets S is a *simple daisy* if there exists a set K such that the intersection of every pair of distinct sets in A, B in S is a *subset* of K.

- Same ideas as before work if there are enough petals.

Problem: finding simple daisies.
t-daisy

- A family of sets S is a \textit{t-daisy} if there exists a set K such that any x outside is in at most t petals.

The advantages of \textit{t}-daisies.

We can actually partition the support of the query algorithm into daisies and we can extract simple daisies from them.
t-daisy partition lemma

(Important – the sets are the sets in the support that the querying algorithm uses, we assume there number is \(cn\) – constant, \(n\) size of input)

Let \(S\) be the support.

The kernel of the first daisy \(K_1\), is the set of every \(x\) that is in at least \(\frac{1}{cn^q}\) sets from \(S\).

\(n\) - is the size of the input,

\(C\) - is a constant

The daisies sets are the sets of \(S\) that have an intersection of size \(q-1\) or more with \(K\).
t-daisy partition lemma

- Remove the sets of daisy $i-1$ from S.
 The kernel of the i'th daisy K_i, is the set of every x that is in at least $\frac{i}{cn^q}$ sets from S.
- The daisies sets are the sets of S that have an intersection of size exactly $q-i$ with K.
Thank You