Walking Randomly, Massively, and Efficiently

Jakub Łącki Slobodan Mitrović Krzysztof Onak Piotr Sankowski
Why Random Walks?

• Web ratings [Page, Brin, Motwani, Winograd ‘99] [Berkhin ‘05]
 [Chierichetti, Haddadan ‘17]

• Graph partitioning [Andersen, Chung, Lang ‘06]

• Random spanning trees [Kelner, Mądry ‘09]

• Laplacian solvers [Andoni, Krauthgamer, Pogrow ‘18]

• Connectivity [Reif ‘85] [Halperin, Zwick ‘94]

• Matching [Goel, Kapralov, Khanna ‘13]

• Property testing [Goldreich, Ron ‘99] [Kaufman, Krivelevich, Ron ‘04]
 [Czumaj, Sohler ‘10] [Nachmias, Shapira ‘10] [Kale, Seshadhri ‘11]
 [Czumaj, Peng, Sohler ‘15] [Chiplunkar, Kapralov, Khanna, Mousavifar, Peres ‘18]
 [Kumar, Seshadhri, Stolman ‘18] [Czumaj, Monemizadeh, Onak, Sohler ‘19]
How to Compute Random Walks?

- Centralized [direct implementation]
- Streaming [Sarma, Gollapudi, Panigrahy ‘11, Jin ‘19]
- Distributed (CONGEST) [Sarma, Nanongkai, Pandurangan, Tetali’13]
- MPC, undirected graphs *(non-independent walks)* [Bahmani, Chakrabarti, Xin ‘11]
How to Compute Random Walks?

- Centralized [direct implementation]
- Streaming [Sarma, Gollapudi, Panigrahy ‘11, Jin ‘19]
- Distributed (CONGEST) [Sarma, Nanongkai, Pandurangan, Tetali’13]
- MPC, undirected graphs (non-independent walks) [Bahmani, Chakrabarti, Xin ’11]

Our result (undirected graphs):
Independent random walks in MPC with sublinear memory per machine.
Our Results

Input: Undirected graph G; length L

Output: An L-length random walk per vertex; walks mutually independent

Rounds: $O(\log L)$

Space per machine: sublinear in n

Total space: $O(m L \log n)$.
Our Results

Input: Undirected graph G; length L

Output: An L-length random walk per vertex; walks mutually independent

Rounds: $O(\log L)$

Space per machine: sublinear in n

Total space: $O(mL \log n)$.

Applications

- Approximate bipartiteness testing
- Approximate expansion testing
- Approximate connectivity and MST
- PageRank for directed graph
Our Results

Input: Undirected graph G; length L

Output: An L-length random walk per vertex; walks mutually independent

Rounds: $O(\log L)$

Space per machine: sublinear in n

Total space: $O(mL \log n)$.

Applications

- Approximate bipartiteness testing
- Approximate expansion testing
- Approximate connectivity and MST

PageRank for directed graph
Our Results

Input: Undirected graph G; length L

Output: An L-length random walk per vertex; walks mutually independent

Rounds: $O(\log L)$

Space per machine: sublinear in n

Total space: $O(mL \log n)$.

Applications

- Approximate bipartiteness testing
- Approximate expansion testing
- Approximate connectivity and MST
- PageRank for directed graph

Conditional lower-bound of $\Omega(\log L)$
Random Walks in Undirected Graphs
Random Walks: Doubling by Stitching

Output: $\deg(v)$ L-length random walk per v; walks mutually independent

Track *spare* random walks. Use *spare* to *double* wanted ones.
Random Walks: Doubling by Stitching

Output: $\deg(v)$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.
Random Walks: Doubling by Stitching

Output: $\deg(v)$ L-length random walk per v; walks mutually independent

Track *spare* random walks. Use *spare* to double *wanted* ones.
Random Walks: Doubling by Stitching

Output: $\deg(v)$ L-length random walk per v; walks mutually independent.

Track **spare** random walks. Use **spare** to **double** wanted ones.
Random Walks: Doubling by Stitching

Output: $\deg(v)$ L-length random walk per v; walks mutually independent

Track **spare** random walks. Use **spare** to double **wanted** ones.

But how will w know a priori how many walks will pass through it?
Random Walks: Follow Stationary Distribution

But how will we know a priori how many walks will pass through it?
Random Walks: Follow Stationary Distribution

Each vertex v maintains proportionally to $\text{deg}(v)$ random walks.

But how will w know a priori how many walks will pass through it?
Random Walks: Follow Stationary Distribution

Each vertex v maintains proportionally to $\text{deg}(v)$ random walks.

But how will w know a priori how many walks will pass through it?

In expectation, after t steps there are proportionally to $\text{deg}(v)$ walks ending at v.
Random Walks: Takeaway

1. Following stationary distribution allows us to “predict” the future.
Random Walks: Takeaway

1. Following stationary distribution allows us to “predict” the future.

2. The memory requirement is inversely proportional to the min entry of the stationary distribution.

\[\geq 1/(2m) \]
PageRank for Directed Graphs

Input: Directed graph G^D

Output: $(1+\alpha)$-approximate PageRank;

ε is the jumping probability

Rounds: $\tilde{O}(\varepsilon^{-1} \log \log n)$

Space per machine: sublinear in n

Total space: $\tilde{O}((m + n^{1+o(1)}) \varepsilon^{-4} \alpha^{-2})$.
Random Walks: Undirected vs Directed

Undirected graphs

VS

Directed graphs
(Prelude) Random Walks: Undirected vs Directed

Undirected graphs

- Stationary distribution is easy to compute: $\frac{\text{deg}(v)}{2m}$.

