Greedy maximal independent sets via local limits

Peleg Michaeli

Tel Aviv University
Workshop on Local Algorithms - WOLA 2019 ETH Zurich, July 21, 2019

Joint work with Michael Krivelevich, Tamás Mészáros and Clara Shikhelman

Independent sets

Independent sets

- Finding maximum independent sets is very hard

Independent sets

- Finding maximum independent sets is very hard
- Finding maximal independent sets is very easy

Random greedy MIS - sequential

Random greedy MIS - parallel

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.
Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.
Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.
Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Wormald '95

$$
\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.
Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Wormald '95
$\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (same for d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.
Flory '39, Page '59
$\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84
$\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda$
Wormald '95
$\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (same for d-regular graphs with girth $\rightarrow \infty$)
BJL '17, BJP '17 $\quad \iota$ of random graphs with given degree sequence

Random labelling

仑

Random labelling

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We first calculate $\mathbb{E}\left(\iota\left(G_{n}\right)\right)=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen u.a.r.

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We first calculate $\mathbb{E}\left(\iota\left(G_{n}\right)\right)=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen u.a.r.
- We hope that this is determined by a small neighbourhood of ρ_{n}.

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We first calculate $\mathbb{E}\left(\iota\left(G_{n}\right)\right)=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen u.a.r.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- This local view of ρ_{n} is captured by the local limit of G_{n}.

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We first calculate $\mathbb{E}\left(\iota\left(G_{n}\right)\right)=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen u.a.r.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- This local view of ρ_{n} is captured by the local limit of G_{n}.
- Decay of correlation $\Longrightarrow \iota\left(G_{n}\right) \sim \mathbb{E}\left(\iota\left(G_{n}\right)\right)$ a.a.s.

General framework

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We first calculate $\mathbb{E}\left(\iota\left(G_{n}\right)\right)=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen u.a.r.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- This local view of ρ_{n} is captured by the local limit of G_{n}.
- Decay of correlation $\Longrightarrow \iota\left(G_{n}\right) \sim \mathbb{E}\left(\iota\left(G_{n}\right)\right)$ a.a.s.
- Develop a machinery to calculate the probability that the root is red.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits

We say that a (random) graph sequence G_{n} locally converges to a random rooted graph (U, ρ), if for every $r \geq 0$, the ball $B_{r}\left(G, \rho_{n}\right)$ converges in distribution to $B_{r}(U, \rho)$, where ρ_{n} is a uniform vertex of G_{n}.

Examples

- $P_{n}, C_{n} \xrightarrow{\text { loc }} \mathbb{Z}$
- $[n]^{d} \xrightarrow{\text { loc }} \mathbb{Z}^{d}$
- $G(n, \lambda / n) \xrightarrow{\text { loc }} \mathcal{T}_{\lambda}$, a Galton-Watson Pois (λ) tree
- $G_{n, d} \xrightarrow{\text { loc }}$ the d-regular tree
- Uniform random tree $T_{n} \xrightarrow{\text { loc }} \hat{\mathcal{T}}_{1}$, a size-biased GW Pois(1) tree
- Finite d-ary balanced tree $\xrightarrow{\text { loc }}$ the canopy tree

Convergence of the greedy independence ratio

Theorem (Krivelevich, Mészáros, M., Shikhelman '19+)
Suppose G_{n} has subfactorial growth.
If $G_{n} \xrightarrow{\text { loc }}(U, \rho)$ then $\iota\left(G_{n}\right) \rightarrow \iota(U, \rho)$ a.a.s.

Decay of correlation

Decay of correlation

Decay of correlation

Decay of correlation

Decay of correlation

5

Decay of correlation

童

Decay of correlation

(S

Decay of correlation

Locally tree-like

We need to calculate $\iota(U, \rho)$,

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown...

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown... Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is a.s. a tree.

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown... Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is a.s. a tree.

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is a.s. a tree.

Children of the past are roots to independent subtrees.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
y(x)=\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \wedge \sigma_{\rho}<x\right)
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=z\right) d z
\end{aligned}
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Thus, if y is a unique solution of

$$
y^{\prime}(x)=\sum_{\ell \in \mathbb{N}} \mathbb{P}\left(\xi^{<x}=\ell\right)\left(1-\frac{y(x)}{x}\right)^{\ell}, \quad y(0)=0
$$

then, $\iota(U, \rho)=y(1)$.

