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Abstract

Some questions suggested during the Open Problems session of the 3" Workshop on Local
Algorithms (WoLA), held in July 2019 at ETH, Zurich.

Non-Adaptive Group Testing Suggested by Oliver Gebhard.
In (non-adaptive) quantitative group testing, one has a population of »n individuals, among which
k = n° (for some constant ¢ € (0, 1)) are sick. The goal is, by performing m non-adaptive tests, to
identity the % sick individuals (where a test is a subset S C [n], whose output is 1 if S contains at
least one sick individual).

By a counting argument, one gets a lower bound of m = Q (@ log %) tests; however, the best

known upper bound is m = O(klog %).

Question 1. Can one get rid of the log k factor in the lower bound; or, conversely, improve the
upper bound to match it?

Distribution Testing: identity testing up to coarsenings Suggested by Clément Canonne.
Given a distance parameter ¢ € (0, 1], i.i.d. samples from an unknown distribution p and a
(known) reference distribution ¢, both over [n] = {1,...,n}, the identity testing question asks for
the minimum number of samples sufficient to distinguish, with probability at least 2/3, between
(i) p = g and (ii) dpv(p, ¢) > e. (drv here denotes the total variation distance.) This question is by
now fully resolved, with ©(,/n/c?) samples being necessary and sufficient [1, 2].

However, consider the following variant: given a (fixed) family F of functions from [n] to [m],
and a reference distribution ¢ over [m], distinguish between (i) there exists f € F,p = qo f, and
(ii) minfef dTV(pa qo f) > €.

This F-identity testing question includes the identity testing one as special case by setting
m = n and F to be the singleton containing the identity function. One can also take m = n and F
to be the class of all permutations, to test “identity up to relabeling” (a problem whose sample
complexity is, from previous work of Valiant and Valiant, known to be ©(n/(s%logn)) (see [3,
Corollary 11.30]).

Question 2. For a fixed m, and F the family of all partitions of [r] into m consecutive intervals,
what is the sample complexity of F-identity testing, as a function of n, e, m?

Note: this corresponds to testing whether p is a “refinement” of the coarse distribution q; or, equiva-
lently, if p ad q are the same, up to the precision of the measurements.



LCA for MIS Suggested by Mohsen Gaffhari.
In the model of Local Computation Algorithms (LCA), given an input graph G = (V, E), an
algorithm gets, upon query any vertex v of its choosing, the list of neighbors of v. In this model,
the current state-of-the-art for the query complexity of computing a Maximal Independent Set
(MIS) for graph G of maximum degree at most A is an upper bound of ACU°glog2) polylogn
queries.

Question 3. Does there exist a poly(log n, A)-query LCA for MIS?

Estimating a graph’s degree distribution Suggested by C. Seshadhri.
The degree distribution of a graph G = (V, E) is the histogram of the degree frequencies: i.e.,
letting n(d) denote the number of degree-d vertices, the histogram (n(d))4>0. Define the (comple-
mentary) cumulative distribution function as

N@) € Y o), d>o.
d'>d
Assume one has access to the graph G via the following three types of queries:
1. sampling a u.a.r. vertex
2. querying the degree of a given vertex
3. sample a u.a.r. neighbor of a given vertex

and the goal is to obtain the following (1 + ¢)-“bicriteria” approximation N of the degree distribu-
tion: for all d,
(I1—e)N(1—-¢e)d) < N(d)<(1+4+¢e)N((1+¢)d).

Previous work of Eden, Jain, Pinar, Ron, and Seshadhri [4] shows an upper bound of

n m

E—i_ ming d - N(d)

queries, where h is the value s.t. N(h) = h (where the complementary cdf intersects the diagonal).

Question 4. Can this upper bound be improved? Can one establish matching lower bounds?
And also, slightly less well-defined:

Question 5. Can one obtain better upper bounds when relaxing the goal to only learn the high-
degree (tail) part of the distribution? What about testing properties of the degree distribution (e.g.,
“power-law-ness”) in this setting? And what about the first type of queries — can one relax it, or
work with a different type of sampling than uniform (for instance, via random walks)?

