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This talk

• Error-correcting codes with:
• low redundancy
• robust to large fraction of errors
• sublinear time error-detection and error-correction algorithms



• Alphabet Σ (often {0,1})

• Encoding:
• E: Σ" → Σ$
• Maps data to “codeword”

• Code C = Image(E)
} Rate = k/n
} (Hamming) Distance %:

Any 2 codewords differ
on at least % fraction 
coordinates, 

'
( fraction errors can be corrected

Error-correcting codes

Codewords
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Σ$



Binary Error-correcting codes

• C ⊆ 0,1 % (with Hamming metric)

• Rate R:
• |C| = 2'%

• Distance (:
• Δ *, + ≥ (-

for distinct *, + ∈ C

• Implies (/2-fraction errors can be corrected

• Rate vs. Distance?
• OPEN

Gilbert Varshamov bound
R can equal 1 − 1(()

“Linear-Programming” bound
R < 1( ( 1 − ( )

R

(1/2
0

1



Gilbert Varshamov bound

• GV Bound: There exist codes with ! ≥ 1 − % &

• Many proofs known:
• Random
• Greedy
• …

• Great open questions:
• Is the GV bound tight?
• Do there exist explicit codes

meeting the GV bound?
Gilbert Varshamov bound

R can equal 1 − %(&)

“Linear-Programming” bound
R < %( & 1 − & )

Over large alphabets

R = 1 - & is the optimal tradeoff
(a.k.a. SINGLETON BOUND)

Achieved explicitly

R
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Goals of classical coding theory

• Basic algorithmic tasks:
• Encoding
• Testing (error detection)
• Decoding (error correction)

• Today we know codes with:
• good rate-distance tradeoff
• efficient encoding, testing, decoding
• Linear/near-linear time



Local Codes

• Meanwhile, in early 90s complexity theory:
• answers to questions that had never been asked

• Can we work with codes in sublinear time?

• In particular, what can we do with sublinear # queries?



• Error Detection: Given r ∈ Σ$, determine if % ∈ &
• Given r ∈ Σ$, with sublinear queries to %, distinguish between % ∈ & and 
Δ %, & > *+

• Error Correction: Given r ∈ Σ$, if ∃ - such	that
Δ %, 5(-) < *+, find -
• Given r ∈ Σ$ and i ∈ [=] if ∃ - such	that		Δ %, 5(-) < *+, with sublinear

queries to % find -?

Algorithmic Tasks associated with Error 
Correction



Locally Testable Code
Given: ! ∈ Σ$

Is ! in %? 
Local Tester

Accept

Reject



Given: ! ∈ Σ$ such that Δ !, ' < )*

Given: + ∈ [-]

Locally Decodable Codes

mi
Local 

Decoderi



Given: ! ∈ Σ$ such that Δ !, ' < )*

Given: + ∈ [*]

Locally Correctable Codes

ci
Local 

Correctori

Strictly stronger 
than LDCs for 
linear codes



Many applications to cryptography and complexity theory
• Worst case to Average Case reductions
• Constructions of PRGs from One-Way functions
• Connections to Polynomial Identity Testing, Matrix Rigidity, Circuit Lower bounds
• Private information retrieval
• Learning theory

• Mathematically very interesting

• Interesting for coding theory in practice?

Motivation for Local Decoding/Local 
Correcting



• Implicit connections to the PCP theorem
• Advances have led to improved PCPs
• Limitations should lead to an understanding of limitations of PCPs

• Applications to Unique Games conjecture and hardness of 
approximation

• Many relations to testing of functions
• Original [Blum-Luby-Rubinfeld] linearity tester ≈ testability of the Hadamard

Code which led to the proof checking revolution

Motivation for Local Testing



A nice local code
• Reed-Muller codes (multivariate polynomial evaluation codes)

• constant rate, constant distance
• O(!") query locally testable
• O(!") query locally decodable

• Large finite field Fq of size q

• Interpret original data as a polynomial P(X,Y)
• degree(P) = d = 0.1 q

• Encoding:

• Evaluate P at each point of Fq2

• Rate = Ω(1)
• Distance = 0.9 

• Two low degree polynomials cannot
agree on many points of Fq2

Fq2



Local testing/correcting RM codes

• Main idea:
• Restricting a low-degree multivariate polynomial to a line gives a low-degree univariate polynomial

• Local testing:
• Check that restriction to a random line is a low-degree univariate polynomial
• Analysis highly nontrivial [Rubinfeld-Sudan + others]

• Local correcting:
• To recover P(a,b):

