Locality of weak and not-so-weak coloring
 Dennis Olivetti
 Aalto University, Finland

Joint work with

- Alkida Balliu • Aalto University
- Juho Hirvonen • Aalto University
- Christoph Lenzen • Max Planck Institute for Informatics
- Jukka Suomela • Aalto University

Hardness of minimal symmetry breaking in distributed computing arXiv:1811.01643
Locality of not-so-weak coloring arXiv:1904.05627

General Topic

LOCAL model

- Entities = nodes
- Communication links = edges
- Input graph = communication graph

LOCAL model

- Each node has a unique identifier from 1 to poly(n)
- No bounds on the computational power of the entities
- No bounds on the bandwidth

LOCAL model

- Round 0

LOCAL model

- Round 1

LOCAL model

- Round 2

LOCAL model

- After t rounds: knowledge of the graph up to distance t
- Focus on locality

Distributed Complexity of Weak 2-Coloring

- $\Theta\left(\log ^{*} \Delta\right)$ in odd-degree graphs [Naor and Stockmeyer 1995] [Brandt 2019]
- $O\left(\right.$ log* $\left.^{*} n\right)$ on general graphs
- Ω (log* n) on cycles [Reduction from 3-coloring]
- $\Omega(\log \log * n)$ on regular trees [Naor and Stockmeyer 1995] [Chang and Pettie 2017]

The $\Omega(\log \log * \mathrm{n})$ lower bound

- Naor \& Stockmeyer proved that any constant time algorithm for LCLs can be transformed to an order invariant algorithm
- On even regular trees, weak 2-coloring can not be solved by an order invariant algorithm
- Chang and Pettie lifted the gap up to $\Omega(\log \log * n)$
- Both proofs use Ramsey theory
- Ramsey gives a lower bound on volume, not distance

Lower bound on cycles

Lower bound on cycles

$\Omega\left(\log ^{*} n\right)$

Lower bound on cycles

Lower bound on trees

Lower bound on trees

Lower bound on trees

Complexity in even degree regular graphs

- Lower bound of $\Omega(\log \log * n)$ distance and $\Omega\left(\log ^{*} n\right)$ volume
- Upper bound of O(log* n) distance
- Is a volume of $0\left(\log ^{*} n\right)$ nodes enough?
- Or do we need to see at distance $\Omega\left(\log ^{*} n\right)$?

Is it easier to solve weak 2-coloring

 if we have many neighbors?

Our results

Weak 2-coloring requires $\Omega\left(\log ^{*} n\right)$ time in even-regular trees:

- For any constant even Δ
- Even if we allow randomization
- Even if identifiers are exactly in $\{1, \ldots, n\}$

Also, weak 2-coloring is the easiest possible non constant time "homogeneous LCL" problem
log* n

Speedup Simulation Technique

- Given:
- an algorithm \boldsymbol{A}_{0} that solves problem P_{0} in T rounds,
- We construct:
- an algorithm \boldsymbol{A}_{1} that solves problem P_{1} in T-1 rounds,
- an algorithm \boldsymbol{A}_{2} that solves problem P_{2} in $T-2$ rounds,
- an algorithm \boldsymbol{A}_{3} that solves problem P_{3} in $T-3$ rounds,
-
- an algorithm \boldsymbol{A}_{T} that solves problem P_{T} in 0 rounds.
- We prove that P_{T} can not be solved in 0 rounds.

Speedup for Weak 2-Coloring

- Given an algorithm \boldsymbol{A} that solves weak c coloring in T rounds, we construct an algorithm A^{\prime} that solves "special" weak $2^{2 c}$ edge coloring in $T-1$ rounds
- Given an algorithm \boldsymbol{A} that solves "special" weak cedge coloring in T rounds, we construct an algorithm \boldsymbol{A}^{\prime} that solves weak $2^{4 c}$ coloring in T rounds

Beyond Weak 2-Coloring

Weak 2-coloring

- 2-color the nodes such that each node has at least 1 neighbor of different color

2-Partial 2-Coloring

- 2-color the nodes such that each node has at least 2 neighbors of different color

Our results

- 2-partial 2-coloring requires:
- $\Omega(\log n)$ for any constant $\Delta \geq 2$
- k-partial 3-coloring requires:
- $\Omega(\log n)$ for $\Delta=k$
- $O\left(\log ^{*} n\right)$ for $\Delta \gg k$

Conclusions

- Weak 2-Coloring requires $0(\log * n)$ time on Δ regular trees
- Requiring 2 neighbors of different color, instead of just 1 , makes the problem much harder, $\Omega(\log n)$, even if $\Delta=1000$
- Open problem:
- 3-partial 3-coloring on 3-regular graphs is $\Omega(\log n)$ (it is Δ-coloring)
- 3-partial 3-coloring on 5-regular graphs is $0\left(\log ^{*} n\right.$)
- What is the complexity of 3-partial 3-coloring on 4-regular graphs?

