Some recent results on high rate local codes

Shubhangi Saraf
Rutgers

Joint works with
Sivakanth Gopi, Swastik Kopparty, Or Meir, Rafael Oliveira, Noga RonZewi, Mary Wootters

This talk

- Error-correcting codes with:
- low redundancy
- robust to large fraction of errors
- sublinear time error-detection and error-correction algorithms

Error-correcting codes

- Alphabet Σ (often $\{0,1\}$)
- Encoding:
- E: $\Sigma^{k} \rightarrow \Sigma^{n}$
- Maps data to "codeword"
- Code C = Image(E)
- Rate $=k / n$
- (Hamming) Distance δ : Any 2 codewords differ
on at least δ fraction
coordinates,
$\frac{\delta}{2}$ fraction errors can be corrected

Binary Error-correcting codes

- $\mathrm{C} \subseteq\{0,1\}^{n}$ (with Hamming metric)
- Rate R:
- $|C|=2^{R n}$
- Distance δ :
- $\Delta(x, y) \geq \delta n$ for distinct $x, y \in \mathrm{C}$
- Implies $\delta / 2$-fraction errors can be corrected
- Rate vs. Distance?
- OPEN

Gilbert Varshamov bound

- GV Bound: There exist codes with $R \geq 1-H(\delta)$
-

Over large alphabets

$R=1-\delta$ is the optimal tradeoff (a.k.a. SINGLETON BOUND)

Achieved explicitly

- Great open questions:
- Is the GV bound tight?
- Do there exist explicit codes meeting the GV bound?

Goals of classical coding theory

- Basic algorithmic tasks:
- Encoding
- Testing (error detection)
- Decoding (error correction)
- Today we know codes with:
- good rate-distance tradeoff
- efficient encoding, testing, decoding
- Linear/near-linear time

Local Codes

- Meanwhile, in early 90s complexity theory:
- answers to questions that had never been asked
- Can we work with codes in sublinear time?
- In particular, what can we do with sublinear \# queries?

Algorithmic Tasks associated with Error Correction

- Error Detection: Given $\mathrm{r} \in \Sigma^{n}$, determine if $r \in C$
- Given $r \in \Sigma^{n}$, with sublinear queries to r, distinguish between $r \in C$ and $\Delta(r, C)>\epsilon n$
- Error Correction: Given $\mathrm{r} \in \Sigma^{n}$, if $\exists m$ such that $\Delta(r, E(m))<\epsilon n$, find m
- Given $\mathrm{r} \in \Sigma^{n}$ and $\mathrm{i} \in[k]$ if $\exists m$ such that $\Delta(r, E(m))<\epsilon n$, with sublinear queries to r find m_{i}

Locally Testable Code

Given: $r \in \Sigma^{n}$

Is r in C ?

Locally Decodable Codes

Given: $r \in \Sigma^{n}$ such that $\Delta(r, C)<\epsilon n$

Given: $i \in[k]$

Locally Correctable Codes

Given: $r \in \Sigma^{n}$ such that $\Delta(r, C)<\epsilon n$

Motivation for Local Decoding/Local Correcting

Many applications to cryptography and complexity theory

- Worst case to Average Case reductions
- Constructions of PRGs from One-Way functions
- Connections to Polynomial Identity Testing, Matrix Rigidity, Circuit Lower bounds
- Private information retrieval
- Learning theory
- Mathematically very interesting
- Interesting for coding theory in practice?

Motivation for Local Testing

- Implicit connections to the PCP theorem
- Advances have led to improved PCPs
- Limitations should lead to an understanding of limitations of PCPs
- Applications to Unique Games conjecture and hardness of approximation
- Many relations to testing of functions
- Original [Blum-Luby-Rubinfeld] linearity tester \approx testability of the Hadamard Code which led to the proof checking revolution

A nice local code

- Reed-Muller codes (multivariate polynomial evaluation codes)
- constant rate, constant distance
- $\mathrm{O}\left(n^{\epsilon}\right)$ query locally testable
- $\mathrm{O}\left(n^{\epsilon}\right)$ query locally decodable
- Large finite field $\mathbf{F}_{\mathbf{q}}$ of size q
- Interpret original data as a polynomial $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- $\operatorname{degree}(P)=d=0.1 q$
- Encoding:
- Evaluate P at each point of $\mathbf{F}_{\mathrm{q}}{ }^{2}$
- Rate $=\Omega(1)$
- Distance $=0.9$
- Two low degree polynomials cannot agree on many points of $\mathbf{F}_{\mathbf{q}}{ }^{2}$

