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Communication Network = Problem Instance:
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LOCAL Model [Linial; FOCS ’87]
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Discrete synchronous rounds:
• local computations
• exchange messages with all neighbors

𝑮 = 𝑽, 𝑬 ,
𝒏 = 𝑽

(computations unbounded, message sizes are unbounded)

time complexity = number of rounds

I am green
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Communication Network = Problem Instance:

4

CONGEST MODEL
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Discrete synchronous rounds:
• local computations
• exchange messages with all neighbors

(computations unbounded, message sizes are unbounded)        )

time complexity = number of rounds

𝑶(𝐥𝐨𝐠𝒏) bits

𝑮 = 𝑽, 𝑬 ,
𝒏 = 𝑽

5

15

6

11

1

21

33

26

9

2

7

8
27



5

Classic Big Four (Greedy Regime)

Maximal Ind. Set (MIS) 𝚫 + 𝟏 -Vertex Coloring

(𝟐𝚫 − 𝟏)-Edge ColoringMaximal Matching

(Δ: maximum degree of 𝐺)
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In the LOCAL Model …
Greedy Below Greedy

Maximal IS 2𝑂 log 𝑛 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
2-approx.

poly log 𝑛 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
(𝟏 + 𝝐) 𝐥𝐨𝐠𝚫-approx.

2𝑂 log 𝑛 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
rank-approx.

2𝑂 log 𝑛 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝚫 + 𝟏 -vertex coloring 2𝑂 log 𝑛 2𝑂 log 𝑛 𝚫-vertex coloring

𝟐𝚫 − 𝟏 -edge coloring poly log 𝑛 poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

maximal matching poly log 𝑛 poly log 𝑛 Maximum Matching,
𝟏 + 𝝐 -approx.

CONGEST
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In the LOCAL Model …
Greedy Below Greedy

Maximal IS 2𝑂 log 𝑛 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

𝚫 + 𝟏 -vertex coloring 2𝑂 log 𝑛 2𝑂 log 𝑛 𝚫-vertex coloring

𝟐𝚫 − 𝟏 -edge coloring poly log 𝑛 poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

maximal matching poly log 𝑛 poly log 𝑛 Maximum Matching,
𝟏 + 𝝐 -approx.

CONGEST

“Problems that do not have 
easy sequential greedy 
algorithms.”

“Problems that do have
easy sequential greedy 
algorithms.”
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Outline
This Talk: How do we use LOCAL? Below Greedy

Maximum IS
7/8-approx.

 Ω(𝑛2) 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
exact

 Ω(𝑛2) 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝝌(𝑮)-vertex coloring  Ω(𝑛2) 2𝑂 log 𝑛 𝚫-vertex coloring

edge coloring ? poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

Maximum matching
exact

? poly log 𝑛 Maximum Matching,
𝟏 − 𝝐 -approx.

Technique 1: Ball growing

Technique 2: Local filling

Technique 3: Aug. paths

CONGEST

[Ghaffari, Kuhn, Maus; STOC ’17]

[Ghaffari, Hirvonen, Kuhn, Maus; PODC ’18]

[Ghaffari, Kuhn, Maus, Uitto; STOC ’18]
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Technique 1: Ball Growing
This Talk: How do we use LOCAL? Below Greedy

Maximum IS
7/8-approx.

 Ω(𝑛2) 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
exact

 Ω(𝑛2) 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝝌(𝑮)-vertex coloring  Ω(𝑛2) 2𝑂 log 𝑛 𝚫-vertex coloring

edge coloring ? poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

Maximum matching
exact

? poly log 𝑛 Maximum Matching,
𝟏 − 𝝐 -approx.

Technique 1: Ball growing

Technique 2: Local filling

Technique 3: Aug. paths



10

Sequential Ball Growing (MaxIS)

𝒗

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.
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Sequential Ball Growing (MaxIS)

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.
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Sequential Ball Growing (MaxIS)

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.
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Sequential Ball Growing (MaxIS)

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.
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Sequential Ball Growing (MaxIS)

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.
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Sequential Ball Growing (MaxIS)

Safe Ball 𝑩𝒓(𝒗): |𝑀𝑎𝑥𝐼𝑆(𝐵𝑟+1)| < (1 + 𝜖) ⋅ 𝑀𝑎𝑥𝐼𝑆(𝐵𝑟)

Terminates with small radius 𝑟 = 𝑂(𝜖−1 log 𝑛).