Directed graphs

- Stationary distribution of v is "nicely" lower-bounded.
(Prelude) Random Walks: Undirected vs Directed

Undirected graphs

- Stationary distribution is easy to compute: $\frac{\text{deg}(v)}{2m}$.
- Stationary distribution of v is “nicely” lower-bounded.

Directed graphs

- Stationary distribution can be difficult to compute.

VS
(Prelude) Random Walks: Undirected vs Directed

Undirected graphs

- Stationary distribution is easy to compute: $\deg(v) / (2m)$.
- Stationary distribution of v is “nicely” lower-bounded.

Directed graphs

- Stationary distribution can be difficult to compute.
- Stationary distribution of v can be $O(1/2^n)$.
PageRank: Undirected vs Directed Graphs

Input:

\[P = GD^{-1} \]

\[T = (1 - \epsilon)P + \frac{\epsilon}{n}11^T \]

Output: Stationary distribution of \(T \)
PageRank: Undirected vs Directed Graphs

\[\text{Input: } P = GD^{-1} \]

\[T = (1 - \epsilon)P + \frac{\epsilon}{n} \mathbf{11}^T \]

\[\text{Output: Stationary distribution of } T \]

- Following \(P \) with prob. \(1 - \epsilon \).
- Jumping to a random vertex.
- Walk matrix of \(G \).
PageRank: Undirected vs Directed Graphs

Input: \(P = GD^{-1} \)

\[
T = (1 - \epsilon)P + \frac{\epsilon}{n}11^T
\]

Output: Stationary distribution of \(T \)

PageRank can be approximated from random walks of \(T \). [Breyer ‘02]
PageRank: Undirected vs Directed Graphs

Input: \(P = GD^{-1} \)

\[T = (1 - \epsilon)P + \frac{\epsilon}{n}11^T \]

Output: Stationary distribution of \(T \)

PageRank can be approximated from random walks of \(T \). [Breyer '02]

Undirected graphs

Directed graphs

\(T \) and \(P \) are "similar".

VS
PageRank: Undirected vs Directed Graphs

Input: \(P = GD^{-1} \)

\[
T = (1 - \epsilon)P + \frac{\epsilon}{n} \mathbb{1} \mathbb{1}^T
\]

Output: Stationary distribution of \(T \)

PageRank can be approximated from random walks of \(T \). [Breyer ‘02]

Undirected graphs

\(T \) and \(P \) are “similar”.

Directed graphs

We do not know stationary distribution of \(T \).
PageRank: Undirected vs Directed Graphs

Input: $P = GD^{-1}$

$T = (1 - \epsilon)P + \frac{\epsilon}{n} \mathbf{1} \mathbf{1}^T$

Output: Stationary distribution of T

PageRank can be approximated from random walks of T. [Breyer ‘02]

Undirected graphs

T and P are “similar”.

Directed graphs

We do not know stationary distribution of T.

Stationary distribution of v w.r.t. to P can be $O(1/2^n)$.

Stationary distribution of v w.r.t. T at least ϵ/n.

VS
Improvise. Adapt. Overcome
PageRank: **Molding Undirected to Directed**

- PageRank for undirected G.
- PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

PageRank for undirected G.

PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

Randome walks for $(1-\delta)G + \delta G^D$.

PageRank for undirected G.

PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

Random walks for $(1-\delta)G + \delta G^D$.

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank for undirected G.

PageRank for $(1-\delta)G + \delta G^D$.

PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank for undirected G.

PageRank for $(1-\delta)G+\delta G^D$.

PageRank for $(1-2\delta)G+2\delta G^D$.

PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

Random walks for $(1-\delta)G+\delta G^D$.

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank for undirected G.
PageRank for $(1-\delta)G+\delta G^D$.
PageRank for $(1-2\delta)G+2\delta G^D$.
...
PageRank for $\delta G+(1-\delta)G^D$.
PageRank for directed G^D.
PageRank: Molding Undirected to Directed

“Small” changes in T require a “small” increase in the number of spare walks.

Random walks for $(1-\delta)G+\delta G^D$.

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank for undirected G.

PageRank for $(1-\delta)G+\delta G^D$.

PageRank for $(1-2\delta)G+2\delta G^D$.

PageRank for $\delta G+(1-\delta)G^D$.

PageRank for directed G^D.
PageRank: Takeaway

1. The stationary distribution is lower-bounded by ϵ/n.
PageRank: Takeaway

1. The stationary distribution is lower-bounded by ε/n.

2. “Small” changes in a walk matrix affect the stationary distribution by little.
Massively Parallel Computation (MPC) round

Data:

N machines:
Massively Parallel Computation (MPC) round

Data:

\(N \) machines:
Massively Parallel Computation (MPC) round

Data:

\(N \) machines:

process data \textit{locally}
Massively Parallel Computation (MPC) round

Data:

N machines:

Next-round data:
Massively Parallel Computation (MPC) round

Data:

N machines:

Next-round data:

One round
Massively Parallel Computation (MPC) round

Data:

N machines:

Next-round data:

One round
Massively Parallel Computation (MPC) parameters

\[N = \# \text{ of machines} \]
\[S = \text{space per machine} \]
For graphs, \[N \times S = \Theta(\# \text{ of edges}) \]
Massively Parallel Computation (MPC) parameters

\[N = \# \text{ of machines} \]
\[S = \text{space per machine} \]
For graphs, \[N \times S = \Theta(\# \text{ of edges}) \]

Interesting case:
\[S \text{ much smaller than the input size} \]

Goal:
\[\text{make the small \# of rounds} \]