Some recent results on high rate local codes

Shubhangi Saraf Rutgers

Joint works with

Sivakanth Gopi, Swastik Kopparty, Or Meir, Rafael Oliveira, Noga Ron-Zewi, Mary Wootters

This talk

- Error-correcting codes with:
 - low redundancy
 - robust to large fraction of errors
 - sublinear time error-detection and error-correction algorithms

Error-correcting codes

- Alphabet Σ (often $\{0,1\}$)
- Encoding:
 - $E: \Sigma^k \to \Sigma^n$
 - Maps data to "codeword"
- Code C = Image(E)
 - ightharpoonup Rate = k/n
 - (Hamming) Distance δ : Any 2 codewords differ on at least δ fraction coordinates,

 $\frac{\delta}{2}$ fraction errors can be corrected

Binary Error-correcting codes

- $C \subseteq \{0,1\}^n$ (with Hamming metric)
- Rate R:
 - $|C| = 2^{Rn}$
- Distance δ :
 - $\Delta(x,y) \ge \delta n$ for distinct $x,y \in C$
 - Implies $\delta/2$ -fraction errors can be corrected
- Rate vs. Distance?
 - OPEN

Gilbert Varshamov bound

• GV Bound: There exist codes with $R \ge 1 - H(\delta)$

Over large alphabets

 $R = 1 - \delta$ is the optimal tradeoff (a.k.a. SINGLETON BOUND) Achieved explicitly

- Great open questions:
 - Is the GV bound tight?
 - Do there exist explicit codes meeting the GV bound?

Goals of classical coding theory

- Basic algorithmic tasks:
 - Encoding
 - Testing (error detection)
 - Decoding (error correction)
- Today we know codes with:
 - good rate-distance tradeoff
 - efficient encoding, testing, decoding
 - Linear/near-linear time

Local Codes

- Meanwhile, in early 90s complexity theory:
 - answers to questions that had never been asked

Can we work with codes in sublinear time?

• In particular, what can we do with sublinear # queries?

Algorithmic Tasks associated with Error Correction

- Error Detection: Given $r \in \Sigma^n$, determine if $r \in C$
 - Given $r \in \Sigma^n$, with sublinear queries to r, distinguish between $r \in C$ and $\Delta(r,C) > \epsilon n$
- Error Correction: Given $r \in \Sigma^n$, if $\exists m$ such that
 - $\Delta(r, E(m)) < \epsilon n$, find m
 - Given $r \in \Sigma^n$ and $i \in [k]$ if $\exists m$ such that $\Delta(r, E(m)) < \epsilon n$, with sublinear queries to r find m_i

Locally Testable Code

Given: $r \in \Sigma^n$

Locally Decodable Codes

Given: $r \in \Sigma^n$ such that $\Delta(r, C) < \epsilon n$

Locally Correctable Codes

Given: $r \in \Sigma^n$ such that $\Delta(r, C) < \epsilon n$

Motivation for Local Decoding/Local Correcting

Many applications to cryptography and complexity theory

- Worst case to Average Case reductions
- Constructions of PRGs from One-Way functions
- Connections to Polynomial Identity Testing, Matrix Rigidity, Circuit Lower bounds
- Private information retrieval
- Learning theory
- Mathematically very interesting
- Interesting for coding theory in practice?

Motivation for Local Testing

- Implicit connections to the PCP theorem
 - Advances have led to improved PCPs
 - Limitations should lead to an understanding of limitations of PCPs
- Applications to Unique Games conjecture and hardness of approximation

- Many relations to testing of functions
 - Original [Blum-Luby-Rubinfeld] linearity tester ≈ testability of the Hadamard Code which led to the proof checking revolution