Systems of ordinary differential equations

Let (U, ρ) be a multi-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}(U, \rho) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Thus, if y is a unique solution of

$$
y_{k}^{\prime}(x)=\sum_{\ell \in \mathbb{N}^{T}} \prod_{j \in T} \mathbb{P}\left(\xi_{k \rightarrow j}^{<x}=\ell_{j}\right)\left(1-\frac{y_{j}(x)}{x}\right)^{\ell_{j}}, \quad y_{k}(0)=0
$$

then, $\iota(U, \rho)=\mathbb{E}\left(y_{k}(1)\right)$.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Kolchin, Grimmett: the sequence of uniform random trees locally converges to the size-biased Galton-Watson Pois(1) tree.

Uniform random trees

$$
y_{\mathrm{t}}^{\prime}(x)=\sum_{d=0}^{\infty} \frac{(\lambda x)^{d}}{e^{\lambda x} d!}\left(1-\frac{y_{\mathrm{t}}(x)}{x}\right)^{d}=e^{-\lambda y_{\mathrm{t}}(x)}
$$

hence $y_{\mathrm{t}}(x)=\ln (1+\lambda x) / \lambda$. Thus

$$
\iota(G(n, \lambda / n)) \rightarrow \iota\left(\mathcal{T}_{\lambda}\right)=y_{\mathrm{t}}(1)=\frac{\ln (1+\lambda)}{\lambda}
$$

Uniform random trees

$$
y_{\mathrm{t}}^{\prime}(x)=\sum_{d=0}^{\infty} \frac{(\lambda x)^{d}}{e^{\lambda x} d!}\left(1-\frac{y_{\mathrm{t}}(x)}{x}\right)^{d}=e^{-\lambda y_{\mathrm{t}}(x)}
$$

hence $y_{\mathrm{t}}(x)=\ln (1+\lambda x) / \lambda$. Thus

$$
\iota(G(n, \lambda / n)) \rightarrow \iota\left(\mathcal{T}_{\lambda}\right)=y_{\mathrm{t}}(1)=\frac{\ln (1+\lambda)}{\lambda}
$$

$$
y_{\mathbf{s}}^{\prime}(x)=\left(1-y_{\mathbf{s}}(x)\right) y_{\mathbf{t}}^{\prime}(x)=\left(1-y_{\mathbf{s}}(x)\right) e^{-\lambda y_{\mathrm{t}}(x)}=\frac{1-y_{\mathbf{s}}(x)}{1+\lambda x}
$$

hence $y_{\mathbf{s}}(x)=1-(1+\lambda x)^{-1 / \lambda}$, and for $\lambda=1, y_{\mathbf{s}}(1)=1-(1+x)^{-1}$, and we get

$$
\iota\left(T_{n}\right) \rightarrow \iota\left(\hat{\mathcal{T}}_{1}\right)=y_{\mathrm{s}}(1)=\frac{1}{2}
$$

Simulations don't lie

Simulations don't lie

red: $125(50 \%)$, green: $92(\approx 37 \%)$, blue: $32(\approx 13 \%)$, black: 1

Simulations don't lie (but I do)

red: $125(50 \%)$, green: $92(\approx 37 \%)$, blue: $32(\approx 13 \%)$, black: 1

Greedy independence ratio - results

Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Wormald '95

$$
\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Wormald '95 $\quad \iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84

$$
\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda
$$

Wormald '95

$$
\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84
$\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda$
Wormald '95

$$
\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59

$$
\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)
$$

McDiarmid '84
$\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda$
Wormald '95
$\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84
$\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda$
Wormald '95
$\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)
KMMS '19+ $\quad \iota\left(T_{n}\right) \rightarrow \frac{1}{2}$

Greedy independence ratio - results

Flory '39, Page '59 $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84
$\iota(G(n, \lambda / n)) \rightarrow \ln (1+\lambda) / \lambda$
Wormald '95
$\iota\left(G_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer \& Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)
KMMS '19+
$\iota\left(T_{n}\right) \rightarrow \frac{1}{2}$
(same for functional digraphs)

Bonus: paths are the worst trees

Bonus: paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$

Bonus: paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Bonus: paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Bonus: paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Bonus: paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Theorem (Krivelevich, Mészáros, M., Shikhelman '19+)
If T is a tree on n vertices, then $\iota\left(P_{n}\right) \leq \iota(T)$.

Thank You!