Find safe ball: Set 𝑟 = 0 and increase 𝑟 until ball 𝐵𝑟 is safe.

Sequentially computes a 1 + 𝜖 −1-approximation for MaxIS.
(using unbounded computation)
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Parallel Ball Growing

Theorem
Using (𝐩𝐨𝐥𝐲 𝐥𝐨𝐠 𝒏 , 𝐩𝐨𝐥𝐲 𝐥𝐨𝐠 𝒏)-network decompositions  
“sequentially ball growing” can be “done in parallel” in LOCAL.

Corollary 

There are 𝐩𝐨𝐥𝐲 𝐥𝐨𝐠 𝒏 randomized and 𝟐𝑶 𝐥𝐨𝐠 𝒏 deterministic 
𝟏 + 𝝐 -approximation algorithms for covering and packing 

integer linear programs. 

This includes maximum independent set, minimum dominating 
set, vertex cover, … .

[STOC ’17, Ghaffari, Kuhn, Maus]

[STOC ’17, Ghaffari, Kuhn, Maus]
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Technique 2: Local Filling
This Talk: How do we use LOCAL? Below Greedy

Maximum IS
7/8-approx.

 Ω(𝑛2) 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
exact

 Ω(𝑛2) 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝝌(𝑮)-vertex coloring  Ω(𝑛2) 2𝑂 log 𝑛 𝚫-vertex coloring

edge coloring ? poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

Maximum matching
exact

? poly log 𝑛 Maximum Matching,
𝟏 − 𝝐 -approx.

Technique 1: Ball growing

Technique 2: Local filling

Technique 3: Aug. paths
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Δ-Coloring

Definition: An induced subgraph 𝐻 ⊆ 𝐺 is called an easy 
component if any 𝛥𝐺-coloring of  𝐺 ∖ 𝐻 can be extended to a 
𝛥𝐺-coloring of 𝐺 without changing the coloring on 𝐺 ∖ 𝐻.

[PODC ’18; Ghaffari, Hirvonen, Kuhn, Maus]

Theorem: Let 𝐺 be a graph (≠clique) with max. degree Δ ≥ 3. 
Every node of 𝐺 has a small diameter easy component in 
distance at most O(log n).

Well studied under the name degree chosable components.

“ “
[Erdős et al. ’79, Vizing ‘76]

Previous Work: [Panconesi, Srinivasan; STOC ’93]
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Find an MIS 𝑴 of small diameter easy components
Define 𝑂 log𝑛 Layers: 𝑳𝒊 = 𝑣 𝑣 in distance 𝒊 to some component in 𝑴}
For 𝑖 = 𝑂(log 𝑛) to 1

color nodes in 𝐿𝑖 through solving a (deg+1)-list coloring
Color easy components in M
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Find an MIS 𝑴 of small diameter easy components
Define 𝑂 log𝑛 Layers: 𝑳𝒊 = 𝑣 𝑣 in distance 𝒊 to some component in 𝑴}
For 𝑖 = 𝑂(log 𝑛) to 1
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Color easy components in M
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Find an MIS 𝑴 of small diameter easy components
Define 𝑂 log𝑛 Layers: 𝑳𝒊 = 𝑣 𝑣 in distance 𝒊 to some component in 𝑴}
For 𝑖 = 𝑂(log 𝑛) to 1

color nodes in 𝐿𝑖 through solving a (deg+1)-list coloring
Color easy components in M

Greedy regime
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Find an MIS 𝑴 of small diameter easy components
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Color easy components in M

Greedy regime
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Find an MIS 𝑴 of small diameter easy components
Define 𝑂 log𝑛 Layers: 𝑳𝒊 = 𝑣 𝑣 in distance 𝒊 to some component in 𝑴}
For 𝑖 = 𝑂(log 𝑛) to 1

color nodes in 𝐿𝑖 through solving a (deg+1)-list coloring
Color easy components in M

Greedy regime
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Find an MIS 𝑴 of small diameter easy components
Define 𝑂 log𝑛 Layers: 𝑳𝒊 = 𝑣 𝑣 in distance 𝒊 to some component in 𝑴}
For 𝑖 = 𝑂(log 𝑛) to 1

color nodes in 𝐿𝑖 through solving a (deg+1)-list coloring
Color easy components in M

Greedy regime
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Technique 3: Augmenting Paths
This Talk: How do we use LOCAL? Below Greedy

Maximum IS
7/8-approx.