Local testing/correcting RM codes

- Main idea:
- Restricting a low-degree multivariate polynomial to a line gives a low-degree univariate polynomial
- Local testing:
- Check that restriction to a random line is a low-degree univariate polynomial
- Analysis highly nontrivial [Rubinfeld-Sudan + others]
- Local correcting:
- To recover $\mathrm{P}(\mathrm{a}, \mathrm{b})$:
- Pick random line L through (a, b)
- Fit univariate polynomial through $\left.r\right|_{L}$
- Use it to recover value at (a, b)
- Query complexity
- \# points on a line $=\mathrm{q}=\mathrm{O}(\sqrt{n})$

Local codes of constant rate

- Reed-Muller codes (multivariate polynomial evaluation codes)
- constant rate, constant distance
- $\mathrm{O}\left(n^{\epsilon}\right)$ query locally testable
- $O\left(n^{\epsilon}\right)$ query locally decodable
- Since the 2010s, several improved codes:
- Local testing:
- tensor codes [BS, V], lifted codes [GKS]
- Local decoding:
- multiplicity codes [KSY], lifted codes [GKS], expander codes [HOW]
- rate $\rightarrow 1$, better rate vs. distance vs. queries

Plan of talk

- Survey of some known results
- [Kopparty-Meir-RonZewi-S `16]
- High rate LTCs/LCCs with improved query complexity
- [Gopi-Kopparty-Oliveira-RonZewi-S `17]
- LTCs and LCCs approaching* Gilbert-Varshamov bound
- [Kopparty-RonZewi-S-Wootters `18]
- Capacity achieving locally list decodable codes
- Some proofs

Locally decodable/correctab Two regimes

- Low query regime:
- Number of queries is small (2,3, constant)
- What is the best rate?
- Theoretically very interesting
- applications to Cryptography, average-case complexity
- Too inefficient for codes in practice
- High rate regime
- Let the rate be high (constant rate or rate ≈ 1)
- What is the best query complexity that can be achieved?
- Focus of more recent work.
- Relevant regime for data storage and retrieval.
- Even mild lower bounds would have very interesting consequences to rigidity, lower bounds [Dvir]

Low Query Regime (LCCs, LDCs)

- $\ell=2$: Hadamard Code is best possible $n=2^{\Omega(k)}$ [Goldreich-Karloff
- $\ell=3: n=2^{\sqrt{k}} \quad$ (till not very long ago ...)
- For any constant ℓ : Reed Muller code best known construction: $n=$ ago)

Matching Vector Codes:
LDCs with $\quad n=\exp (\exp (o(\log k))$
[Yekhanin, Efremenko, Dvir-Gopalan-Yekhanin]

- Lower bounds:
- $\ell=3: n=\Omega\left(k^{2}\right)$ [Woodruff]
- [Dvir-S-Wigderson] Over Real numbers, if code is linear then for LCCs $n=\Omega\left(k^{2+\epsilon}\right)$
- General $\ell: n \geq \boldsymbol{k}^{1+\frac{1}{\ell}}$ (too inefficient for codes in practice)

Open question:
Can one get LDCs/LCCs with $O(1)$ queries and polynomial rate?

High rate regime (LCCs, LDCs)

- Till about 8 years ago:
- Reed-Muller codes were the only example
- To get query complexity $l=\boldsymbol{k}^{\epsilon}$, Rate $\mathrm{R}=\exp \left(\frac{1}{\epsilon}\right)$
- More recently:
- [Kopparty-S-Yekhanin `11] Multiplicity Codes
- [Guo-Kopparty-Sudan `13] Lifted Codes
- [Hemenway-Ostrovsky-Wootters`13] Expander based c
- Query complexity $\ell=\boldsymbol{k}^{\epsilon}$, Rate $\mathrm{R}=\mathbb{1}-\epsilon$
(locally decodable and correctable from a constant fract
Interesting question:
What is the best
rate/query complexity tradeoff?
Can one get LDCs/LCCs with rate $\Omega(1)$ or $1-\epsilon$ and with query complexity $k^{o(1)}$
- [Katz-Trevisan]:
- Constant rate \Rightarrow must have query complexity $\Omega(\log n)$

Somewhat recent result:

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate $1-\epsilon$ that is locally decodable and locally correctable with $n^{o(1)}$ queries from a constant fraction of errors.