A nice local code

- Reed-Muller codes (multivariate polynomial evaluation codes)
 - · constant rate, constant distance
 - $O(n^{\epsilon})$ query locally testable
 - $O(n^{\epsilon})$ query locally decodable
- Large finite field $\mathbf{F_q}$ of size q
- Interpret original data as a polynomial P(X,Y)
 - degree(P) = d = 0.1 q
- Encoding:
 - Evaluate P at each point of $\mathbf{F_q}^2$
- Rate = $\Omega(1)$
- Distance = 0.9
 - Two low degree polynomials cannot agree on many points of $\mathbf{F_q}^2$

Local testing/correcting RM codes

- Main idea:
 - Restricting a low-degree multivariate polynomial to a line gives a low-degree univariate polynomial
- Local testing:
 - Check that restriction to a random line is a low-degree univariate polynomial
 - Analysis highly nontrivial [Rubinfeld-Sudan + others]
- Local correcting:
 - To recover P(a,b):
 - Pick random line L through (a,b)
 - Fit univariate polynomial through $r|_L$
 - Use it to recover value at (a,b)
- Query complexity
 - # points on a line = q = $O(\sqrt{n})$

Local codes of constant rate

- Reed-Muller codes (multivariate polynomial evaluation codes)
 - constant rate, constant distance
 - $O(n^{\epsilon})$ query locally testable
 - $O(n^{\epsilon})$ query locally decodable

- Since the 2010s, several improved codes:
 - Local testing:
 - tensor codes [BS, V], lifted codes [GKS]
 - Local decoding:
 - multiplicity codes [KSY], lifted codes [GKS], expander codes [HOW]
 - rate → 1, better rate vs. distance vs. queries

Plan of talk

- Survey of some known results
- [Kopparty-Meir-RonZewi-S `16]
 - High rate LTCs/LCCs with improved query complexity
- [Gopi-Kopparty-Oliveira-RonZewi-S `17]
 - LTCs and LCCs approaching* Gilbert-Varshamov bound
- [Kopparty-RonZewi-S-Wootters `18]
 - Capacity achieving locally list decodable codes
- Some proofs

Locally decodable/correctable Two regimes

Low query regime:

- Number of queries is small (2, 3, constant)
- What is the best rate?
- Theoretically very interesting
 - applications to Cryptography, average-case complexity
- Too inefficient for codes in practice

Extensively studied
Many deep and amazing
results (upper and lower
bounds)
Many basic problems
unanswered

High rate regime

- Let the rate be high (constant rate or rate ≈ 1)
- What is the best query complexity that can be achieved?
- Focus of more recent work.
- Relevant regime for data storage and retrieval.
- Even mild lower bounds would have very interesting consequences to rigidity, lower bounds [Dvir]

Low Query Regime (LCCs, LDCs)

- $\ell = 2$: Hadamard Code is best possible $n = 2^{\Omega(k)}$ [Goldreich-Karloff
- ℓ = 3: $n = 2^{\sqrt{k}}$ (till not very long ago ...)
- For any constant ℓ : Reed Muller code best known construction: n = ago)

Matching Vector Codes: LDCs with n = exp(exp(o(log k)) [Yekhanin, Efremenko, Dvir-Gopalan-Yekhanin] Open question:

ong

Can one get LDCs/LCCs with O(1) queries and polynomial rate?

- Lower bounds:
 - ℓ = 3: $n = \Omega(k^2)$ [Woodruff]
 - [Dvir-S-Wigderson] Over Real numbers, if code is linear then for LCCs $n=\Omega(k^{2+\epsilon})$
 - General ℓ : $n \ge k^{1+\frac{1}{\ell}}$ (too inefficient for codes in practice)

High rate regime (LCCs, LDCs)

- Till about 8 years ago:
 - Reed-Muller codes were the only example
 - To get query complexity $\ell = k^{\epsilon}$, Rate $R = \exp\left(\frac{1}{\epsilon}\right)$
- More recently:
 - [Kopparty-S-Yekhanin `11] Multiplicity Codes
 - [Guo-Kopparty-Sudan `13] Lifted Codes
 - [Hemenway-Ostrovsky-Wootters`13] Expander based c
 - Query complexity $\ell=k^\epsilon$, Rate R= $1-\epsilon$ (locally decodable and correctable from a constant—fract

Interesting question:

What is the best rate/query complexity tradeoff?

