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This talk

* Error-correcting codes with:
* low redundancy
* robust to large fraction of errors
* sublinear time error-detection and error-correction algorithms



Error-correcting codes

e Alphabet X (often {0,1})

* Maps data to “codeword”

e Code C =1Image(E)
» Rate =k/n
» (Hamming) Distance §:
Any 2 codewords differ
on at least 6 fraction
coordinates,

o) )
5 fraction errors can be corrected

O

Codewords



Binary Error-correcting codes

C € {0,1}" (with Hamming metric)

Rate R:
.+ |c| = 2Rn

Distance §:

 A(x,y) = 6én
for d?gtinct x,y €C

* Implies § /2-fraction errors can be corrected

Rate vs. Distance?
« OPEN

1
R “Linear-Programming” bound
R<H(G/6(1—19))
0 1/2 5

Gilbert Varshamov bound
R canequal 1 — H(6)



Gilbert Varshamov bounad

* GV Bound: There exist codes withR > 1 — H(d)

. Over large alphabets

R=1-¢ is the optimal tradeoff
(a.k.a. SINGLETON BOUND)
Achieved explicitly

reat open questions:
* Is the GV bound tight?

* Do there exist explicit codes
meeting the GV bound?

o

Gilbert Varshamov bound
Rcanequall — H(6)

1/2




Goals of classical coding theory

* Basic algorithmic tasks:
* Encoding
e Testing (error detection)
e Decoding (error correction)

* Today we know codes with:
e good rate-distance tradeoff
 efficient encoding, testing, decoding
* Linear/near-linear time



Local Codes

* Meanwhile, in early 90s complexity theory:
e answers to questions that had never been asked

e Can we work with codes in sublinear time?

* In particular, what can we do with sublinear # queries?



Algorithmic Tasks associated with Error
Correction

* Error Detection: Givenr € X", determineifr € C

* Givenr € X", with sublinear queries to r, distinguish between r € C and
A(r,C) > en

* Error Correction: Givenr € X", if 3 m such that

A(r,E(m)) < en, find m

* Givenr € L™ andi € [k] if 3 m such that A(r, E(m)) < en, with sublinear
queriestor find m;



Locally Testable Code

Given:r € X"




Locally Decodable Codes

Given: ¥ € ™ suchthat A(r,C) < en

Given: i € |k]




Locally Correctable Codes

Given: r € 2™ suchthat A(r,C) < en




Motivation for Local Decoding/Local
Correcting

Many applications to cryptography and complexity theory

Worst case to Average Case reductions

Constructions of PRGs from One-Way functions

Connections to Polynomial Identity Testing, Matrix Rigidity, Circuit Lower bounds
Private information retrieval

Learning theory

Mathematically very interesting

Interesting for coding theory in practice?



Motivation for Local Testing

* Implicit connections to the PCP theorem
* Advances have led to improved PCPs
 Limitations should lead to an understanding of limitations of PCPs

* Applications to Unigue Games conjecture and hardness of
approximation

* Many relations to testing of functions

* Original [Blum-Luby-Rubinfeld] linearity tester = testability of the Hadamard
Code which led to the proof checking revolution



A nice local code

Reed-Muller codes (multivariate polynomial evaluation codes)
* constant rate, constant distance
* 0O(n€) query locally testable
* 0O(n€) query locally decodable

Large finite field Fq of size q

Interpret original data as a polynomial P(X,Y)
* degree(P)=d=0.1q

Encoding:

* Evaluate P at each point of qu

Rate = Q(1)

Distance = 0.9
* Two low degree polynomials cannot
agree on many points of qu




Local testing/correcting RM codes

Main idea:
* Restricting a low-degree multivariate polynomial to a line gives a low-degree univariate polynomial

Local testing:
* Check that restriction to a random line is a low-degree univariate polynomial
 Analysis highly nontrivial [Rubinfeld-Sudan + others]

Local correcting:

* To recover P(a,b):
* Pick random line L through (a,b)
* Fit univariate polynomial through r|,
* Use it to recover value at (a,b)

Query complexity
 # points on aline = q = O(y/n)




Local codes of constant rate

* Reed-Muller codes (multivariate polynomial evaluation codes)
e constant rate, constant distance
* O(n€) query locally testable
e O(n€) query locally decodable

* Since the 2010s, several improved codes:

* Local testing:
* tensor codes [BS, V], lifted codes [GKS]
* Local decoding:
* multiplicity codes [KSY], lifted codes [GKS], expander codes [HOW]

* rate — 1, better rate vs. distance vs. queries



Plan of talk

e Survey of some known results

* [Kopparty-Meir-RonZewi-S "16]
* High rate LTCs/LCCs with improved query complexity

* [Gopi-Kopparty-Oliveira-RonZewi-S 17]
e LTCs and LCCs approaching™ Gilbert-Varshamov bound

* [Kopparty-RonZewi-S-Wootters 18]

e Capacity achieving locally list decodable codes

* Some proofs



Locally decodable/correctak

Extensively studied

TWO re g / mes Many deep and amazing

results (upper and lower

* Low query regime: bounds)

e Theoretically very interesting

Number of queries is small (2, 3, constant) Many basic pr-oblems
What is the best rate? uhanswered

* applications to Cryptography, average-case complexity

* Too inefficient for codes in practice

* High rate regime

Let the rate be high (constant rate or rate = 1)
What is the best query complexity that can be achieved?

Focus of more recent work.
Relevant regime for data storage and retrieval.
Even mild lower bounds would have very interesting consequences to rigidity, lower bounds [Dvir]



Low Query Regime (LCCs, LDCs)

¢ =2 : Hadamard Code is best possible n = 292K) [Goldreich-Karlof
£=3: n =2k (till not very long ago ...)

For)any constant £: Reed Muller code best known construction: n =
ago

Matching Vector Codes:
LDCs with n = exp(exp(o(log k))
[Yekhanin, Efremenko, Dvir-Gopalan-Yekhanin]

Lower bounds:
e £=3:n = Q(k*) [Woodruff]

. [Dvir-S-Wigderson]lover Real numbers, if code is linear then for LCCs n = Q(k“e)

« General £: n> k''? (too inefficient for codes in practice)

ng



High rate regime (LCCs, LDCs)

* Till about 8 years ago:
* Reed-Muller codes were the only example

* To get query complexity £ = k°, Rate R = exp G)
* More recently:
* [Kopparty-S-Yekhanin "11] Multiplicity Codes
* [Guo-Kopparty-Sudan "13] Lifted Codes
* [Hemenway-Ostrovsky-Wootters 13] Expander based ¢
* Query complexity £ = k¢, RateR=1 — €
(locally decodable and correctable from a constant frac

e [Katz-Trevisan]:

/ Interesting \

question:

What is the best
rate/query

complexity
tradeoff?

Can one get

LDCs/LCCs with
rate Q(1) or 1 — ¢
and with query

Kcomplexity ko /

* Constant rate = must have query complexity Q(logn)



Somewhat recent result:

[Kopparty-Meir-RonZewi-S "16]: There exists a family of codes of rate

1 — e that is locally decodable and locally correctable with no)
gueries from a constant fraction of errors.

2\/(log nloglog n )




What we know about constant rate LTCs

Constructions known with 3-
1

poly(logn)

* As far as we know, queries and Rate =
* there could be 3-query LTCs of constant rate [

]

e RM codes achieve:
* ForallR< l/exp(%)

* Query complexity = 0(nf )

* Recent progress beyond Reed-Muller codes:
e ForallR<1
 Forallf >0
e Query complexity = 0(nf)

* Two familes of codes achieving this!

* Tensor codes [BenSasson-Sudan], [Viderman]
* Lifted Reed-Solomon codes [Guo-Kopparty-Sudan]



More recently:

[Kopparty-Meir-RonZewi-S "16]: There exists a family of codes of rate
1 — € that are locally testable with no () guery complexity.

N

(log n )0(loglog n)




KMRS Theorem for LCCs: There exists a family of codes of rate 1 — €
that is locally decodable and locally correctable with

2+/(lognloglog n ) queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 — €
that is locally testable with (log n)?(°9°9 ™) queries from a constant
fraction of errors.




LTCs and LCCs approaching the GV bound
* Theorem [Gopi-Kopparty-Oliveira-RonZewi-S "17]

(informal) We can construct LTCs and LCCs which achieve the best

possible rate-distance tradeoff that we know how to achieve with
general (nonlocal) codes.



