
Some recent results on high rate local codes

Shubhangi Saraf
Rutgers

Joint works with
Sivakanth Gopi, Swastik Kopparty, Or Meir, Rafael Oliveira, Noga Ron-
Zewi, Mary Wootters

This talk

• Error-correcting codes with:
• low redundancy
• robust to large fraction of errors
• sublinear time error-detection and error-correction algorithms

• Alphabet Σ (often {0,1})

• Encoding:
• E: Σ" → Σ$
• Maps data to “codeword”

• Code C = Image(E)
} Rate = k/n
} (Hamming) Distance %:

Any 2 codewords differ
on at least % fraction
coordinates,

'
(fraction errors can be corrected

Error-correcting codes

Codewords

c

r

Σ$

Binary Error-correcting codes

• C ⊆ 0,1 % (with Hamming metric)

• Rate R:
• |C| = 2'%

• Distance (:
• Δ *, + ≥ (-

for distinct *, + ∈ C

• Implies (/2-fraction errors can be corrected

• Rate vs. Distance?
• OPEN

Gilbert Varshamov bound
R can equal 1 − 1(()

“Linear-Programming” bound
R < 1((1 − ()

R

(1/2
0

1

Gilbert Varshamov bound

• GV Bound: There exist codes with ! ≥ 1 − % &

• Many proofs known:
• Random
• Greedy
• …

• Great open questions:
• Is the GV bound tight?
• Do there exist explicit codes

meeting the GV bound?
Gilbert Varshamov bound

R can equal 1 − %(&)

“Linear-Programming” bound
R < %(& 1 − &)

Over large alphabets

R = 1 - & is the optimal tradeoff
(a.k.a. SINGLETON BOUND)

Achieved explicitly

R

&1/2
0

1

Goals of classical coding theory

• Basic algorithmic tasks:
• Encoding
• Testing (error detection)
• Decoding (error correction)

• Today we know codes with:
• good rate-distance tradeoff
• efficient encoding, testing, decoding
• Linear/near-linear time

Local Codes

• Meanwhile, in early 90s complexity theory:
• answers to questions that had never been asked

• Can we work with codes in sublinear time?

• In particular, what can we do with sublinear # queries?

• Error Detection: Given r ∈ Σ$, determine if % ∈ &
• Given r ∈ Σ$, with sublinear queries to %, distinguish between % ∈ & and
Δ %, & > *+

• Error Correction: Given r ∈ Σ$, if ∃ - such	that
Δ %, 5(-) < *+, find -
• Given r ∈ Σ$ and i ∈ [=] if ∃ - such	that		Δ %, 5(-) < *+, with sublinear

queries to % find -?

Algorithmic Tasks associated with Error
Correction

Locally Testable Code
Given: ! ∈ Σ$

Is ! in %?
Local Tester

Accept

Reject

Given: ! ∈ Σ$ such that Δ !, ' <)*

Given: + ∈ [-]

Locally Decodable Codes

mi
Local

Decoderi

Given: ! ∈ Σ$ such that Δ !, ' <)*

Given: + ∈ [*]

Locally Correctable Codes

ci
Local

Correctori

Strictly stronger
than LDCs for
linear codes

Many applications to cryptography and complexity theory
• Worst case to Average Case reductions
• Constructions of PRGs from One-Way functions
• Connections to Polynomial Identity Testing, Matrix Rigidity, Circuit Lower bounds
• Private information retrieval
• Learning theory

• Mathematically very interesting

• Interesting for coding theory in practice?

Motivation for Local Decoding/Local
Correcting

• Implicit connections to the PCP theorem
• Advances have led to improved PCPs
• Limitations should lead to an understanding of limitations of PCPs

• Applications to Unique Games conjecture and hardness of
approximation

• Many relations to testing of functions
• Original [Blum-Luby-Rubinfeld] linearity tester ≈ testability of the Hadamard

Code which led to the proof checking revolution

Motivation for Local Testing

A nice local code
• Reed-Muller codes (multivariate polynomial evaluation codes)

• constant rate, constant distance
• O(!") query locally testable
• O(!") query locally decodable

• Large finite field Fq of size q

• Interpret original data as a polynomial P(X,Y)
• degree(P) = d = 0.1 q

• Encoding:

• Evaluate P at each point of Fq2

• Rate = Ω(1)
• Distance = 0.9

• Two low degree polynomials cannot
agree on many points of Fq2

Fq2

Local testing/correcting RM codes

• Main idea:
• Restricting a low-degree multivariate polynomial to a line gives a low-degree univariate polynomial

• Local testing:
• Check that restriction to a random line is a low-degree univariate polynomial
• Analysis highly nontrivial [Rubinfeld-Sudan + others]

