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Why Random Walks?

• Web ratings [Page, Brin, Motwani, Winograd ’99] [Berkhin ‘05]

[Chierichetti, Haddadan ‘17]

• Graph partitioning [Andersen, Chung, Lang ‘06]

• Random spanning trees [Kelner, Mądry ‘09]

• Property testing [Goldreich, Ron ’99] [Kaufman, Krivelevich, Ron ‘04]

[Czumaj, Sohler ’10] [Nachmias, Shapira ‘10] [Kale, Seshadhri ‘11]
[Czumaj, Peng, Sohler ’15] [Chiplunkar, Kapralov, Khanna, Mousavifar, Peres ‘18]
[Kumar, Seshadhri, Stolman ‘18] [Czumaj, Monemizadeh, Onak, Sohler ’19]

• Connectivity [Reif ’85] [Halperin, Zwick ’94]

• Matching [Goel, Kapralov, Khanna ‘13]

• Laplacian solvers [Andoni, Krauthgamer, Pogrow ‘18]



How to Compute Random Walks?

• Centralized [direct implementation]

• Streaming [Sarma, Gollapudi, Panigrahy ’11, Jin ‘19]

• Distributed (CONGEST) [Sarma, Nanongkai, Pandurangan, Tetali ’13]

• MPC, undirected graphs (non-independent walks) [Bahmani, Chakrabarti, Xin ’11]
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• Centralized [direct implementation]

• Streaming [Sarma, Gollapudi, Panigrahy ’11, Jin ‘19]

• Distributed (CONGEST) [Sarma, Nanongkai, Pandurangan, Tetali ’13]

Our result (undirected graphs):

Independent random walks in MPC
with sublinear memory per machine.

• MPC, undirected graphs (non-independent walks) [Bahmani, Chakrabarti, Xin ’11]
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Our Results

Applications

Approximate 
bipartiteness testing

Conditional lower-
bound of Ω(log L)

Approximate 
expansion testing

Approximate 
connectivity and MST

PageRank for 
directed graph

Input: Undirected graph G; length L
Output: An L-length random walk per vertex;

walks mutually independent
Rounds: O(log L) 

Space per machine: sublinear in n 
Total space: O(m L log n).
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Random Walks: Follow Stationary Distribution

G

Each vertex v maintains 
proportionally to deg(v) 

random walks.

v

w
But how will w know a 
priori how many walks 

will pass through it?

y

In expectation, after t 
steps there are 

proportionally to deg(v) 
walks ending at v.
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Random Walks: Takeaway

1. Following stationary distribution
allows us to “predict” the future.

2. The memory requirement is 
inversely proportional to the min entry 
of the stationary distribution.

>=1/(2m)



PageRank for Directed Graphs

Input: Directed graph GD

Output: (1+α)-approximate PageRank;
ε is the jumping probability

Rounds: ෨𝑂(ε-1 log log n) 
Space per machine: sublinear in n 

Total space: ෨𝑂((m + n1+o(1)) ε-4 α-2).



(Prelude) Random Walks: Undirected vs Directed

vs

Undirected graphs Directed graphs



(Prelude) Random Walks: Undirected vs Directed

vs

Undirected graphs Directed graphs

Stationary distribution is easy 
to compute: deg(v) / (2m).

Stationary distribution of v is 
“nicely” lower-bounded.



(Prelude) Random Walks: Undirected vs Directed

vs

Undirected graphs Directed graphs

Stationary distribution can 
be difficult to compute.

Stationary distribution is easy 
to compute: deg(v) / (2m).

Stationary distribution of v is 
“nicely” lower-bounded.



(Prelude) Random Walks: Undirected vs Directed

vs

Undirected graphs Directed graphs

Stationary distribution can 
be difficult to compute.

Stationary distribution of v
can be O(1/2n).

Stationary distribution is easy 
to compute: deg(v) / (2m).

Stationary distribution of v is 
“nicely” lower-bounded.
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PageRank: Undirected vs Directed Graphs

vs

Undirected graphs Directed graphs

We do not know stationary 
distribution of 𝑇.

Stationary distribution of v
w.r.t. 𝑇 at least ε/n.

Input: 𝑃 = 𝐺𝐷−1

𝑇 = 1 − 𝜖 𝑃 +
𝜖

𝑛
11𝑇

Output: Stationary distribution of 𝑇

PageRank can be approximated from 
random walks of 𝑇. [Breyer ‘02]

𝑇 and 𝑃 are “similar”.

Stationary distribution of v
w.r.t. to P can be O(1/2n).
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PageRank: Takeaway

1. The stationary distribution is lower-
bounded by ε/n.

2. “Small” changes in a walk matrix 
affect the stationary distribution by 
little.
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Massively Parallel Computation (MPC) parameters

N = # of machines
S = space per machine
For graphs, N * S = ϴ(# of edges)

Goal:
make the small # of rounds

space S

≤ S

≤ S

Interesting case:
S much smaller than the input size


