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Classics

• [Kuratowski 30, Wagner 37] 

G is not planar, iff it contains a K5 or K3,3 minor

– From geometry to topology

https://en.wikipedia.org/wiki/Planar_graph#/media/File:