Main Result: LTCs
|Gopi-Kopparty-Oliveira-RonZewi-S "17]

Theorem:
For all R, 6 with:
R<1-H(d)

there exists an infinite family of codes C,,

such that:
* length(C,) =n
* Rate = R
e Distance = 6

e C,, is locally testable with (log n)2{108108 1) qyeries



Local codes can be list decoded up to capacity

[Hemenway-RonZewi-Wootters 17, Kopparty-RonZewi-S-Wootters 18]

There exist codes that can be /ocally list decoded up to capacity
3

with query complexity p(logn)4




[KMRS] result (and proof ideas) — an important ingredient in all these
results.

Rest of talk — sketch of proof of KMRS result for LCCs



KMRS Theorem for LCCs: There exists a family of codes of rate 1 — €
that is locally decodable and locally correctable with

2+/(lognloglog n ) queries from a constant fraction of errors

KMRS Theorem for LTCs: There exists a family of codes of rate 1 — €
that is locally testable with (log n)?(°9°9 ™) queries from a constant
fraction of errors.




Proof of KMRS result: 2 components

* Component 1: High rate codes with sub-polynomial query complexity
but only tolerating a tiny sub-constant fraction of errors

 Component 2: “Distance Amplification”

* Takes code as above and transforms it to a code that can tolerate many more
errors



Component 1

* High rate codes with sub-polynomial query complexity but only
tolerating a tiny sub-constant fraction of errors

Can be achieved by Multiplicity Codes!
(In a regime of parameters not studied before)



Multiplicity Codes
Kopparty-S-Yekhanin 11

Theorem (original)

For every e> 0,
for inf. many k, there are codes encoding

k bits -=> (1+¢) k  bits (symbols)
decodable in O(k€) time (+queries)
from 6(e)> O fraction errors.

Theorem (sub-constant distance)

For every e> 0
for inf. many k, there are codes encoding

k bits -=> (1+¢) k  bits (symbols)
decodable in O(2vlogkloglogk) time (+queries)
from ~ ,/(loglogk)/logk fraction errors.




Construction of Mult. Codes

e Reed Muller Codes

* Augment it with “derivatives”



Reed-Muller Codes

Bivariate Reed-Muller

 Large finite field of size q

F 2
* Interpret original data as a polynomial P(X,Y) q
* degree(P)-d=(1-6)q
Encoding:
] (a,b) > P(a,b)
* Encoding: Enc(P)

* At each point (a,b) EF?,
Evaluate P(a,b)




Key observations

e Schwartz-Zippel Lemma

e 2 polynomials of degree < (1-6) q differ on at least 0 fraction of points

* So:
* Any two codewords are at least on apart



Decoding Reed-Muller Codes

* noisy encoding of P(X,Y)
* Deg(P)=q(1—-¢)
* point(ab)inF,?

Goal: recover P(a,b)

Algorithm

Take random line L through (a,b)

Query points on L
* Should have small error
* Noisy encoding of P|, (univariate polynomial)

Recover P|,
* “Reed Solomon” decoding

Compute P|, (a,b)
= P(a,b)

F 2




Parameters of Reed-Muller Codes

e Bivariate Reed Muller:

°RMez%—6
* # Queries: ¢ ~ O(k/2)

* Improve query complexity = increase # of variables



More variables

* Polynomials of deg - (1-6) g in m variables

(1-6)™

Rate =
ml

* Queries = g = n/™ =~ O(k¥/m)

Bottleneck for rate: Degree needs to be small



Multiplicity Codes

* Key idea: Derivatives

* Higher degree polynomials
* (too high for Reed-Muller)



Multiplicity Codes

Bivariate Multiplicity codes

 Large finite field of size q

* Interpret original data as a (high) degree polynomial
e degree(P): d=2X%X(1—-90)q

* Encoding: Enc(P)
* At each point (a,b) €F,? evaluate:
e <P(a,b), Py(a,b), Py(a,b)>

4 Encoding:
(a,b) >P(a,b),

PX(a’ b)’
\ PY (a’ b)

P(XY)

N

F 2




Schwartz-Zippel with
MUItlleCltles [Dvir-Kopparty-S-Sudan’10]

2 polynomials of degree < 2q (1-6) cannot agree on their evaluations and
evaluations of derivatives in more than (1-6) fraction points

* # roots of P counted with multiplicity - deg(P) | F|"*

* Multiplicity Codes have good distance



Decoding Multiplicity Codes

. noisy encoding of <P, Py, Py>
Deg(P) = 2 X q (1-9)
. point (a,b) in Fy?