• Local correcting:
• To recover P(a,b):

• Pick random line L through (a,b)
• Fit univariate polynomial through r|"
• Use it to recover value at (a,b)

• Query complexity
• # points on a line = q = O(#)

Fq2

(a,b)

L

Local codes of constant rate

• Reed-Muller codes (multivariate polynomial evaluation codes)
• constant rate, constant distance
• O(!") query locally testable
• O(!") query locally decodable

• Since the 2010s, several improved codes:
• Local testing:

• tensor codes [BS, V], lifted codes [GKS]
• Local decoding:

• multiplicity codes [KSY], lifted codes [GKS], expander codes [HOW]

• rate → 1, better rate vs. distance vs. queries

Plan of talk

• Survey of some known results

• [Kopparty-Meir-RonZewi-S `16]
• High rate LTCs/LCCs with improved query complexity

• [Gopi-Kopparty-Oliveira-RonZewi-S `17]
• LTCs and LCCs approaching* Gilbert-Varshamov bound

• [Kopparty-RonZewi-S-Wootters `18]
• Capacity achieving locally list decodable codes

• Some proofs

• Low query regime:
• Number of queries is small (2, 3, constant)
• What is the best rate?

• Theoretically very interesting
• applications to Cryptography, average-case complexity

• Too inefficient for codes in practice

• High rate regime
• Let the rate be high (constant rate or rate ≈ 1)
• What is the best query complexity that can be achieved?

• Focus of more recent work.
• Relevant regime for data storage and retrieval.
• Even mild lower bounds would have very interesting consequences to rigidity, lower bounds [Dvir]

Locally decodable/correctable codes:
Two regimes Extensively studied

Many deep and amazing
results (upper and lower

bounds)
Many basic problems

unanswered

• ℓ = 2 : Hadamard Code is best possible " = $% & [Goldreich-Karloff-Schulman-Trevisan]
• ℓ= 3: " = $ & (till not very long ago …)

• For any constant ℓ: Reed Muller code best known construction: " = '() &
*
ℓ (till not very long

ago)

• Lower bounds:
• ℓ= 3: " = %(&$) [Woodruff]

• [Dvir-S-Wigderson] Over Real numbers, if code is linear then for LCCs " = % &$-.
• General ℓ: " ≥ &*-

*
ℓ (too inefficient for codes in practice)

Low Query Regime (LCCs, LDCs)

Matching Vector Codes:
LDCs with n = exp(exp(o(log k))

[Yekhanin, Efremenko, Dvir-Gopalan-Yekhanin]

Open question:

Can one get
LDCs/LCCs with
0(*) queries and
polynomial rate?

• Till about 8 years ago:
• Reed-Muller codes were the only example
• To get query complexity ℓ = #$, Rate R = %&' (

$

• More recently:
• [Kopparty-S-Yekhanin `11] Multiplicity Codes
• [Guo-Kopparty-Sudan `13] Lifted Codes
• [Hemenway-Ostrovsky-Wootters`13] Expander based codes
• Query complexity ℓ = #$, Rate R= (− $
(locally decodable and correctable from a constant fraction of errors)

• [Katz-Trevisan]:
• Constant rate ⇒ must have query complexity Ω(log 0)

High rate regime (LCCs, LDCs)
Interesting
question:

What is the best
rate/query
complexity
tradeoff?

Can one get
LDCs/LCCs with

rate 2 (or (− $
and with query
complexity #3 (

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate
1 − # that is locally decodable and locally correctable with $% &
queries from a constant fraction of errors.

Somewhat recent result:

' ()* + ()* ()* +

What we know about constant rate LTCs

• As far as we know,
• there could be 3-query LTCs of constant rate

• RM codes achieve:
• For all R < 1/exp(%&)
• Query complexity = (()&)

• Recent progress beyond Reed-Muller codes:
• For all R < 1
• For all * > 0
• Query complexity = (()&)

• Two familes of codes achieving this!
• Tensor codes [BenSasson-Sudan], [Viderman]
• Lifted Reed-Solomon codes [Guo-Kopparty-Sudan]

Constructions known with 3-

queries and Rate =
%

-./0(123 4)
[BenSasson-Sudan`05, Dinur`06]

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate
1 − # that are locally testable with $% & query complexity.

More recently:

'() * +('()'() *)

KMRS Theorem for LCCs: There exists a family of codes of rate 1 − #
that is locally decodable and locally correctable with
$ %&' (%&' %&' (queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 − #
that is locally testable with)*+ (,()*+)*+ () queries from a constant
fraction of errors.

