Walking Randomly, Massively, and Efficiently

Jakub Łącki
Slobodan Mitrović
Krzysztof Onak
Piotr Sankowski

Why Random Walks?

- Web ratings [Page, Brin, Motwani, Winograd '99] [Berkhin ‘05]
[Chierichetti, Haddadan '17]
- Graph partitioning [Andersen, Chung, Lang "06]

- Random spanning trees [Kelner, Mądry "09]
- Laplacian solvers [Andoni, Krauthgamer, Pogrow '18]
- Connectivity [Reif '85] [Halperin, Zwick '94]
- Matching [Goel, Kapralov, Khanna '13]
- Property testing [Goldreich, Ron '99] [Kaufman, Krivelevich, Ron ‘04] [CZumaj, Sohler '10] [Nachmias, Shapira '10] [Kale, Seshadhri '11]
[Czumaj, Peng, Sohler '15] [Chiplunkar, Kapralov, Khanna, Mousavifar, Peres '18] [Kumar, Seshadhri, Stolman '18] [Czumaj, Monemizadeh, Onak, Sohler '19]

How to Compute Random Walks?

- Centralized [direct implementation]
- Streaming [sarma, Gollapudi, Panigrahy '11, Jin '19]
- Distributed (CONGEST) [sarma, Nanongkai, Pandurangan, Tetali'13]
- MPC, undirected graphs (non-independent walks) [Bahmani, Chakrabarti, Xin '11]

How to Compute Random Walks?

- Centralized [direct implementation]
- Streaming [sarma, Gollapudi, Panigrahy '11, Jin '19]
- Distributed (CONGEST) [Sarma, Nanongkai, Pandurangan, Tetali'13]
- MPC, undirected graphs (non-independent walks) [Bahmani, Chakrabarti, Xin '11]

Our result (undirected graphs):
Independent random walks in MPC with sublinear memory per machine.

Our Results

Input: Undirected graph G; length L Output: An L-length random walk per vertex; walks mutually independent
Rounds: O(log L)
Space per machine: sublinear in n
Total space: $\mathrm{O}(\mathrm{mL} \log \mathrm{n})$.

Our Results

Input: Undirected graph G; length L
Output: An L-length random walk per vertex; walks mutually independent
Rounds: O(log L)
Space per machine: sublinear in n
Total space: $\mathrm{O}(\mathrm{m} L \log \mathrm{n})$.

Approximate bipartiteness testing

Approximate expansion testing

Approximate connectivity and MST

PageRank for directed graph

Our Results

Input: Undirected graph G; length L
Output: An L-length random walk per vertex; walks mutually independent
Rounds: O(log L)
Space per machine: sublinear in n
Total space: $\mathrm{O}(\mathrm{m} L \log \mathrm{n})$.

Approximate bipartiteness testing

Approximate expansion testing

Approximate connectivity and MST

PageRank for directed graph

Our Results

Input: Undirected graph G; length L
Output: An L-length random walk per vertex; walks mutually independent
Rounds: O(log L)
Space per machine: sublinear in n Total space: $\mathrm{O}(\mathrm{m} L \log n)$.

Conditional lowerbound of $\Omega(\log L)$

Applications

Random Walks in Undirected Graphs

Random Walks: Doubling by Stitching

Output: $\operatorname{deg}(\mathrm{v})$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.

Random Walks: Doubling by Stitching

Output: $\operatorname{deg}(v)$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.

Random Walks: Doubling by Stitching

Output: $\operatorname{deg}(\mathrm{v})$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.

Random Walks: Doubling by Stitching

Output: $\operatorname{deg}(\mathrm{v})$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.

Random Walks: Doubling by Stitching

Output: $\operatorname{deg}(\mathrm{v})$ L-length random walk per v; walks mutually independent

Track spare random walks. Use spare to double wanted ones.

But how will w know a priori how many walks will pass through it?

Random Walks: Follow Stationary Distribution

But how will w know a priori how many walks will pass through it?

Random Walks: Follow Stationary Distribution

But how will w know a priori how many walks will pass through it?

Each vertex v maintains proportionally to deg(v)
random walks.

Random Walks: Follow Stationary Distribution

But how will w know a priori how many walks will pass through it?

Each vertex v maintains proportionally to deg(v)
random walks.

In expectation, after t steps there are proportionally to deg(v) walks ending at v .

Random Walks: Takeaway

1. Following stationary distribution allows us to "predict" the future.

Random Walks: Takeaway

1. Following stationary distribution allows us to "predict" the future.
2. The memory requirement is
$>=1 /(2 \mathrm{~m})$
inversely proportional to the' min entry
of the stationary distribution.

PageRank for Directed Graphs

Input: Directed graph $G^{\text {D }}$

Output: $(1+\alpha)$-approximate PageRank; ε is the jumping probability
Rounds: $\widetilde{O}\left(\varepsilon^{-1} \log \log n\right)$
Space per machine: sublinear in n
Total space: $\tilde{O}\left(\left(m+n^{1+o(1)}\right) \varepsilon^{-4} \alpha^{-2}\right)$.

(Prelude) Random Walks: Undirected vs Directed

Undirected graphs
Directed graphs

(Prelude) Random Walks: Undirected vs Directed

Stationary distribution is easy to compute: $\operatorname{deg}(\mathrm{v}) /(2 \mathrm{~m})$.

VS

Stationary distribution of v is
"nicely" lower-bounded.