Can one get LDCs/LCCs with rate $\Omega(1)$ or $1-\epsilon$ and with query complexity $k^{o(1)}$

- [Katz-Trevisan]:
 - Constant rate \Rightarrow must have query complexity $\Omega(\log n)$

Somewhat recent result:

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate $1-\epsilon$ that is locally decodable and locally correctable with $n^{o(1)}$ queries from a constant fraction of errors.

 $2^{\sqrt{(\log n \log \log n)}}$

What we know about constant rate LTCs

- As far as we know,
 - there could be 3-query LTCs of constant rate
- RM codes achieve:
 - For all R < $1/\exp(\frac{1}{\beta})$
 - Query complexity = $O(n^{\beta})$
- Recent progress beyond Reed-Muller codes:
 - For all R < 1
 - For all $\beta > 0$
 - Query complexity = $O(n^{\beta})$
 - Two familes of codes achieving this!
 - Tensor codes [BenSasson-Sudan], [Viderman]
 - Lifted Reed-Solomon codes [Guo-Kopparty-Sudan]

Constructions known with 3queries and Rate = $\frac{1}{poly(\log n)}$ [BenSasson-Sudan`05, Dinur`06]

More recently:

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate $1 - \epsilon$ that are locally testable with $n^{o(1)}$ query complexity.

 $(\log n)^{O(\log\log n)}$

KMRS Theorem for LCCs: There exists a family of codes of rate $1 - \epsilon$ that is locally decodable and locally correctable with $2^{\sqrt{(\log n \log \log n)}}$ queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate $1 - \epsilon$ that is locally testable with $(\log n)^{O(\log \log n)}$ queries from a constant fraction of errors.

LTCs and LCCs approaching the GV bound

Theorem [Gopi-Kopparty-Oliveira-RonZewi-S `17]

(informal) We can construct LTCs and LCCs which achieve the best possible rate-distance tradeoff that we know how to achieve with general (nonlocal) codes.

Main Result: LTCs

[Gopi-Kopparty-Oliveira-RonZewi-S `17]

Theorem:

For all R, δ with:

$$R < 1 - H(\delta)$$

there exists an infinite family of codes \mathcal{C}_n

such that:

- length(C_n) = n
- Rate \geq R
- Distance $\geq \delta$
- C_n is locally testable with $(\log n)^{O(\log \log n)}$ queries

Local codes can be list decoded up to capacity

[Hemenway-RonZewi-Wootters`17, Kopparty-RonZewi-S-Wootters`18]

There exist codes that can be *locally list decoded* up to capacity with query complexity $2^{(\log n)^{\frac{3}{4}}}$

[KMRS] result (and proof ideas) – an important ingredient in all these results.

Rest of talk – sketch of proof of KMRS result for LCCs

KMRS Theorem for LCCs: There exists a family of codes of rate $1 - \epsilon$ that is locally decodable and locally correctable with $2^{\sqrt{(\log n \log \log n)}}$ queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate $1 - \epsilon$ that is locally testable with $(\log n)^{O(\log \log n)}$ queries from a constant fraction of errors.

