

TESTING THE BOOLEAN RANK

Michal Parnas

Joint work with: Dana Ron, Adi Shraibman

The Real rank

The real rank of a matrix $M_{n \times n}$ of size $n \times n$:

- Maximal # independent rows/columns of M.
- Minimal r such that $M_{n \times n}$ can be decomposed as:

$$(M_{n \times n}) = (X_{n \times r}) \cdot (Y_{r \times n})$$

• Computing exactly in poly time using Gaussian elimination.

Testing the Real Rank

Property Testing Algorithm:

Does M have rank $\leq d$ or M is ε -far from rank $\leq d$

(at least ε -fraction of the entries should be modified to have rank $\leq d$).

- Krauthgamer , Sasson 2003: non-adaptive algorithm, query complexity $O(d^2/\epsilon^2)$.
- Wang, and Woodruff, 2014: adaptive algorithm , query complexity $O(d^2/\epsilon)$.
- Balcan, Woodruff, Zhang 2018: non-adaptive algorithm, query complexity $\tilde{O}(d^2/\epsilon)$.

The Boolean rank

• The Boolean rank of a Boolean matrix $M_{n \times n}$ is the minimal r such that:

$$(M_{n \times n}) = (X_{n \times r}) \cdot (Y_{r \times n})$$

 $X_{n\times r}$ and $Y_{r\times n}$ are Boolean, and operations are Boolean (1 + 1 = 1).

- Computing Boolean rank exactly is NP-hard.
- Testing algorithms for real rank can't be adapted to Boolean rank, since use linearity.

Using theorem of Alon, Fischer, Newman 2007: Boolean rank $\leq d \implies$ every submatrix of M has $\leq 2^d$ distinct rows/columns. Boolean rank is testable with $(2^d / \varepsilon)^{O(2^{4d})}$ queries.

Our Main Result

Theorem:

There exists a 1-sided error testing algorithm for the Boolean rank

with polynomial query complexity of $\widetilde{O}(d^4 / \varepsilon^6)$

Alternative Definitions for Boolean rank

• Minimal # monochromatic rectangles to cover all 1's of M.

Boolean rank 2

1010111001100000

Boolean rank 2

- Minimal # bipartite bicliques to cover all edges of bipartite graph represented by M.
- Boolean rank related to non-deterministic communication complexity of M.

Testing the Boolean Rank

<u>Algorithm (Test M for Boolean rank d, given d and ε):</u>

- Select uniformly, independently, at random $O\left(\frac{d^2}{\varepsilon^3}\log\frac{d}{\varepsilon}\right)$ entries from M.
- Let U be subset of entries selected, and let W be submatrix of M induced by U.
- Accept if **W** has Boolean rank $\leq d$, otherwise reject.

Query complexity:
$$\widetilde{O}(d^4 / \varepsilon^6)$$

Running time: exponential in sample size since problem is NP-hard.

Proof of Correctness

Theorem: The Algorithm is a 1-sided error testing algorithm for the Boolean rank.

• The algorithm always accepts M if it has Boolean rank $\leq d$.

• If M is ε -far from Boolean rank d then algorithm rejects with prob. $\geq 2/3$.

Basic Concept – Compatible entries

1-entries (x_1, y_1) and (x_2, y_2) are compatible if $M[x_1, y_2] = M[x_2, y_1] = 1$.

Compatible entries can be in same monochromatic rectangle.

Skeletons and beneficial entries

Czumaj, Sohler 2005: combinatorial programs. Parnas, Ron, Rubinfeld 2006: Tolerant testing, skeletons.

Separating probabilistic analysis from combinatorial structure

Skeletons and beneficial entries

Czumaj, Sohler 2005: combinatorial programs. Parnas, Ron, Rubinfeld 2006: Tolerant testing, skeletons. Separating probabilistic analysis from combinatorial structure

A **skeleton** for M is a multiset $S = \{S_1, ..., S_d\}$

where each S_i contains compatible 1-entries

(can be in same monochromatic rectangle).

A 1-entry (x,y) is **beneficial** for skeleton S, if for every $1 \le i \le d$:

- (x,y) is incompatible with S_i, or
- Adding (x,y) to S_i reduces significantly #entries that can join S_i

Skeleton becomes more constrained.

Proof Sketch for ε-far M

Main Claim:

It is possible to define skeletons and beneficial entries such that:

- 1. M is ε -far from Boolean rank at most d \longrightarrow every skeleton has $\varepsilon^2 n^2$ beneficial entries.
- 2. Skeletons are small: Size is $O(d^2/\epsilon)$.

Boolean rank of W is > d, and algorithm rejects as required.

Using claim

zero heavy row/column

Row x is zero-heavy for S_i if there are $\geq \frac{\varepsilon}{4d}n$ columns with zeros in row x, that do not have zeros in rows of entries from S_i

Adding a 1-entry to S_i from a zero-heavy row, reduces significantly #entries that can join S_i

Skeletons and Beneficial entries

A 1-entry (x,y) can be added to S_i if:

- (x,y) is compatible with each entry in S_i, and
- row x or column y is zero-heavy for S_i

A 1-entry is **beneficial** for skeleton S = {S₁,...,S_d}, if for every $1 \le i \le d$,

the it can be added to S_i or it is incompatible with S_i

Proof of main claim

Main Claim:

- 1. M is ϵ -far from Boolean rank at most d \rightarrow every skeleton has $\epsilon^2 n^2$ beneficial entries.
- 2. Skeletons are small: Size is $O(d^2/\epsilon)$.

1. Assume there are $< \epsilon^2 n^2$ beneficial entries \implies modify M so that it has Boolean rank $\leq d$.

2. Only entries in zero-heavy rows/columns are added to skeleton

every entry added, disqualifies many other entries.

Open Problems

Binary rank 3

Minimal # bipartite bicliques to partition all edges of bipartite graph represented by M.

Binary rank:

Related to deterministic communication complexity of M.

Minimal # monochromatic rectangles to partition all 1's of M.

Theorem: Binary rank is testable with $O(2^{2d} / \varepsilon)$ queries.

Polynomial query complexity testing algorithm for binary rank?

- Lower bounds on query complexity for Boolean/binary rank.
- Other rank functions: non-negative rank?