What we know about constant rate LTCs

- As far as we know,
- there could be 3-query LTCs of constant rate
- RM codes achieve:
- For all $\mathrm{R}<1 / \exp \left(\frac{1}{\beta}\right)$
- Query complexity $=O\left(n^{\beta}\right)$
- Recent progress beyond Reed-Muller codes:
- For all $\mathrm{R}<1$
- For all $\beta>0$
- Query complexity $=O\left(n^{\beta}\right)$
- Two familes of codes achieving this!
- Tensor codes [BenSasson-Sudan], [Viderman]
- Lifted Reed-Solomon codes [Guo-Kopparty-Sudan]

More recently:

[Kopparty-Meir-RonZewi-S `16]: There exists a family of codes of rate $1-\epsilon$ that are locally testable with $n^{o(1)}$ query complexity.

```
(log n )
```

KMRS Theorem for LCCs: There exists a family of codes of rate $1-\epsilon$ that is locally decodable and locally correctable with $2^{\sqrt{(\log n \log \log n)}}$ queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate $1-\epsilon$ that is locally testable with $(\boldsymbol{\operatorname { l o g }} \boldsymbol{n})^{\boldsymbol{O}(\boldsymbol{\operatorname { l o g } \operatorname { l o g } n)}}$ queries from a constant fraction of errors.

LTCs and LCCs approaching the GV bound

- Theorem [Gopi-Kopparty-Oliveira-RonZewi-S `17]
(informal) We can construct LTCs and LCCs which achieve the best possible rate-distance tradeoff that we know how to achieve with general (nonlocal) codes.

Main Result: LTCs

[Gopi-Kopparty-Oliveira-RonZewi-S `17]

Theorem:

For all R, δ with:

$$
\mathrm{R}<1-\mathrm{H}(\delta)
$$

there exists an infinite family of codes C_{n} such that:

- length $\left(C_{n}\right)=\mathrm{n}$
- Rate $\geq \mathrm{R}$
- Distance $\geq \delta$
- C_{n} is locally testable with $(\log n)^{O(\log \log \mathrm{n})}$ queries

Local codes can be list decoded up to capacity

[Hemenway-RonZewi-Wootters`17, Kopparty-RonZewi-S-Wootters`18]

There exist codes that can be locally list decoded up to capacity
with query complexity $2^{(\log n)^{\frac{3}{4}}}$
[KMRS] result (and proof ideas) - an important ingredient in all these results.

Rest of talk - sketch of proof of KMRS result for LCCs

KMRS Theorem for LCCs: There exists a family of codes of rate $1-\epsilon$ that is locally decodable and locally correctable with $2^{\sqrt{(\log n \log \log n)}}$ queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate $1-\epsilon$ that is locally testable with $(\boldsymbol{\operatorname { l o g }} \boldsymbol{n})^{\boldsymbol{O}(\boldsymbol{\operatorname { l o g } \operatorname { l o g } \boldsymbol { n })}}$ queries from a constant fraction of errors.

Proof of KMRS result: 2 components

- Component 1: High rate codes with sub-polynomial query complexity but only tolerating a tiny sub-constant fraction of errors
- Component 2: "Distance Amplification"
- Takes code as above and transforms it to a code that can tolerate many more errors

Component 1

- High rate codes with sub-polynomial query complexity but only tolerating a tiny sub-constant fraction of errors

Can be achieved by Multiplicity Codes!
(In a regime of parameters not studied before)

Multiplicity Codes
 [Koppartv-S-Yekhanin`11]

Theorem (original)
For every $\epsilon>0$,
for inf. many k, there are codes encoding
k bits $->(1+\epsilon) \mathrm{k} \quad$ bits (symbols)
decodable in $\mathrm{O}\left(\boldsymbol{k}^{\epsilon}\right)$ time (+queries)
from $\delta(\epsilon)>0$ fraction errors.
Theorem (sub-constant distance)
For every $\epsilon>0$
for inf. many k, there are codes encoding
k bits $->(1+\epsilon) \mathrm{k} \quad$ bits (symbols)
decodable in $\mathrm{O}\left(2^{\sqrt{\log k \log \log k}}\right)$ time (+queries)
from $\approx \sqrt{(\log \log k) / \log k}$ fraction errors.