Proof of KMRS result: 2 components

 Component 1: High rate codes with sub-polynomial query complexity but only tolerating a tiny sub-constant fraction of errors

- Component 2: "Distance Amplification"
 - Takes code as above and transforms it to a code that can tolerate many more errors

Component 1

 High rate codes with sub-polynomial query complexity but only tolerating a tiny sub-constant fraction of errors

Can be achieved by Multiplicity Codes!
(In a regime of parameters not studied before)

Multiplicity Codes

[Kopparty-S-Yekhanin`11]

Theorem (original)

```
For every \epsilon > 0, for inf. many k, there are codes encoding
```

```
k bits -> (1+\epsilon) k bits (symbols) decodable in O(k^{\epsilon}) time (+queries) from \delta(\epsilon)>0 fraction errors.
```

Theorem (sub-constant distance)

For every $\epsilon > 0$ for inf. many k, there are codes encoding

```
k bits -> (1+\epsilon) k bits (symbols) decodable in O(2^{\sqrt{\log k \log \log k}}) time (+queries) from \approx \sqrt{(\log \log k)/\log k} fraction errors.
```

Construction of Mult. Codes

Reed Muller Codes

Augment it with "derivatives"

Reed-Muller Codes

Bivariate Reed-Muller

Large finite field of size q

- Interpret original data as a polynomial P(X,Y)
 - degree(P) · d = (1- δ) q

- Encoding: Enc(P)
 - At each point (a,b) ∈ F_q², Evaluate P(a,b)

Key observations

Schwartz-Zippel Lemma

• 2 polynomials of degree < (1 - δ) q differ on at least δ fraction of points

- So:
 - Any two codewords are at least δn apart

Decoding Reed-Muller Codes

- Given:
 - noisy encoding of P(X,Y)
 - Deg(P) = q (1δ)
 - point (a,b) in \mathbf{F}_q^2
- Goal: recover P(a,b)

Algorithm

- Take random line L through (a,b)
- Query points on L
 - Should have small error
 - Noisy encoding of P|_L (univariate polynomial)
- Recover P | 1
 - "Reed Solomon" decoding
- Compute P|_L (a,b)
 = P(a,b)

Parameters of Reed-Muller Codes

Bivariate Reed Muller:

• k = (d+2) choose 2
$$\approx \frac{(1-\delta)^2 q^2}{2}$$

- $n = q^2$
- Rate $\approx \frac{1}{2} \delta$
- # Queries: $\ell \approx O(k^{1/2})$

Improve query complexity → increase # of variables

More variables

- Polynomials of deg \cdot (1- δ) q in $\emph{m variables}$
- k = (d+m) choose m $\approx \frac{(1-\delta)^m q^m}{m!}$
- $n = q^{m}$
- Rate $\approx \frac{(1-\delta)^m}{m!}$
- Queries = $q \approx n^{1/m} \approx O(k^{1/m})$
- Decodable from $\Omega(\delta)$ errors
- Bottleneck for rate: Degree needs to be small

Multiplicity Codes

- Key idea: Derivatives
- Higher degree polynomials
 - (too high for Reed-Muller)

Multiplicity Codes

Bivariate Multiplicity codes

Large finite field of size q

Interpret original data as a (high) degree polynomial P(X.Y)

• degree(P): $d = 2 \times (1 - \delta) q$

- Encoding: Enc(P)
 - At each point (a,b) $\in F_q^2$, evaluate:
 - <P(a,b), P_X(a,b), P_Y(a,b)>

Schwartz-Zippel with Multiplicities [Dvir-Kopparty-S-Sudan'10]

• 2 polynomials of degree < 2q (1- δ) cannot agree on their evaluations and evaluations of derivatives in more than (1- δ) fraction points

• # roots of P counted with multiplicity \cdot deg(P) $|F|^{n-1}$

Multiplicity Codes have good distance

Decoding Multiplicity Codes

Given:

- noisy encoding of <P, P_X, P_Y>
 - Deg(P) = $2 \times q (1-\delta)$
- point (a,b) in \mathbf{F}_{a^2}

Goal: recover $\langle P(a,b), P_X(a,b), P_Y(a,b) \rangle$

Algorithm

- Take random line L through (a,b)
 - · Should have small error
- Query points on L
 - P_X, P_Y give directional derivative of P along L
 - Noisy encoding of P|L (univariate polynomial), and of der(P|L)
- Recover P|L
- Repeat above steps
- We thus know P(a,b), $der(P|_{L1})$ (a,b), $der(P|_{L2})$ (a,b)
- This gives us P(a,b), $P_X(a,b)$, $P_Y(a,b)$

