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LOCAL Model [Linial: FOCS '87]

Communication Network = Problem Instance: G = (V, E),

n=v

Discrete synchronous rounds:
* |ocal computations
* exchange messages with all neighbors

(computations unbounded, message sizes are unbounded)

time complexity = number of rounds




CONGEST MODEL

Communication Network = Problem Instance: G = (V, E),

P
o4

Discrete synchronous rounds:
* |ocal computations
* exchange messages with all neighbors

(computations unbounded, message sizes are O(logn) bits )

time complexity = number of rounds




Classic Big Four (Greedy Regime)

Maximal Ind. Set (MIS) (A + 1)-Vertex Coloring

Maximal Matching (2A — 1)-Edge Coloring

(A: maximum degree of G)



In the LOCAL Model ...

Maximal IS 20(y/logn) 20(y/logn) Maximum IS,
(1 — €)-approx.

vertex cover, polylogn 20(y/logn) vertex covetr,
2-approx. (1 + €)-approx.
min. dominating set, 20({/logn) 20({/logn) min dominating set,
(1 + €) log A-approx. (1 + €)-approx.
hypergraph vertex cover, 20(y/logn) 20(y/logn) hypergraph vertex cover,
rank-approx. (1 + €)-approx.
(A + 1)-vertex coloring 20(y/logn) 20(y/logn) A-vertex coloring
(2A — 1)-edge coloring polylogn polylogn (1 + €)A-edge coloring
maximal matching polylogn polylogn Maximum Matching,

(1 + €)-approx.
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In the LOCAL Model ...

Below Greedy

“Problems that do have
easy sequential greedy
algorithms.”

CONGEST &

“Problems that do have
easy sequential greedy
algorithms.”




Outline
This Talk: How do we use LOCAL?

Technique 1: Ball growing 20(/logn)  Maximum IS,
[Ghaffari, Kuhn, Maus; STOC ’17] (1 — €)-approx.
20(y/logn) vertex cover,
(1 + €)-approx.
20( /logn) min dominating set,
(1 + €)-approx.

20({/logn) hypergraph vertex cover,
(1 + €)-approx.

Technique 2: Local filling 20(Jlogn)  A-vertex coloring

[Ghaffari, Hirvonen, Kuhn, Maus; PODC 18]

Technique 3: Aug. paths poly logn (1 + €)A-edge coloring

[Ghaffari, Kuhn, Maus, Uitto; STOC ‘18] polylogn Maximum Matching,
(1 — €)-approx.

CONGEST é?,



Technique 1: Ball Growing
This Talk: How do we use LOCAL?

20(w/log n) Maximum IS,
(1 — €)-approx.

20(y/logn) vertex cover,
(1 + €)-approx.
20(1/10g n) min dominating set,
(1 + €)-approx.

20(y/logn) hypergraph vertex cover,
(1 + €)-approx.

Technique 2: Local filling 20(Jlogn)  A-vertex coloring
Technique 3: Aug. paths polylogn (1 + €)A-edge coloring

polylogn Maximum Matching,
(1 — €)-approx.



Sequential Ball Growing (MaxIS)

Safe Ball B,.(v): [MaxIS(B,+1)| < (1 +¢€) - |[MaxIS(B,)|

Find safe ball: Set r = 0 and increase r until ball B, is safe.

Terminates with small radius 7 = O(e ! logn).
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Safe Ball B,.(v): |[MaxIS(B,;1)| < (1 +¢€) - |MaxIS(B,)]

Terminates with small radius 7 = O(e ! logn).
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Sequential Ball Growing (MaxIS)

Sequentially computes a (1 + €)™ !-approximation for MaxIS.
(using unbounded computation)

Safe Ball B,.(v): |[MaxIS(B,;1)| < (1 +€) - |MaxIS(B,)]

Terminates with small radius 7 = O(e ! logn).
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Parallel Ball Growing

Theorem
Using (poly log n, poly log n)-network decompositions
“sequentially ball growing” can be “done in parallel” in LOCAL.

[STOC 17, Ghaffari, Kuhn, Maus]

Corollary

There are poly log n randomized and 20(J/logn) deterministic
(1 + €)-approximation algorithms for covering and packing
integer linear programs.

This includes maximum independent set, minimum dominating
set, vertex cover, ....

[STOC 17, Ghaffari, Kuhn, Maus]
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Technigue 2: Local Filling
This Talk: How do we use LOCAL?

Technique 1: Ball growing 20(Vlogn)  Maximum IS,
(1 — €)-approx.

20({/logn) vertex cover,
(1 + €)-approx.

20({/logn) min dominating set,
(1 + €)-approx.

20({/logn) hypergraph vertex cover,
(1 + €)-approx.

Technique 2: Local filling | 20177 & verexcoloring

Technique 3: Aug. paths polylogn (1 + €)A-edge coloring

polylogn Maximum Matching,
(1 — €)-approx.