• Pick random line L through (a,b)
• Fit univariate polynomial through r|"
• Use it to recover value at (a,b)

• Query complexity
• # points on a line = q = O( #)

Fq2

(a,b)

L



Local codes of constant rate

• Reed-Muller codes (multivariate polynomial evaluation codes)
• constant rate, constant distance
• O(!") query locally testable
• O(!") query locally decodable

• Since the 2010s, several improved codes:
• Local testing:

• tensor codes [BS, V], lifted codes [GKS]
• Local decoding:

• multiplicity codes [KSY], lifted codes [GKS], expander codes [HOW]

• rate → 1, better rate vs. distance vs. queries



Plan of talk

• Survey of some known results 

• [Kopparty-Meir-RonZewi-S `16] 
• High rate LTCs/LCCs  with improved query complexity

• [Gopi-Kopparty-Oliveira-RonZewi-S `17] 
• LTCs and LCCs approaching* Gilbert-Varshamov bound

• [Kopparty-RonZewi-S-Wootters `18] 
• Capacity achieving locally list decodable codes

• Some proofs



• Low query regime: 
• Number of queries is small (2, 3, constant)
• What is the best rate?

• Theoretically very interesting
• applications to  Cryptography, average-case complexity

• Too inefficient for codes in practice 

• High rate regime
• Let the rate be high (constant rate or rate ≈ 1)
• What is the best query complexity that can be achieved?

• Focus of more recent work. 
• Relevant regime for data storage and retrieval. 
• Even mild lower bounds would have very interesting consequences to rigidity, lower bounds [Dvir]

Locally decodable/correctable codes:
Two regimes Extensively studied

Many deep and amazing 
results (upper and lower 

bounds)
Many basic problems 

unanswered



• ℓ = 2 :  Hadamard Code is best possible  " = $% & [Goldreich-Karloff-Schulman-Trevisan]
• ℓ= 3:  " = $ & (till not very long ago …)

• For any constant ℓ: Reed Muller code best known construction: " = '() &
*
ℓ (till not very long 

ago)

• Lower bounds:
• ℓ= 3: " = %(&$) [Woodruff]

• [Dvir-S-Wigderson] Over Real numbers, if code is linear then for LCCs " = % &$-.
• General ℓ:  " ≥ &*-

*
ℓ (too inefficient for codes in practice) 

Low Query Regime (LCCs, LDCs)

Matching Vector Codes:  
LDCs with   n = exp(exp(o(log k))

[Yekhanin, Efremenko, Dvir-Gopalan-Yekhanin]

Open question:

Can one get 
LDCs/LCCs with 
0(*) queries and 
polynomial rate?



• Till about 8 years ago: 
• Reed-Muller codes were the only example 
• To get query complexity ℓ = #$, Rate R = %&' (

$

• More recently: 
• [Kopparty-S-Yekhanin `11] Multiplicity Codes
• [Guo-Kopparty-Sudan `13] Lifted Codes
• [Hemenway-Ostrovsky-Wootters`13] Expander based codes 
• Query complexity ℓ = #$, Rate R= ( − $
(locally decodable and correctable from a constant    fraction of errors)

• [Katz-Trevisan]:
• Constant rate ⇒ must have query complexity  Ω(log 0)

High rate regime (LCCs, LDCs)
Interesting 
question:

What is the best 
rate/query 
complexity 
tradeoff?

Can one get 
LDCs/LCCs with 

rate 2 ( or ( − $
and with query 
complexity #3 (



[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate 
1 − # that is locally decodable and locally correctable with $% &
queries from a constant fraction of errors. 

Somewhat recent result:

' ()* + ()* ()* +



What we know about constant rate LTCs

• As far as we know,
• there could be 3-query LTCs of constant rate

• RM codes achieve:
• For all R < 1/exp(%&)
• Query complexity = (()& )

• Recent progress beyond Reed-Muller codes:
• For all R < 1
• For all * > 0
• Query complexity = (()&)

• Two familes of codes achieving this!
• Tensor codes [BenSasson-Sudan], [Viderman]
• Lifted Reed-Solomon codes [Guo-Kopparty-Sudan]

Constructions known with 3-

queries and Rate =  
%

-./0(123 4)
[BenSasson-Sudan`05, Dinur`06]



[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate 
1 − # that are locally testable with $% & query complexity.

More recently:

'() * +('()'() *)



KMRS Theorem for LCCs: There exists a family of codes of rate 1 − #
that is locally decodable and locally correctable with   
$ %&' ( %&' %&' ( queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 − #
that is locally testable with )*+ ( ,()*+)*+ () queries from a constant 
fraction of errors. 