Parameters of Multiplicity Codes

- Bivariate Multiplicity Codes of order 2:
 - k = (d+2) choose $2/3 \approx (2(1-\delta)q)^2/6$
 - $n = q^2$
 - Rate $\approx 2/3 \delta$
 - # Queries: $\approx O(k^{1/2})$

- Improve Rate → increase order of derivatives
- Improve query complexity → increase # variables

More variables, many derivatives

- m variate, derivatives up to order s
- Polynomials of degree $(1-\delta)$ sq
- ▶ Query Complexity: $\approx k^{1/m}$
- Rate \approx (s/ m+s)^m \times (1- δ)^m
 - so if s >> m, rate \rightarrow 1
- Decoding as before ...
 - (+ some "robustification")

Reed-Muller Codes

- Messages: Low degree polynomials
- Encoding: Evaluation of polynomial on full domain

- #queries: Decreases with increase in # variables
- Rate: Decreases exponentially with increase in #vars

Multiplicity Codes

- Messages: High degree polynomials
- Encoding: Evaluation of polynomial and its derivatives on full domain
- #queries: Decreases with increase in # variables
- Rate: 1

Multiplicity codes in low distance regime

To make *queries sub-polynomial*, choose m to be super-constant. For *constant rate* this *forces distance to be sub-constant*.

```
Theorem (sub-constant distance)

For every \epsilon > 0

for inf. many k, there are codes encoding

k bits -> (1+\epsilon) k bits (symbols)

decodable in O(2^{\sqrt{\log k \log \log k}}) time (+queries)

from \approx \sqrt{(\log \log k)/\log k} fraction errors.
```

Component 2

- Distance amplification
 - Similar technique used by [Alon-Luby'96] and then by others [GI'05, GR'08]

```
Theorem (sub-constant distance)

For every \epsilon > 0
for inf. many k, there are codes encoding

k bits -> (1+\epsilon) k bits (symbols)

decodable in O(2^{\sqrt{\log k \log \log k}}) time (+queries)

from \approx \sqrt{(\log \log k)/\log k} fraction errors.
```

Component 2

Distance amplification

• Similar technique used by [Alon-Luby'96] and then by others [GI'05, GR'08]

```
Theorem (sub-constant distance)

For every \epsilon > 0

for inf. many k, there are codes encoding

k bits -> (1+2\epsilon) k bits (symbols)

decodable in O(2^{2\sqrt{\log k \log \log k}}) time (+queries)

from \approx \sqrt{(\log \log k)/\log k} fraction errors.
```


Decoding from random errors:

Suppose $\frac{\delta}{2} - \epsilon$ fraction of random errors

Most (1-o(1)) grey blocks have at most $\frac{\delta}{2}$ corruptions

Those Reed-Solomon codewords can be correctly decoded

Thus 1-o(1) fraction of the blue blocks can be correctly recovered.

This is low enough error for multiplicity codes to handle

Everything can be done locally

Decoding from adversarial errors:

Suppose $\frac{\delta}{2} - \epsilon$ fraction of green blocks get corrupted

Most (1-o(1)) grey blocks have at most $\delta/2$ corrupt neighbors (expander mixing lemma).

Those Reed-Solomon codewords have at most $\frac{\delta}{2}$ errors and can be correctly decoded

Thus 1-o(1) fraction of the blue blocks can be correctly recovered. This is low enough error for multiplicity codes to handle

Everything can be done locally

Open questions

- Best possible query complexity for high rate LDCs and LTCs?
 - LTCS potentially high rate 3 query LTCs!
 - LDCs/LCCs potentially high rate log n query LCCs

- Explicit codes meeting the GV bound?
 - Almost solved by Ta-Shma!

Is the GV bound tight?

Thanks!