A-Coloring

{4

Previous Work: [Panconesi, Srinivasan; STOC '93]

Definition: An induced subgraph H € ( is called an easy
component if any A;-coloring of G \ H can be extended to a
A-coloring of G without changing the coloring on G \ H.

Well studied under the name degree chosable components.
[Erdés et al. ’79, Vizing ‘76]

Theorem: Let G be a graph (#clique) with max. degree A > 3.
Every node of ¢ has a small diameter easy component in
distance at most O(log n).

[PODC '18; Ghaffari, Hirvonen, Kuhn, Maus]

{}
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/
Find an MIS M of small diameter easy components
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Find an MIS M of small diameter easy components
Define O(logn) Layers: L; = {v | v in distance i to some component in M}
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—
Find an MIS M of small diameter easy components
Define O(logn) Layers: L; = {v | v in distance i to
Fori = O(logn) to 1
color nodes in L; through solving a (deg+1)-list coloring

Greedy regime
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—
Find an MIS M of small diameter easy components
Define O(logn) Layers: L; = {v | v in distance i to
Fori = O(logn) to 1
color nodes in L; through solving a (deg+1)-list coloring
Color easy components in M

Greedy regime
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Technigue 3: Augmenting Paths
This Talk: How do we use LOCAL?

Technique 1: Ball growing 20(logn) — Maximum IS,
(1 — €)-approx.

20( /logn) vertex cover,
(1 + €)-approx.

20({/logn) min dominating set,
(1 + €)-approx.

20({/logn) hypergraph vertex cover,
(1 + €)-approx.

Technique 2: Local filling 20(logn)  A-vertex coloring

polylogn (1 + €)A-edge coloring

polylogn Maximum Matching,
(1 — €)-approx.




(1 + €)A-Edge Coloring

Theorem
(1 + €)A-edge coloring can be efficiently reduced to the
computation of weighted maximum matching approximations .

The reduction can be executed in the CONGEST model.

[Ghaffari, Kuhn, Maus, Uitto; STOC '18]

e D
Fori = 1to2A —1

compute a maximal matching M of G
color edges of M with color i
remove M from G
. Next y

Well known: 2A — 1 jterations suffice to color all edges.



(1 + €)A-Edge Coloring

Theorem
(1 + €)A-edge coloring can be efficiently reduced to the
computation of weighted maximum matching approximations .

The reduction can be executed in the CONGEST model.

[Ghaffari, Kuhn, Maus, Uitto; STOC '18]

s ™
Fori =1to(1+¢)A

compute a good matching Mgqoq of G
color edges of Mg,oq With color i
remove Mgqoq from G
. Next y

(1 + €)A-edge coloring through good matchings:
Reduce the max degree (amortized) at a rate of (1 — €).



Summary Technigues (LOCAL)

Technique 1: Sequential ball growing

Problems: Approx. for MaxIS, MinDS, MinVC and many more ...
How do we (ab)use LOCAL?

Compute optimal solutions in small diameter graphs

Technique 2: Local filling
Problems: A-Coloring, ?
How do we (ab)use LOCAL?
“Existence” + small diameter is enough to obtain a solution

Technique 3: Augmenting paths

Problems: (1 + €)A Edge Coloring, Maximum Matching Approx.
How do we {ebjuse LOCAL?

Finding a maximal set of augmenting paths

—~—
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Lower Bounds in CONGEST

Lower Bounds in CONGEST

Maximum IS
7/8-approx.

vertex cover,
exact

min. dominating set,
exact

hypergraph vertex cover,
exact

x(G)-vertex coloring

?-edge coloring

Maximum matching
almost exact

) -

Q(n?)
Q(n?)
Q(n?)

Q(n?)

Q(n?)

Q(Wn

20(y/logn)
20(/logn)
20(/logn)

20(,/Togm)

20(y/logn)

polylogn
polylogn

Maximum IS,
(1 — €)-approx.

vertex cover,
(1 + €)-approx.

min dominating set,
(1 + €)-approx.

hypergraph vertex cover,
(1 + €)-approx.

A-vertex coloring

(1 + €)A-edge coloring

Maximum Matching,
(1 — €)-approx.

[BCDELP “19], [AKO "18], [ACK "16]

—~—
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Let’s Discuss ...

A lot was spared in this talk (randomized!)

(1 — €) max cut approximation: [Zelke ‘09]
Similar to technique 1: Subsampling + solving optimally

spanners, e.g., [Censor-Hillel, Dory; PODC ‘18]

randomized edge coloring below the greedy regime, e.g.,
[Elkin, Pettie, Su; SODA ‘15], [Chang, He, Li, Pettie, Uitto; SODA
‘18], [Su, Vu; STOC ‘19]

MPC: Maximum Matching approx. in time O (loglogn)
[Behnezhad, Hajiaghayi, Harris; FOCS “19]

lots more ...

What can or cannot be done below the greedy regime in
distributed models with limited communication (CONGEST,
CONGESTED CLIQUE, MPC, ...)?

Thank you
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