(Prelude) Random Walks: Undirected vs Directed

```
Undirected graphs
```

Directed graphs

Stationary distribution is easy to compute: $\operatorname{deg}(\mathrm{v}) /(2 \mathrm{~m})$.

Stationary distribution can
be difficult to compute.

VS
Stationary distribution of v is "nicely" lower-bounded.

(Prelude) Random Walks: Undirected vs Directed

```
Stationary distribution is easy
to compute: \(\operatorname{deg}(v) /(2 m)\).
```

$$
\begin{aligned}
& \text { Stationary distribution can } \\
& \text { be difficult to compute. }
\end{aligned}
$$

VS

PageRank: Undirected vs Directed Graphs

Input: $P=G D^{-1}$

$$
T=(1-\epsilon) P+\frac{\epsilon}{n} \overrightarrow{10}^{T}
$$

Output: Stationary distribution of T

PageRank: Undirected vs Directed Graphs

Output: Stationary distribưtion of

PageRank: Undirected vs Directed Graphs

Input: $P=G D^{-1}$

$$
T=(1-\epsilon) P+\frac{\epsilon}{n} \overrightarrow{1}_{1} \overrightarrow{1}^{T}
$$

Output: Stationary distribution of T

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank: Undirected vs Directed Graphs

Input: $P=G D^{-1}$

$$
T=(1-\epsilon) P+\frac{\epsilon}{n}{\overrightarrow{1} \overrightarrow{1}^{T}}^{T}
$$

Output: Stationary distribution of T

Undirected graphs
T and P are "similar".

PageRank: Undirected vs Directed Graphs

Input: $P=G D^{-1}$

$$
T=(1-\epsilon) P+\frac{\epsilon}{n} \overrightarrow{1}_{1} \overrightarrow{1}^{T}
$$

Output: Stationary distribution of T

Undirected graphs
T and P are "similar".
We do not know stationary distribution of T.

PageRank: Undirected vs Directed Graphs

$$
\text { Input: } \begin{aligned}
P & =G D^{-1} \\
T & =(1-\epsilon) P+\frac{\epsilon}{n}{\overrightarrow{1} \overrightarrow{1}^{T}}^{2}
\end{aligned}
$$

Output: Stationary distribution of T

Undirected graphs
T and P are "similar".
VS

Stationary distribution of v w.r.t. to P can be $O\left(1 / 2^{n}\right)$.

We do not know stationary distribution of T.

PageRank can be approximated from random walks of T. [Breyer ‘02]

Stationary distribution of v w.r.t. T at least ε / n.

PageRank: Molding Undirected to Directed

PageRank for undirected G.

PageRank for directed G^{D}.

PageRank: Molding Undirected to Directed

"Small" changes in T

require a "small" increase in the number of spare walks.

PageRank for undirected G.

PageRank for directed G .

PageRank: Molding Undirected to Directed

"Small" changes in T require a "small" increase in the number of spare walks.

PageRank for undirected G.

Random walks for $(1-\delta) G+\delta G^{D}$.

PageRank for directed G^{D}.

PageRank: Molding Undirected to Directed

"Small" changes in T require a "small" increase in the number of spare walks.

Random walks for $(1-\delta) G+\delta G^{D}$.

PageRank for undirected G.

PageRank for
$(1-\delta) G+\delta G^{D}$.

PageRank can be approximated from random walks of T. [Breyer '02]

PageRank for directed G^{D}.

PageRank: Molding Undirected to Directed

"Small" changes in T require a "small" increase in the number of spare walks.

Random walks for $(1-\delta) G+\delta G^{D}$.

PageRank for undirected G.

PageRank for $(1-\delta) G+\delta G^{D}$. $(1-2 \delta) G+2 \delta G^{D}$.

PageRank can be approximated from random walks of T. [Breyer '02]

> PageRank for directed G^{D}.

PageRank: Molding Undirected to Directed

"Small" changes in T require a "small" increase in the number of spare walks.

Random walks for $(1-\delta) G+\delta G^{D}$.

PageRank for undirected G.

PageRank can be approximated from random walks of T. [Breyer '02]

PageRank for

PageRank for directed G^{D}.

PageRank: Molding Undirected to Directed

"Small" changes in T require a "small" increase in the number of spare walks.

Random walks for $(1-\delta) G+\delta G^{D}$.

PageRank for undirected G.

PageRank for
PageRank for $(1-\delta) G+\delta G^{D}$. $(1-2 \delta) G+2 \delta G^{D}$.

PageRank can be approximated from random walks of T. [Breyer ‘02]

PageRank for $\delta \mathrm{G}+(1-\delta) \mathrm{G}^{\mathrm{D}}$.

PageRank for

PageRank: Takeaway

1. The stationary distribution is lowerbounded by ε / n.

PageRank: Takeaway

1. The stationary distribution is lowerbounded by ε / n.
2. "Small" changes in a walk matrix
affect the stationary distribution by little.

a

Massively Parallel Computation (MPC) round

One round

Massively Parallel Computation (MPC) parameters

$N=$ \# of machines
$S=$ space per machine
For graphs, $N^{*} S=\Theta$ (\# of edges)

Massively Parallel Computation (MPC) parameters

$N=\#$ of machines

S = space per machine
For graphs, $N^{*} S=\Theta$ (\# of edges)

Interesting case:
space S
S much smaller than the input size
make the small \# of rounds

