Coloring

Distributed Algorithms **Below** the **Greedy Regime**

Yannic Maus

Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Jara Uitto

LOCAL Model [Linial; FOCS '87]

Communication Network = Problem Instance: G = (V, E),

Discrete synchronous rounds:

- local computations
- exchange messages with <u>all</u> neighbors

(computations <u>unbounded</u>, message sizes are <u>unbounded</u>)

time complexity = number of rounds

CONGEST MODEL

Communication Network = Problem Instance: G = (V, E),

Discrete synchronous rounds:

- local computations
- exchange messages with <u>all</u> neighbors

(computations unbounded, message sizes are $O(\log n)$ bits

time complexity = number of rounds

Classic Big Four (Greedy Regime)

(Δ : maximum degree of G)

In the LOCAL Model ...

Greedy		В	elow Greedy
Maximal IS	$2^{O(\sqrt{\log n})}$	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
vertex cover, 2-approx.	$\operatorname{poly} \log n$	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
min. dominating set, $(1 + \epsilon) \log \Delta$ -approx.	$2^{O\left(\sqrt{\log n}\right)}$	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
hypergraph vertex cover, rank-approx.	$2^{O\left(\sqrt{\log n}\right)}$	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
$(\Delta + 1)$ -vertex coloring	$2^{O\left(\sqrt{\log n}\right)}$	$2^{O(\sqrt{\log n})}$	△-vertex coloring
$(2\Delta - 1)$ -edge coloring	poly log n	$\operatorname{poly} \log n$	$(1+\epsilon)\Delta$ -edge coloring
maximal matching	poly log n	poly log n	Maximum Matching, $(1 + \epsilon)$ -approx.

In the LOCAL Model ...

Greedy	Below Greedy
"Problems that do have easy sequential greedy algorithms."	"Problems that do not have easy sequential greedy algorithms."

Outline

This Talk: How do we use LOCAL?	Below Greedy	
Technique 1: Ball growing [Ghaffari, Kuhn, Maus; STOC '17]	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
Technique 2: Local filling	$2^{O(\sqrt{\log n})}$	△-vertex coloring

[Ghaffari, Hirvonen, Kuhn, Maus; PODC '18]

Technique 1: Ball Growing

This Talk: How do we use LOCAL?	Below Greedy	
Technique 1: Ball growing	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
Technique 2: Local filling	$2^{O(\sqrt{\log n})}$	△-vertex coloring
Technique 3: Aug. paths	$\operatorname{poly} \log n$	$(1 + \epsilon)\Delta$ -edge coloring
	poly log n	Maximum Matching, $(1 - \epsilon)$ -approx.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Safe Ball $B_r(v)$: $|MaxIS(B_{r+1})| < (1 + \epsilon) \cdot |MaxIS(B_r)|$

Find safe ball: Set r=0 and increase r until ball B_r is safe.

Parallel Ball Growing

Theorem

Using (poly $\log n$, poly $\log n$)-network decompositions "sequentially ball growing" can be "done in parallel" in LOCAL.

[STOC '17, Ghaffari, Kuhn, Maus]

Corollary

There are **poly log** n randomized and $2^{O(\sqrt{\log n})}$ deterministic $(1 + \epsilon)$ -approximation algorithms for *covering and packing integer linear programs*.

This includes maximum independent set, minimum dominating set, vertex cover,

[STOC '17, Ghaffari, Kuhn, Maus]

Technique 2: Local Filling

This Talk: How do we use LOCAL?	Below Greedy	
Technique 1: Ball growing	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
Technique 2: Local filling	$2^{O(\sqrt{\log n})}$	△-vertex coloring
Technique 3: Aug. paths	$\operatorname{poly} \log n$	$(1 + \epsilon)\Delta$ -edge coloring
	poly log n	Maximum Matching, $(1 - \epsilon)$ -approx.

Δ-Coloring

Previous Work: [Panconesi, Srinivasan; STOC '93]

Definition: An induced subgraph $H \subseteq G$ is called an *easy* component if any Δ_G -coloring of $G \setminus H$ can be extended to a Δ_G -coloring of G without changing the coloring on $G \setminus H$.

Well studied under the name degree chosable components.

[Erdős et al. '79, Vizing '76]

"

Theorem: Let G be a graph (\neq clique) with max. degree $\Delta \geq 3$. Every node of G has a small diameter easy component in distance at most $O(\log n)$.