LTCs and LCCs approaching the GV bound

• Theorem [Gopi-Kopparty-Oliveira-RonZewi-S `17]

(informal) We can construct LTCs and LCCs which achieve the best
possible rate-distance tradeoff that we know how to achieve with
general (nonlocal) codes.

Main Result: LTCs
[Gopi-Kopparty-Oliveira-RonZewi-S `17]

Theorem:
For all R, ! with:

R < 1 – H(!)
there exists an infinite family of codes #$
such that:
• length(#$) = n
• Rate ≥ R
• Distance ≥ !
• #$ is locally testable with log) * +,- +,- . queries

Local codes can be list decoded up to capacity

[Hemenway-RonZewi-Wootters`17, Kopparty-RonZewi-S-Wootters`18]

There exist codes that can be locally list decoded up to capacity

with query complexity 2 "#$ %
&
'

[KMRS] result (and proof ideas) – an important ingredient in all these
results.

Rest of talk – sketch of proof of KMRS result for LCCs

KMRS Theorem for LCCs: There exists a family of codes of rate 1 − #
that is locally decodable and locally correctable with
$ %&' (%&' %&' (queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 − #
that is locally testable with)*+ (,()*+)*+ () queries from a constant
fraction of errors.

• Component 1: High rate codes with sub-polynomial query complexity
but only tolerating a tiny sub-constant fraction of errors

• Component 2: “Distance Amplification”
• Takes code as above and transforms it to a code that can tolerate many more

errors

Proof of KMRS result: 2 components

• High rate codes with sub-polynomial query complexity but only
tolerating a tiny sub-constant fraction of errors

Can be achieved by Multiplicity Codes!
(In a regime of parameters not studied before)

Component 1

Multiplicity Codes
[Kopparty-S-Yekhanin`11]

Theorem (original)
For every !> 0,
for inf. many k, there are codes encoding

k bits -> (1+!) k bits (symbols)
decodable in O("#) time (+queries)
from $ # > 0 fraction errors.

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k bits (symbols)
decodable in O(2 &'() &'(&'()) time (+queries)
from ≈ (log log /)/ log / fraction errors.

• Reed Muller Codes

• Augment it with “derivatives”

Construction of Mult. Codes

Bivariate Reed-Muller

• Large finite field of size q

• Interpret original data as a polynomial P(X,Y)
• degree(P) · d = (1- !) q

• Encoding: Enc(P)
• At each point (a,b) ∈ Fq

2,
Evaluate P(a,b)

Reed-Muller Codes

Fq
2

Encoding:
(a,b) à P(a,b)

• Schwartz-Zippel Lemma

• 2 polynomials of degree < (1 - !) q differ on at least ! fraction of points

• So:
• Any two codewords are at least !" apart

Key observations

• Given:
• noisy encoding of P(X,Y)

• Deg(P) = q (1 − #)
• point (a,b) in Fq

2

• Goal: recover P(a,b)

Algorithm
• Take random line L through (a,b)

• Query points on L
• Should have small error
• Noisy encoding of P|L (univariate polynomial)

• Recover P|L
• “Reed Solomon” decoding

• Compute P|L (a,b)
= P(a,b)

Decoding Reed-Muller Codes

Fq2

(a,b)

• Bivariate Reed Muller:
• k = (d+2) choose 2 ≈ "#$ %&%

'
• n = q2

• Rate ≈ (
) − +

• # Queries: l ≈ O(k1/2)

• Improve query complexity à increase # of variables

Parameters of Reed-Muller Codes

• Polynomials of deg · (1-!) q in m variables
• k = (d+m) choose m ≈ #$% &'&

(!
• n = qm

• Rate ≈ *$+ ,

,!
• Queries = q ≈ n1/m ≈ O(k1/m)

• Decodable from W(!) errors

• Bottleneck for rate: Degree needs to be small

More variables

Multiplicity Codes

• Key idea: Derivatives

• Higher degree polynomials
• (too high for Reed-Muller)

Bivariate Multiplicity codes

• Large finite field of size q

• Interpret original data as a (high) degree polynomial P(X,Y)
• degree(P): d = 2 × (1 − $) q

• Encoding: Enc(P)
• At each point (a,b) ∈Fq

2, evaluate:
• <P(a,b), PX(a,b), PY(a,b)>

Multiplicity Codes

Fq
2

Encoding:
(a,b) àP(a,b),

PX(a,b),
PY (a,b)

• 2 polynomials of degree < 2q (1-!) cannot agree on their evaluations and
evaluations of derivatives in more than (1-!) fraction points

• # roots of P counted with multiplicity · deg(P) |F|n-1

• Multiplicity Codes have good distance

Schwartz-Zippel with
Multiplicities [Dvir-Kopparty-S-Sudan’10]

