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The Real rank 

The real rank of a matrix Mnn of size n  n:  

•  Maximal # independent rows/columns of M. 

• Computing exactly in poly time using Gaussian elimination. 
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•  Minimal r  such that Mnn can be decomposed as: 



Testing the Real Rank 

• Krauthgamer , Sasson 2003: non-adaptive algorithm, query complexity O(d2/2). 

Property Testing Algorithm:  

Does M have rank  d or M is -far from rank  d 

(at least -fraction of the entries should be modified to have rank  d). 

• Balcan, Woodruff, Zhang 2018: non-adaptive algorithm, query complexity Õ(d2/). 

• Wang, and Woodruff, 2014: adaptive algorithm , query complexity  O(d2/). 



The Boolean rank 

• The Boolean rank of a Boolean matrix Mnn is the minimal r such that:   

Xnr and Yrn are Boolean, and operations are Boolean ( 1 + 1 = 1). 
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• Computing  Boolean rank exactly is NP-hard. 

• Testing algorithms for real rank can’t be adapted to Boolean rank, since use linearity. 

Using theorem of Alon, Fischer, Newman 2007: 

Boolean rank  d             every submatrix of M has  2d distinct rows/columns. 

Boolean rank is testable with                             queries.   )2( 4
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Our Main Result 

Theorem:  

There exists a 1-sided error testing algorithm for the Boolean rank  

with polynomial query complexity of   64 /
~

dO



Alternative Definitions for Boolean rank 

•  Minimal # monochromatic rectangles to cover all 1’s of M. 

•  Minimal # bipartite bicliques to cover all edges of bipartite graph represented by M. 
 

• Boolean rank related to non-deterministic communication complexity of M. 
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Testing the Boolean Rank 
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Algorithm (Test M for Boolean rank d, given d and ): 

M =  

Running time: exponential in sample size  
since problem is NP-hard. 

 64 /
~

dOQuery complexity:  

• Let U be subset of entries selected,  and let W  be submatrix of M induced by U. 

• Select uniformly, independently, at random                            entries from M. 

• Accept if W has Boolean rank  d, otherwise reject. 



Proof of Correctness 

Theorem: The Algorithm is a 1-sided error testing algorithm for the Boolean rank. 

• The algorithm always accepts M if it has Boolean rank  d. 
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• If M is -far from Boolean rank d then algorithm rejects with prob.  2/3. 



Basic Concept – Compatible entries 

1-entries (x1 ,y1) and (x2 ,y2) are compatible  

if M[x1 ,y2]  = M[x2 ,y1] = 1 . 
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Compatible entries can be in same monochromatic rectangle. 



Skeletons and beneficial entries 

Czumaj, Sohler 2005: combinatorial programs. 
Parnas, Ron, Rubinfeld 2006: Tolerant testing, skeletons. 

Separating probabilistic analysis  
from combinatorial structure  



Skeletons and beneficial entries 

A skeleton for M is a multiset S = {S1,…,Sd}  

where each Si contains compatible 1-entries  

(can be in same monochromatic rectangle). 

A 1-entry (x,y) is beneficial for skeleton S, if for every 1  i  d: 
 

• (x,y) is incompatible with Si, or 
• Adding (x,y) to Si reduces significantly #entries that can join Si  

Skeleton becomes  
more constrained. 

Czumaj, Sohler 2005: combinatorial programs. 
Parnas, Ron, Rubinfeld 2006: Tolerant testing, skeletons. 

Separating probabilistic analysis  
from combinatorial structure  
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Proof Sketch for -far M 












dd
O log

3

2

1. M is -far from Boolean rank at most d            every skeleton has 2n2 beneficial entries. 

2. Skeletons are small: Size is O(d2/). 

Main Claim: 

It is possible to define skeletons and beneficial entries such that: 

Boolean rank of W is > d, and algorithm rejects as required.  

M =  

W 

For a sample of size                        with prob.  2/3, 

Using claim 



zero heavy row/column 

Row x is zero-heavy for        if there are                   columns with zeros in row x,  

that do not have zeros in rows  of entries from Si 

n
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Rows of Si 

Adding a 1-entry to Si from a zero-heavy row, reduces significantly #entries that can join Si  
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Skeletons and Beneficial entries 

A 1-entry is beneficial for skeleton S = {S1,…,Sd}, if for every 1  i  d,  

the it can be added to Si or it is incompatible with Si  
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A 1-entry               can be added to         if: 

• (x,y) is compatible with each entry in Si , and 

• row x or column y is zero-heavy for Si 
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Proof of main claim 

1. M is -far from Boolean rank at most d            every skeleton has 2n2 beneficial entries. 

2. Skeletons are small: Size is O(d2/). 

1. Assume there are < 2n2 beneficial entries            modify M so that it has Boolean rank  d.  

2. Only entries in zero-heavy rows/columns are added to skeleton  
               every entry added, disqualifies many other entries.  

Main Claim: 



Open Problems 
•  Binary rank:  

1 1 0 0 

1 1 1 0 

0 1 1 0 

0 0 0 0 

Binary rank 3 Minimal # monochromatic rectangles to partition all 1’s of M. 

 Minimal # bipartite bicliques to partition all edges 
 of bipartite graph represented by M. 

•  Lower bounds on query complexity for Boolean/binary rank. 

•  Other rank functions: non-negative rank? 

Related to deterministic communication complexity of M. 

Theorem:  Binary rank is testable with                         queries.  /22dO

Polynomial query complexity testing algorithm for binary rank? 



Thank you! 