Construction of Mult. Codes

- Reed Muller Codes
- Augment it with "derivatives"

Reed-Muller Codes

Bivariate Reed-Muller

- Large finite field of size q
- Interpret original data as a polynomial $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- $\operatorname{degree}(\mathrm{P}) \cdot \mathrm{d}=(1-\delta) \mathrm{q}$
- Encoding: Enc(P)
- At each point $(a, b) \in F_{q}{ }^{2}$, Evaluate $\mathrm{P}(\mathrm{a}, \mathrm{b})$

Key observations

- Schwartz-Zippel Lemma
- 2 polynomials of degree $<(1-\delta)$ q differ on at least δ fraction of points
- So:
- Any two codewords are at least δn apart

Decoding Reed-Muller Codes

- Given:
- noisy encoding of $P(X, Y)$
$\operatorname{Deg}(\mathrm{P})=\mathrm{q}(1-\delta)$
- point (a, b) in $F_{q}{ }^{2}$
- Goal: recover $\mathrm{P}(\mathrm{a}, \mathrm{b})$

Algorithm

- Take random line L through (a, b)
- Query points on L
- Should have small error
- Noisy encoding of $\left.P\right|_{L}$ (univariate polynomial)
- Recover $\left.P\right|_{L}$
- "Reed Solomon" decoding
- Compute $\left.P\right|_{L}(a, b)$
$=P(a, b)$

Parameters of Reed-Muller Codes

- Bivariate Reed Muller:
- $\mathrm{k}=(\mathrm{d}+2)$ choose $2 \approx \frac{(1-\delta)^{2} q^{2}}{2}$
- $\mathrm{n}=\mathrm{q}^{2}$
- Rate $\approx \frac{1}{2}-\delta$
- \# Queries: $\ell \approx O\left(\mathbf{k}^{1 / 2}\right)$
- Improve query complexity \rightarrow increase \# of variables

More variables

- Polynomials of deg • (1- δ) q in m variables
- $\mathrm{k}=(\mathrm{d}+\mathrm{m})$ choose $\mathrm{m} \approx \frac{(1-\delta)^{m} q^{m}}{m!}$
- $\mathrm{n}=\mathrm{q}^{\mathrm{m}}$
- Rate $\approx \frac{(1-\delta)^{m}}{m!}$
- Queries $=q \approx n^{1 / m} \approx O\left(k^{1 / m}\right)$
- Decodable from $\Omega(\delta)$ errors
- Bottleneck for rate: Degree needs to be small

Multiplicity Codes

- Key idea: Derivatives
- Higher degree polynomials
- (too high for Reed-Muller)

Multiplicity Codes

Bivariate Multiplicity codes

- Large finite field of size q
- Interpret original data as a (high) degree polynomial P(X.Y)

Encoding:

$$
\begin{gathered}
(a, b) \rightarrow P(a, b), \\
P_{X}(a, b), \\
P_{Y}(a, b)
\end{gathered}
$$

- Encoding: Enc(P)
- At each point $(a, b) \in F_{q}{ }^{2}$, evaluate:
- <P(a,b), $P_{x}(a, b), P_{y}(a, b)>$

Schwartz-Zippel with Multiplicities [Dvir-Kopparty-s-Sudan'10]

- 2 polynomials of degree $<2 q(1-\delta)$ cannot agree on their evaluations and evaluations of derivatives in more than (1- δ) fraction points
- \# roots of P counted with multiplicity $\cdot \operatorname{deg}(P)|F|^{n-1}$
- Multiplicity Codes have good distance

Decoding Multiplicity Codes

Given:

- noisy encoding of <P, $P_{x}, P_{y}>$
- $\quad \operatorname{Deg}(P)=2 \times q(1-\delta)$
point (a, b) in $\mathbf{F}_{\mathrm{q}}{ }^{2}$

Goal: recover <P(a,b), $P_{x}(a, b), P_{y}(a, b)>$

Algorithm

- Take random line L through (a, b) Should have small error

Query points on L

P_{x}, P_{y} give directional derivative of P along L
Noisy encoding of $\left.\mathrm{P}\right|_{L}$ (univariate polynomial), and of $\operatorname{der}\left(\left.\mathrm{P}\right|_{\mathrm{L}}\right)$