LTCs and LCCs approaching the GV bound

• Theorem [Gopi-Kopparty-Oliveira-RonZewi-S `17]

(informal) We can construct LTCs and LCCs which achieve the best 
possible rate-distance tradeoff that we know how to achieve with 
general (nonlocal) codes.



Main Result: LTCs 
[Gopi-Kopparty-Oliveira-RonZewi-S `17]

Theorem:
For all R, ! with:

R < 1 – H(!)
there exists an infinite family of codes #$
such that:
• length(#$) = n
• Rate ≥ R
• Distance ≥ !
• #$ is locally testable with log ) * +,- +,- . queries



Local codes can be list decoded up to capacity

[Hemenway-RonZewi-Wootters`17, Kopparty-RonZewi-S-Wootters`18]

There exist codes that can be locally list decoded up to capacity

with query complexity 2 "#$ %
&
'



[KMRS] result (and proof ideas) – an important ingredient in all these 
results.

Rest of talk – sketch of proof of KMRS result for LCCs 



KMRS Theorem for LCCs: There exists a family of codes of rate 1 − #
that is locally decodable and locally correctable with   
$ %&' ( %&' %&' ( queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 − #
that is locally testable with )*+ ( ,()*+)*+ () queries from a constant 
fraction of errors. 



• Component 1: High rate codes with sub-polynomial query complexity 
but only tolerating a tiny sub-constant fraction of errors

• Component 2: “Distance Amplification”
• Takes code as above and transforms it to a code that can tolerate many more 

errors

Proof of KMRS result: 2 components



• High rate codes with sub-polynomial query complexity but only 
tolerating a tiny sub-constant fraction of errors

Can be achieved by Multiplicity Codes!
(In a regime of parameters not studied before)

Component 1



Multiplicity Codes 
[Kopparty-S-Yekhanin`11]

Theorem (original)
For every !> 0,   
for inf. many k, there are codes encoding

k bits -> (1+!) k     bits (symbols)
decodable in O("#) time   (+queries)
from $ # > 0 fraction errors.

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k     bits (symbols)
decodable in O(2 &'( ) &'( &'( )) time   (+queries)
from ≈ (log log /)/ log / fraction errors.



• Reed Muller Codes

• Augment it with “derivatives”

Construction of Mult. Codes



Bivariate Reed-Muller

• Large finite field of size q 

• Interpret original data as a polynomial P(X,Y)
• degree(P) · d = (1- !) q

• Encoding: Enc(P)
• At each point (a,b) ∈ Fq

2, 
Evaluate P(a,b)

Reed-Muller Codes

Fq
2

Encoding:
(a,b) à P(a,b)



• Schwartz-Zippel Lemma

• 2 polynomials of degree < (1 - !) q   differ on at least ! fraction of points

• So:
• Any two codewords are at least !" apart

Key observations



• Given:
• noisy encoding of P(X,Y)

• Deg(P) = q (1 − # )
• point (a,b) in Fq

2

• Goal: recover P(a,b)

Algorithm
• Take random line L  through (a,b)

• Query points on L
• Should have small error
• Noisy encoding of P|L (univariate polynomial)

• Recover P|L
• “Reed Solomon” decoding

• Compute P|L (a,b)
= P(a,b)

Decoding Reed-Muller Codes

Fq2

(a,b)



• Bivariate Reed Muller:
• k = (d+2) choose 2  ≈ "#$ %&%

'
• n = q2

• Rate ≈ (
) − +

• # Queries:  l ≈ O(k1/2)

• Improve query complexity à increase # of variables

Parameters of Reed-Muller Codes



• Polynomials of deg · (1-!) q in m variables
• k = (d+m) choose m ≈ #$% &'&

(!
• n = qm

• Rate ≈ *$+ ,

,!
• Queries = q ≈ n1/m ≈ O(k1/m)

• Decodable from W(!) errors

• Bottleneck for rate: Degree needs to be small

More variables



Multiplicity Codes

• Key idea: Derivatives

• Higher degree polynomials
• (too high for Reed-Muller)



Bivariate Multiplicity codes

• Large finite field of size q

• Interpret original data as a (high) degree polynomial P(X,Y)
• degree(P):  d = 2 × (1 − $) q

• Encoding: Enc(P)
• At each point (a,b) ∈Fq

2, evaluate:
• <P(a,b), PX(a,b), PY(a,b)>

Multiplicity Codes

Fq
2

Encoding:
(a,b) àP(a,b),  

PX(a,b),             
PY (a,b) 