About the uniform vertex sampling Suggested by Oded Goldreich.
The graph query model where one gets to query vertices uniformly at random, as mentioned in the
previous open problem, may seem unrealistic in some cases. Thus, one may advocate alternative
models, especially in the context of graph property testing, akin to the “distribution-free” model of
property testing (for functions) and the PAC model (for learning). In this Vertex-Distribution-Free
(VDF) model of testing suggested in a recent paper [5],' one gets i.i.d. vertices sampled from an

'This model was briefly discussed in [6, Section 10.1].



arbitrary distribution D over the vertex set, and the goal is to test w.r.t. to the (pseudo) distance
induced by D.

Question 6. Perform a systematic study of property testing, both in the bounded-degree and
dense graph models, in this VDF setting.

Question 7 (Suggested by C. Seshadhri). Can one define, motivate, and prove non-trivial results in
an Edge-Distribution-Free model, analogous to the VDF one but with regard to sampling random
edges?’

Effective support size estimation in the dual model Suggested by Oded Goldreich.
For a probability distribution p over a discrete domain €2, and a parameter ¢ € [0, 1], denote by

def .
ess:(p) = min{supp(q) : dpy(p,q) < ¢}

the e-effective suport size of p, i.e., the smallest possible support size of any distribution ¢-close
to p. This turns out to be a more robust and interesting measure in general than the support
of p, which is essg(p) = supp(p). In recent work, Goldreich [7] focused on the query complexity
of approximating the effective support size of a discrete distribution provided via two oracles:
sampling (samp,)), and query access (to the probability mass function), eval,,. In particular, the
goal is, given parameters ¢ and § > 1, to output an f(e, 3, n)-factor approximation of ess./(p), for
some ¢’ € [g, Be].
In the aforementioned work, algorithms are obtained achieving (for constant 5 > 1)

e query complexity poly(1/¢) and approximation factor f = O(loglogloglog(n/¢c)), that is,

any constant number of iterated logarithms;

e query complexity poly(log* n,1/¢) even for approximation factor f = O(1);

where n % ess. (p). (As well as several other results interpolating between the two extremes.)

Question 8. Can one get the best of both worlds, and get rid of the log* n to obtain query complexity
poly(1/e) and constant approximation factor?

Vertex connectivity in the LOCAL model Suggested by Sorrachai Yingchareonthawornchai.
In this question, the input is the underlying graph G = (V, E), as well as parameters v, k and
vertex v € V. The goal is to output either L or a subset S C V, such that

e if | is the output, there is no S such that v € S with |S| < vand |N(S)| < k;

o if the outputisaset S, then |[N(S)| < k.
It is known that this problem can be solved with O(vk) queries, and either time O(v%/%k) (deter-
ministic) or O(vk?) (randomized) [8, 9, 10].

Question 9. Can one achieve time O(vk)?

Making edges happy in the LOCAL model Suggested by Jukka Suomela.
In this question, the input is the underlying graph G = (V, E), promised to have maximum degree
at most A, and the goal is to compute an orientation of the edges of £ which makes all edges

“This type of variant was also briefly evoked in [6, Section 10.1.4], where it was shown that Bipartiteness is not
testable in such an EDF model.



“happy.” Specificaly, for any given orientation of the edges, the load of a node v € V' is its number
of incoming edges. An edge e is then said to be happy if switching its orientation does not make it
point to a smaller-node load.

One can show by a greedy argument that there always exists an orientation making all edges
happy. Moreover, a surprising result established that, in the LOCAL model, such a configuration
could be found in poly(A) rounds, independent of the number of nodes n. However, the question
of the dependence on A remains wide open, as even a polylog(A) upper bound is not ruled out.

Question 10. What is the right dependence on A? Can one show any lower polynomial lower
bound, e.g., A%, /A, or A?
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