- Recover P|L

[^0]- We thus know $\mathrm{P}(\mathrm{a}, \mathrm{b}), \operatorname{der}\left(\left.\mathrm{P}\right|_{\mathrm{L} 1}\right)(\mathrm{a}, \mathrm{b}), \operatorname{der}\left(\left.\mathrm{P}\right|_{\mathrm{L}_{2}}\right)(\mathrm{a}, \mathrm{b})$
- This gives us $\mathrm{P}(\mathrm{a}, \mathrm{b}), \mathrm{P}_{\mathrm{x}}(\mathrm{a}, \mathrm{b}), \mathrm{P}_{\mathrm{y}}(\mathrm{a}, \mathrm{b})$

Parameters of Multiplicity Codes

- Bivariate Multiplicity Codes of order 2:
- $k=(d+2)$ choose $2 / 3 \approx(2(1-\delta) q)^{2} / 6$
- $\mathrm{n}=\mathrm{q}^{2}$
- Rate $\approx 2 / 3-\delta$
- \# Queries: $\approx \mathbf{O}\left(\mathbf{k}^{1 / 2}\right)$
- Improve Rate \rightarrow increase order of derivatives
- Improve query complexity \rightarrow increase \# variables

More variables, many derivatives

- m - variate, derivatives up to order s
- Polynomials of degree (1- δ)sq
- Query Complexity: $\approx \mathbf{k}^{1 / m}$
- Rate $\approx(\mathrm{s} / \mathrm{m}+\mathrm{s})^{\mathrm{m}} \times(1-\delta)^{\mathrm{m}}$
- so if $s \gg m$, rate $\rightarrow 1$
- Decoding as before ...
- (+ some "robustification")

Reed-Muller Codes

- Messages: Low degree polynomials
- Encoding: Evaluation of polynomial on full domain
- \#queries: Decreases with increase in \# variables
- Rate: Decreases exponentially with increase in \#vars

Multiplicity Codes

- Messages: High degree polynomials
- Encoding: Evaluation of polynomial and its derivatives on full domain
- \#queries: Decreases with increase in \# variables
- Rate:

1

Multiplicity codes in low distance regime

To make queries sub-polynomial, choose m to be super-constant. For constant rate this forces distance to be sub-constant.

```
Theorem (sub-constant distance)
    For every }\epsilon>
    for inf. many k, there are codes encoding
    k bits -> (1+\epsilon) k bits (symbols)
    decodable in O(2 \sqrt{}{}\sqrt{}{\operatorname{log}k\operatorname{log}\operatorname{log}k}})\mathrm{ time (+queries)
    from }\approx\sqrt{}{(\operatorname{log}\operatorname{log}k)/\operatorname{log}k}\mathrm{ fraction errors.
```


Component 2

- Distance amplification
- Similar technique used by [Alon-Luby'96] and then by others [GI'05, GR’08]

Theorem (sub-constant distance)
For every $\epsilon>0$
for inf. many k, there are codes encoding
k bits $->(1+\epsilon) \mathrm{k} \quad$ bits (symbols)
decodable in $\mathrm{O}\left(2^{\sqrt{\log k \log \log k}}\right)$ time (+queries)
from $\approx \sqrt{(\log \log k) / \log k}$ fraction errors.

Component 2

- Distance amplification
- Similar technique used by [Alon-Luby'96] and then by others [GI'05, GR’08]

Theorem (sut-constant distance)
For every $\epsilon>0$
for inf. many k, there are codes encoding
k bits $->(1+2 \epsilon) k \quad$ bits (symbols)
decodable in $\mathrm{O}\left(2^{2 \sqrt{\log k \log \log k}}\right)$ time (+queries)
from $\approx \sqrt{(\log \log h) / \log h}$ fraction errors.
$\Omega(1)$

Decoding from random errors:

Suppose $\frac{\delta}{2}-\epsilon$ fraction of random errors

Most (1-o(1)) grey blocks have at most $\frac{\delta}{2}$ corruptions

Those Reed-Solomon codewords can be correctly decoded

Thus 1-o(1) fraction of the blue blocks can be correctly recovered. This is low enough error for multiplicity codes to handle

Everything can be done locally

Open questions

- Best possible query complexity for high rate LDCs and LTCs?
- LTCS - potentially high rate 3 query LTCs!
- LDCs/LCCs - potentially high rate log n query LCCs
- Explicit codes meeting the GV bound?
- Almost solved by Ta-Shma!
- Is the GV bound tight?

Thanks!

[^0]: Repeat above steps

