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General Topic



LOCAL model

• Entities = nodes 
• Communication links = edges 
• Input graph = communication graph



LOCAL model

• Each node has a unique identifier from 1 to poly(n) 
• No bounds on the computational power of the entities 
• No bounds on the bandwidth
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LOCAL model

• Round 0
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LOCAL model

• Round 1
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LOCAL model

• Round 2
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LOCAL model

• After t rounds: knowledge of the graph up to distance t 
• Focus on locality
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Weak 2-Coloring
2-coloring where each node has at least a neighbor of different color



Distributed Complexity of Weak 2-Coloring

• Θ(log* Δ) in odd-degree graphs [Naor and Stockmeyer 1995] [Brandt 2019] 

• O(log* n) on general graphs 

• Ω(log* n) on cycles [Reduction from 3-coloring] 

• Ω(log log* n) on regular trees [Naor and Stockmeyer 1995] [Chang and Pettie 2017]



The Ω(log log* n) lower bound

• Naor & Stockmeyer proved that any constant time algorithm for LCLs can 
be transformed to an order invariant algorithm 

• On even regular trees, weak 2-coloring can not be solved by an order 
invariant algorithm 

• Chang and Pettie lifted the gap up to Ω(log log* n)  

• Both proofs use Ramsey theory 

• Ramsey gives a lower bound on volume, not distance



Lower bound on cycles



Ω(log* n)

Lower bound on cycles



Lower bound on cycles



Lower bound on trees



Ω(log* n) nodes

Lower bound on trees



Ω(log* n) nodes
Ω(log log* n) distance

Lower bound on trees



Θ(log* n) nodes

Θ(log* n) distance

Complexity in even degree regular graphs

• Lower bound of Ω(log log* n) distance and Ω(log* n) volume 

• Upper bound of O(log* n) distance 

• Is a volume of O(log* n) nodes enough?  

• Or do we need to see at distance Ω(log* n)? 

Is it easier to solve weak 2-coloring 
if we have many neighbors?



Our results

Weak 2-coloring requires Ω(log* n) time in even-regular trees: 

• For any constant even Δ 

• Even if we allow randomization 

• Even if identifiers are exactly in {1, ..., n} 

Also, weak 2-coloring is the easiest possible non constant time 
"homogeneous LCL" problem
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Speedup Simulation Technique
• Given: 

• an algorithm A0 that solves problem P0 in T rounds, 

• We construct: 

• an algorithm A1 that solves problem P1 in T-1 rounds, 

• an algorithm A2 that solves problem P2 in T-2 rounds, 

• an algorithm A3 that solves problem P3 in T-3 rounds, 

• ... 

• an algorithm AT that solves problem PT in 0 rounds. 

• We prove that PT can not be solved in 0 rounds.



Speedup for Weak 2-Coloring

• Given an algorithm A that solves weak c coloring in T rounds, we construct an 
algorithm A' that solves "special" weak 22c edge coloring in T-1 rounds 

• Given an algorithm A that solves "special" weak c edge coloring in T rounds , we 
construct an algorithm A' that solves weak 24c coloring in T rounds



Beyond Weak 2-Coloring

Weak 2-coloring 

• 2-color the nodes such that each node has at least 1 
neighbor of different color 

2-Partial 2-Coloring 

•  2-color the nodes such that each node has at least 2 
neighbors of different color



Our results

• 2-partial 2-coloring requires: 

•  Ω(log n) for any constant Δ ≥ 2 

• k-partial 3-coloring requires: 

• Ω(log n) for Δ = k  

• O(log* n) for Δ ≫ k



Conclusions

• Weak 2-Coloring requires Θ(log* n) time on Δ regular trees 

• Requiring 2 neighbors of different color, instead of just 1, makes the problem much 
harder, Ω(log n), even if Δ = 1000  

• Open problem: 

• 3-partial 3-coloring on 3-regular graphs is Ω(log n) (it is Δ-coloring) 

• 3-partial 3-coloring on 5-regular graphs is O(log* n) 

• What is the complexity of 3-partial 3-coloring on 4-regular graphs? 

Thank you!