Find an MIS $\it M$ of small diameter easy components

Find an MIS ${\it M}$ of small diameter easy components

Define $O(\log n)$ Layers: $L_i = \{v \mid v \text{ in distance } i \text{ to some component in } M\}$

Find an MIS ${\it M}$ of small diameter easy components Define $O(\log n)$ Layers: ${\it L_i} = \{v \mid v \text{ in distance } i \text{ to } {\it For } i = O(\log n) \text{ to } 1$

Greedy regime

color nodes in L_i through solving a (deg+1)-list coloring

Find an MIS M of small diameter easy components Define $O(\log n)$ Layers: $L_i = \{v \mid v \text{ in distance } i \text{ to Greedy regime} \}$ For $i = O(\log n)$ to 1 color nodes in L_i through solving a (deg+1)-list coloring

Find an MIS M of small diameter easy components Define $O(\log n)$ Layers: $L_i = \{v \mid v \text{ in distance } i \text{ to Greedy regime} \}$ For $i = O(\log n)$ to 1 color nodes in L_i through solving a (deg+1)-list coloring

Find an MIS **M** of **small diameter easy components**

Define $O(\log n)$ Layers: $L_i = \{v \mid v \text{ in distance } i \text{ to }$

Greedy regime

For $i = O(\log n)$ to 1

color nodes in L_i through solving a (deg+1)-list coloring

Color easy components in M

Technique 3: Augmenting Paths

This Talk: How do we use LOCAL?	Below Greedy	
Technique 1: Ball growing	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
Technique 2: Local filling	$2^{O(\sqrt{\log n})}$	△-vertex coloring
Technique 3: Aug. paths	$\operatorname{poly} \log n$	$(1 + \epsilon)\Delta$ -edge coloring
	$\operatorname{poly} \log n$	Maximum Matching, $(1 - \epsilon)$ -approx.

$(1 + \epsilon)\Delta$ -Edge Coloring

Theorem

Next

 $(1+\epsilon)\Delta$ -edge coloring can be **efficiently** reduced to the computation of **weighted maximum matching approximations** .

The **reduction** can be executed in the **CONGEST model**.

[Ghaffari, Kuhn, Maus, Uitto; STOC '18]

```
For i=1 to 2\Delta-1 compute a maximal matching\ M of G color edges of M with color i remove M from G
```

Well known: $2\Delta - 1$ iterations suffice to color all edges.

$(1 + \epsilon)\Delta$ -Edge Coloring

Theorem

 $(1+\epsilon)\Delta$ -edge coloring can be **efficiently** reduced to the computation of **weighted maximum matching approximations** .

The **reduction** can be executed in the **CONGEST model**.

[Ghaffari, Kuhn, Maus, Uitto; STOC '18]

```
For i=1 to (1+\epsilon)\Delta compute a good matching M_{\rm good} of G color edges of M_{\rm good} with color i remove M_{\rm good} from G
```

 $(\mathbf{1}+\epsilon)\Delta$ -edge coloring through good matchings: Reduce the max degree (amortized) at a rate of $(1-\epsilon)$.

Summary Techniques (LOCAL)

Technique 1: Sequential ball growing

Problems: Approx. for MaxIS, MinDS, MinVC and many more ...

How do we (ab)use LOCAL?

Compute optimal solutions in small diameter graphs

Technique 2: Local filling

Problems: Δ -Coloring, ?

How do we (ab)use LOCAL?

"Existence" + small diameter is enough to obtain a solution

Technique 3: Augmenting paths

Problems: $(1 + \epsilon)\Delta$ Edge Coloring, Maximum Matching Approx.

How do we (ab) use LOCAL?

Finding a maximal set of augmenting paths

Lower Bounds in CONGEST

Lower Bounds in CONGEST		Below Greedy	
Maximum IS 7/8-approx.	$\widetilde{\Omega}(n^2)$	$2^{O(\sqrt{\log n})}$	Maximum IS, $(1 - \epsilon)$ -approx.
vertex cover, exact	$\widetilde{\Omega}(n^2)$	$2^{O(\sqrt{\log n})}$	vertex cover, $(1 + \epsilon)$ -approx.
min. dominating set, exact	$\widetilde{\Omega}(n^2)$	$2^{O(\sqrt{\log n})}$	min dominating set, $(1 + \epsilon)$ -approx.
hypergraph vertex cover, exact	$\widetilde{\Omega}(n^2)$	$2^{O(\sqrt{\log n})}$	hypergraph vertex cover, $(1 + \epsilon)$ -approx.
$\chi(G)$ -vertex coloring	$\widetilde{\Omega}(n^2)$	$2^{O(\sqrt{\log n})}$	△-vertex coloring
?-edge coloring	?	$\operatorname{poly} \log n$	$(1 + \epsilon)\Delta$ -edge coloring
Maximum matching almost exact	$\Omega(\sqrt{n}$	poly log n	Maximum Matching, $(1 - \epsilon)$ -approx.

[BCDELP '19], [AKO '18], [ACK '16]

Let's Discuss ...

A lot was spared in this talk (randomized!)

- (1ϵ) max cut approximation: [Zelke '09] Similar to technique 1: Subsampling + solving optimally
- spanners, e.g., [Censor-Hillel, Dory; PODC '18]
- randomized edge coloring below the greedy regime, e.g., [Elkin, Pettie, Su; SODA '15], [Chang, He, Li, Pettie, Uitto; SODA '18], [Su, Vu; STOC '19]
- MPC: Maximum Matching approx. in time $O(\log \log n)$ [Behnezhad, Hajiaghayi, Harris; FOCS '19]
- lots more ...

What **can** or **cannot** be done **below the greedy regime** in distributed models with **limited communication** (CONGEST, CONGESTED CLIQUE, MPC, ...)?

Thank you