TESTING THE BOOLEAN RANK

Michal Parnas
Joint work with: Dana Ron, Adi Shraibman
The Real rank

The real rank of a matrix $M_{n \times n}$ of size $n \times n$:

- **Maximal # independent** rows/columns of M.

- **Minimal r** such that $M_{n \times n}$ can be decomposed as:

 $$(M_{n \times n}) = (X_{n \times r}) \cdot (Y_{r \times n})$$

- Computing exactly in **poly time** using Gaussian elimination.
Testing the Real Rank

Property Testing Algorithm:

Does M have rank $\leq d$ or M is ε-far from rank $\leq d$
(at least ε-fraction of the entries should be modified to have rank $\leq d$).

- Krauthgamer, Sasson 2003: non-adaptive algorithm, query complexity $O(d^2/\varepsilon^2)$.
- Wang, and Woodruff, 2014: adaptive algorithm, query complexity $O(d^2/\varepsilon)$.
The Boolean rank

• The **Boolean rank** of a Boolean matrix $M_{n \times n}$ is the minimal r such that:

$$
(M_{n \times n}) = (X_{n \times r}) \cdot (Y_{r \times n})
$$

$X_{n \times r}$ and $Y_{r \times n}$ are Boolean, and operations are Boolean $(1 + 1 = 1)$.

• Computing Boolean rank exactly is **NP-hard**.

• Testing algorithms for real rank can’t be adapted to Boolean rank, since use **linearity**.

Using theorem of Alon, Fischer, Newman 2007:

Boolean rank $\leq d \quad \rightarrow \quad$ every submatrix of M has $\leq 2^d$ distinct rows/columns.

Boolean rank is testable with $\left(\frac{2^d}{\varepsilon} \right)^{O(2^{4d})}$ queries.
Our Main Result

Theorem:
There exists a 1-sided error testing algorithm for the Boolean rank with polynomial query complexity of \(\tilde{O}\left(\frac{d^4}{\epsilon^6}\right) \).
Alternative Definitions for Boolean rank

• **Minimal # monochromatic rectangles** to cover all 1’s of M.

 ![Boolean rank 2](image1)

• **Minimal # bipartite bicliques** to cover all edges of bipartite graph represented by M.

• **Boolean rank** related to non-deterministic communication complexity of M.
Testing the Boolean Rank

Algorithm (Test M for Boolean rank d, given d and ε):

- Select uniformly, independently, at random $O\left(\frac{d^2}{\varepsilon^3} \log \frac{d}{\varepsilon}\right)$ entries from M.
- Let U be subset of entries selected, and let W be submatrix of M induced by U.
- Accept if W has Boolean rank $\leq d$, otherwise reject.

Query complexity: $\tilde{O}(d^4 / \varepsilon^6)$

Running time: exponential in sample size since problem is NP-hard.
Proof of Correctness

Theorem: The Algorithm is a 1-sided error testing algorithm for the Boolean rank.

- The algorithm always accepts M if it has Boolean rank $\leq d$.

$$M = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}$$

- If M is ϵ-far from Boolean rank d then algorithm rejects with prob. $\geq 2/3$.
1-entries \((x_1, y_1)\) and \((x_2, y_2)\) are **compatible** if \(M[x_1, y_2] = M[x_2, y_1] = 1\).

Compatible entries can be in **same monochromatic rectangle**.
Skeletons and beneficial entries

Czumaj, Sohler 2005: combinatorial programs.
Parnas, Ron, Rubinfeld 2006: Tolerant testing, skeletons.

Separating probabilistic analysis from combinatorial structure
A skeleton for M is a multiset $S = \{S_1, \ldots, S_d\}$ where each S_i contains compatible 1-entries (can be in same monochromatic rectangle).

A 1-entry (x, y) is beneficial for skeleton S, if for every $1 \leq i \leq d$:

- (x, y) is incompatible with S_i, or
- Adding (x, y) to S_i reduces significantly the number of entries that can join S_i.
Proof Sketch for ε-far M

Main Claim:

It is possible to define skeletons and beneficial entries such that:

1. M is ε-far from Boolean rank at most d \Rightarrow every skeleton has $\varepsilon^2 n^2$ beneficial entries.
2. Skeletons are **small**: Size is $O(d^2/\varepsilon)$.

Using claim:

For a sample of size $O\left(\frac{d^2}{\varepsilon^3 \log \frac{d}{\varepsilon}}\right)$ with prob. $\geq 2/3$,

Boolean rank of W is $> d$, and algorithm rejects as required.
Row x is zero-heavy for S_i if there are $\geq \frac{\varepsilon}{4d} n$ columns with zeros in row x, that do not have zeros in rows of entries from S_i.

Adding a 1-entry to S_i from a zero-heavy row, reduces significantly #entries that can join S_i.

![Diagram showing rows and columns with zeros and ones, illustrating the concept of zero-heavy rows and columns.](image)
A 1-entry \((x,y)\) can be added to \(S_i\) if:

- \((x,y)\) is compatible with each entry in \(S_i\), and
- row \(x\) or column \(y\) is zero-heavy for \(S_i\)

A 1-entry is **beneficial** for skeleton \(S = \{S_1,\ldots,S_d\}\), if for every \(1 \leq i \leq d\), the it can be added to \(S_i\) or it is incompatible with \(S_i\).
Proof of main claim

Main Claim:

1. M is ε-far from Boolean rank at most $d \implies$ every skeleton has ε^2n^2 beneficial entries.

2. Skeletons are **small**: Size is $O(d^2/\varepsilon)$.

1. Assume there are $< \varepsilon^2n^2$ beneficial entries \implies modify M so that it has Boolean rank $\leq d$.

2. Only entries in **zero-heavy** rows/columns are added to skeleton \implies every entry added, disqualifies many other entries.
Open Problems

• Binary rank:
 Minimal # monochromatic rectangles to partition all 1’s of M.
 Minimal # bipartite bicliques to partition all edges of bipartite graph represented by M.

Related to deterministic communication complexity of M.

Theorem: Binary rank is testable with $O\left(\frac{2^d}{\varepsilon}\right)$ queries.

Polynomial query complexity testing algorithm for binary rank?

• Lower bounds on query complexity for Boolean/binary rank.
• Other rank functions: non-negative rank?