 Ω(𝑛2) 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
exact

 Ω(𝑛2) 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝝌(𝑮)-vertex coloring  Ω(𝑛2) 2𝑂 log 𝑛 𝚫-vertex coloring

edge coloring ? poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

Maximum matching
exact

? poly log 𝑛 Maximum Matching,
𝟏 − 𝝐 -approx.

Technique 1: Ball growing

Technique 2: Local filling

Technique 3: Aug. paths
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1 + 𝜖 Δ-Edge Coloring

Theorem
1 + 𝜖 Δ-edge coloring can be efficiently reduced to the 

computation of weighted maximum matching approximations . 

The reduction can be executed in the CONGEST model. 

[Ghaffari, Kuhn, Maus, Uitto; STOC ’18]

For 𝑖 = 1 to 2Δ − 1
compute a maximal matching 𝑀 of 𝐺 𝑀good

color edges of 𝑀 with color 𝑖 𝑀good

remove 𝑀 from 𝐺𝑀good

Next

Well known: 2Δ − 1 iterations suffice to color all edges.



27

1 + 𝜖 Δ-Edge Coloring

𝟏 + 𝝐 𝚫-edge coloring through good matchings:
Reduce the max degree (amortized) at a rate of (1 − 𝜖).

For 𝑖 = 1 to 1 + 𝜖 Δ
compute a good matching 𝑀good of 𝐺

color edges of 𝑀good with color 𝑖

remove 𝑀good from 𝐺

Next

Theorem
1 + 𝜖 Δ-edge coloring can be efficiently reduced to the 

computation of weighted maximum matching approximations . 

The reduction can be executed in the CONGEST model. 

[Ghaffari, Kuhn, Maus, Uitto; STOC ’18]



Technique 1: Sequential ball growing
Problems: Approx. for MaxIS, MinDS, MinVC and many more …
How do we (ab)use LOCAL?

Compute optimal solutions in small diameter graphs
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Summary Techniques (LOCAL)

Technique 2: Local filling
Problems: Δ-Coloring, ?
How do we (ab)use LOCAL?

“Existence” + small diameter is enough to obtain a solution

Technique 3: Augmenting paths
Problems: 1 + 𝜖 Δ Edge Coloring, Maximum Matching Approx.
How do we (ab)use LOCAL?

Finding a maximal set of augmenting paths

CONGEST
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Lower Bounds in CONGEST
Lower Bounds in CONGEST Below Greedy

Maximum IS
7/8-approx.

 Ω(𝑛2) 2𝑂 log 𝑛 Maximum IS, 
𝟏 − 𝝐 -approx.

vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 vertex cover, 
𝟏 + 𝝐 -approx.

min. dominating set,
exact

 Ω(𝑛2) 2𝑂 log 𝑛 min dominating set,
𝟏 + 𝝐 -approx.

hypergraph vertex cover, 
exact

 Ω(𝑛2) 2𝑂 log 𝑛 hypergraph vertex cover,
𝟏 + 𝝐 -approx.

𝝌(𝑮)-vertex coloring  Ω(𝑛2) 2𝑂 log 𝑛 𝚫-vertex coloring

?-edge coloring ? poly log 𝑛 𝟏 + 𝝐 𝚫-edge coloring

Maximum matching
almost exact

Ω( 𝑛 poly log 𝑛 Maximum Matching,
𝟏 − 𝝐 -approx.

CONGEST
[BCDELP ‘19], [AKO ’18], [ACK ’16]
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Let’s Discuss …

A lot was spared in this talk (randomized!)

• (1 − 𝜖) max cut approximation: [Zelke ‘09]
Similar to technique 1: Subsampling + solving optimally

• spanners, e.g., [Censor-Hillel, Dory; PODC ‘18]

• randomized edge coloring below the greedy regime, e.g., 
[Elkin, Pettie, Su; SODA ’15], [Chang, He, Li, Pettie, Uitto; SODA 
‘18], [Su, Vu; STOC ‘19]  

• MPC: Maximum Matching approx. in time 𝑂(log log 𝑛)
[Behnezhad, Hajiaghayi, Harris; FOCS ‘19]

• lots more …

What can or cannot be done below the greedy regime in 
distributed models with limited communication (CONGEST, 
CONGESTED CLIQUE, MPC, …)?

Thank you