• 2 polynomials of degree < 2q (1-!)  cannot agree on their evaluations and 
evaluations of derivatives in more than (1-!) fraction points

• # roots of P counted with multiplicity · deg(P) |F|n-1

• Multiplicity Codes have good distance

Schwartz-Zippel with 
Multiplicities [Dvir-Kopparty-S-Sudan’10]



Given:
• noisy encoding of  <P, PX, PY> 

• Deg(P) = 2 × q (1-")
• point (a,b) in Fq2

Goal: recover <P(a,b), PX(a,b), Py(a,b)> 

Algorithm

• Take random line L  through (a,b)
• Should have small error

• Query points on L
• PX, PY give directional derivative of P along  L
• Noisy encoding of P|L (univariate polynomial),

and of  der(P|L)

• Recover P|L

• Repeat  above steps

• We thus know     P(a,b), der(P|L1) (a,b), der(P|L2) (a,b) 

• This gives us P(a,b), PX(a,b), PY(a,b)

Decoding Multiplicity Codes

Fq2



• Bivariate Multiplicity Codes of order 2:
• k = (d+2) choose 2 /3 ≈ (2(1-")q)2 / 6
• n = q2

• Rate ≈ 2/3 - #
• # Queries:   ≈ O(k1/2)

• Improve Rate à increase order of derivatives

• Improve query complexity à increase # variables

Parameters of Multiplicity Codes



• m – variate, derivatives up to order s

• Polynomials of degree (1-!)sq

} Query Complexity: ≈ k1/m

• Rate ≈ (s/ m+s)m × (1-!)m

• so if s >> m,   rate à1

• Decoding as before …
• (+ some “robustification”)

More variables, many derivatives



Reed-Muller Codes Multiplicity Codes

• Messages: Low degree 
polynomials

• Encoding: Evaluation of 
polynomial on full domain

• #queries: Decreases with 
increase in # variables

• Rate: Decreases 
exponentially with  
increase in #vars

• Messages: High degree 
polynomials

• Encoding: Evaluation of 
polynomial and its 
derivatives on full domain

• #queries: Decreases with 
increase in # variables

• Rate:             1



To make queries sub-polynomial, choose m to be super-constant. For 
constant rate this forces distance to be sub-constant. 

Multiplicity codes in low distance regime

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k     bits (symbols)
decodable in O(2 #$% & #$% #$% &) time   (+queries)
from ≈ (log log ,)/ log , fraction errors.



• Distance amplification
• Similar technique used by [Alon-Luby’96] and then by others [GI’05, GR’08]

Component 2

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+!) k     bits (symbols)
decodable in O(2 #$% & #$% #$% &) time   (+queries)
from ≈ (log log ,)/ log , fraction errors.



• Distance amplification
• Similar technique used by [Alon-Luby’96] and then by others [GI’05, GR’08]

Component 2

Theorem (sub-constant distance)
For every !> 0
for inf. many k, there are codes encoding

k bits -> (1+2!) k     bits (symbols)
decodable in O(2# $%& ' $%& $%& ') time   (+queries)
from ≈ (log log -)/ log - fraction errors.

0(1)
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Reed 
Solomon 
encoding

Multiplicity 
codeword

ReedSolomon code: 
Message length b
Codeword length d

Distance '

Decoding from random 
errors:

Suppose (# − * fraction of random 
errors 

Most (1-o(1))  grey blocks have at 
most (# corruptions

Those Reed-Solomon codewords
can be correctly decoded

Thus 1-o(1) fraction of the blue 
blocks can be correctly recovered. 

This is low enough error for 
multiplicity codes to handle

Everything can be done locally
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Decoding from adversarial 
errors:

Suppose '# − ) fraction of green 
blocks get corrupted

Most (1-o(1))  grey blocks have at 
most */2 corrupt neighbors 
(expander mixing lemma).

Those Reed-Solomon codewords
have at most '# errors and can be 

correctly decoded

Thus 1-o(1) fraction of the blue 
blocks can be correctly recovered. 

This is low enough error for 
multiplicity codes to handle

Everything can be done locally

Expander + blocking 
makes the errors look 

pseudorandom



Open questions

• Best possible query complexity for high rate LDCs and LTCs?
• LTCS – potentially high rate 3 query LTCs!
• LDCs/LCCs – potentially high rate  log n query LCCs 

• Explicit codes meeting the GV bound?
• Almost solved by Ta-Shma!

• Is the GV bound tight?



Thanks!