Given:
• noisy encoding of <P, PX, PY>

• Deg(P) = 2 × q (1-")
• point (a,b) in Fq2

Goal: recover <P(a,b), PX(a,b), Py(a,b)>

Algorithm

• Take random line L through (a,b)
• Should have small error

• Query points on L
• PX, PY give directional derivative of P along L
• Noisy encoding of P|L (univariate polynomial),

and of der(P|L)

• Recover P|L

• Repeat above steps

• We thus know P(a,b), der(P|L1) (a,b), der(P|L2) (a,b)

• This gives us P(a,b), PX(a,b), PY(a,b)

Decoding Multiplicity Codes

Fq2

• Bivariate Multiplicity Codes of order 2:
• k = (d+2) choose 2 /3 ≈ (2(1-")q)2 / 6
• n = q2

• Rate ≈ 2/3 - #
• # Queries: ≈ O(k1/2)

• Improve Rate à increase order of derivatives

• Improve query complexity à increase # variables

Parameters of Multiplicity Codes

• m – variate, derivatives up to order s

• Polynomials of degree (1-!)sq

} Query Complexity: ≈ k1/m

• Rate ≈ (s/ m+s)m × (1-!)m

• so if s >> m, rate à1

• Decoding as before …
• (+ some “robustification”)

More variables, many derivatives

Reed-Muller Codes Multiplicity Codes

• Messages: Low degree
polynomials

• Encoding: Evaluation of
polynomial on full domain

• #queries: Decreases with
increase in # variables

• Rate: Decreases
exponentially with
increase in #vars

• Messages: High degree
polynomials

• Encoding: Evaluation of
polynomial and its
derivatives on full domain

• #queries: Decreases with
increase in # variables

• Rate: 1

To make queries sub-polynomial, choose m to be super-constant. For
constant rate this forces distance to be sub-constant.

Multiplicity codes in low distance regime

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k bits (symbols)
decodable in O(2 #$% & #$% #$% &) time (+queries)
from ≈ (log log ,)/ log , fraction errors.

• Distance amplification
• Similar technique used by [Alon-Luby’96] and then by others [GI’05, GR’08]

Component 2

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k bits (symbols)
decodable in O(2 #$% & #$% #$% &) time (+queries)
from ≈ (log log ,)/ log , fraction errors.

• Distance amplification
• Similar technique used by [Alon-Luby’96] and then by others [GI’05, GR’08]

Component 2

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+2!) k bits (symbols)
decodable in O(2# $%& ' $%& $%& ') time (+queries)
from ≈ (log log -)/ log - fraction errors.

0(1)

!" !# !$

%" %# %$

&" &# &$

!"
!#

!$

&"
&#
&$

%"

%#

%$

!$ %# &"

Each
block is
symbol
in final

alphabet

Reed
Solomon
encoding

Good
expander

Multiplicity
codeword

!" !# !$

%" %# %$

&" &# &$

!"
!#

!$

&"
&#
&$

%"

%#

%$

!$ %# &"

Each
block is
symbol
in final

alphabet

Reed
Solomon
encoding

Good
expander

Multiplicity
codeword

ReedSolomon code:
Message length b
Codeword length d

Distance '

!" !# !$

%" %# %$

&" &# &$

Reed
Solomon
encoding

Multiplicity
codeword

ReedSolomon code:
Message length b
Codeword length d

Distance '

Decoding from random
errors:

Suppose (# − * fraction of random
errors

Most (1-o(1)) grey blocks have at
most (# corruptions

Those Reed-Solomon codewords
can be correctly decoded

Thus 1-o(1) fraction of the blue
blocks can be correctly recovered.

This is low enough error for
multiplicity codes to handle

Everything can be done locally

!" !# !$

%" %# %$

&" &# &$

!"
!#

!$

&"
&#
&$

%"

%#

%$

!$ %# &"

Decoding from adversarial
errors:

Suppose '# −) fraction of green
blocks get corrupted

Most (1-o(1)) grey blocks have at
most */2 corrupt neighbors
(expander mixing lemma).

Those Reed-Solomon codewords
have at most '# errors and can be

correctly decoded

Thus 1-o(1) fraction of the blue
blocks can be correctly recovered.

This is low enough error for
multiplicity codes to handle

Everything can be done locally

Expander + blocking
makes the errors look

pseudorandom

Open questions

• Best possible query complexity for high rate LDCs and LTCs?
• LTCS – potentially high rate 3 query LTCs!
• LDCs/LCCs – potentially high rate log n query LCCs

• Explicit codes meeting the GV bound?
• Almost solved by Ta-Shma!

• Is the GV bound tight?

Thanks!