Goal: recover <P(a,b), Px(a,b), P,(a,b)>

Algorithm F 2
. Take random line L through (a,b) q

. Should have small error

. Query points on L
. Px, Py give directional derivative of P along L
. Noisy encoding of P|, (univariate polynomial),
and of der(P[\)

. Recover P|,

. Repeat above steps

. We thus know  P(a,b), der(P|.1) (a,b), der(P]|.,) (a,b)

. This gives us  P(a,b), Px(a,b), Py(a,b)




Parameters of Multiplicity Codes

* Bivariate Multiplicity Codes of order 2:

* Ratex~ 2/3-6
* # Queries: ~ 0O(k/2)

* Improve Rate = increase order of derivatives

* Improve query complexity = increase # variables



More variables, many derivatives

* m —variate, derivatives up to order s

* Polynomials of degree (1-6)sq

» Query Complexity: = k¥/m

* Rate =~ (s/ m+s)™ X (1-6)™
e soifs>>m, rate 2>1

* Decoding as before ...
e (+ some “robustification”)



Reed-Muller Codes Multiplicity Codes

* Messages: Low degree  Messages: High degree
polynomials polynomials

* Encoding: Evaluation of * Encoding: Evaluation of
polynomial on full domain polynomial and its

derivatives on full domain

e #queries: Decreases with

. ies: r with i ; :
#queries: Decreases wit increase in # variables

increase in # variables

* Rate: Decreases * Rate: L
exponentially with —>
increase in #vars



Multiplicity codes in low distance regime

To make queries sub-polynomial, choose m to be super-constant. For
constant rate this forces distance to be sub-constant.

Theorem (sub-constant distance)

For every e> 0
for inf. many k, there are codes encoding

k bits -=> (1+¢) k  bits (symbols)
decodable in O(2vlogkloglogk) time (+queries)
from ~ ,/(loglogk)/logk fraction errors.




Component 2

* Distance amplification
* Similar technique used by [Alon-Luby’96] and then by others [GI'05, GR’08]

Theorem (sub-constant distance)

For every e> 0
for inf. many k, there are codes encoding

k bits -=> (1+¢) k  bits (symbols)
decodable in O(2vlogkloglogk) time (+queries)
from ~ ,/(loglogk)/logk fraction errors.




Component 2

* Distance amplification
* Similar technique used by [Alon-Luby’96] and then by others [GI'05, GR’08]

Theorem (subr=comstarntdistarce)

For every e> 0
for inf. many k, there are codes encoding

k bits -=> (1+2¢) k  bits (symbols)
decodable in O(22vlogkloglogk) tjme (+queries)

from ~ dogtogid7togh fraction errors.
Q(1)




Multiplicity
codeword

Solomon
encoding

f1 f2 f3

"l

Good
expander

z

f

f3

block is
symbol
in final




Multiplicity
codeword

Solomon
encoding

ReedSolomon code:
Message length b
Codeword length d

Distance 6

fi f2 f3

"l

Good
expander

z

f

f3

block is
symbol
in final




Multiplicity
codeword

Solomon
encoding

ReedSolomon code:
Message lengthb |
Codeword length d

Distance 6

fi f2 f3

/ Decoding from random \

errors.

5 :
Suppose > — € fraction of random
errors

Most (1-0(1)) grey blocks have at
most ‘—23 corruptions

Those Reed-Solomon codewords
can be correctly decoded

Thus 1-0(1) fraction of the blue
blocks can be correctly recovered.
This is low enough error for
multiplicity codes to handle

Everything can be done locally




/Decoding from adversarial % a3

errors.

Suppose g — € fraction of green
blocks get corrupted

Most (1-0(1)) grey blocks have at
most &/2 corrupt neighbors
(expander mixing lemma).

Those Reed-Solomon codewords
have at most g errors and can be
correctly decoded

Thus 1-0(1) fraction of the blue
blocks can be correctly recovered.
This is low enough error for
multiplicity codes to handle

bs

!Every‘rhing can be done Iocally//
2 f3

Expander + blocking
makes the errors look

f2
f3

pseudorandom

i




Open guestions

* Best possible query complexity for high rate LDCs and LTCs?
e LTCS — potentially high rate 3 query LTCs!
* LDCs/LCCs — potentially high rate log n query LCCs

* Explicit codes meeting the GV bound?
e Almost solved by Ta-Shmal!

* |Is the GV bound tight?



Thanks!



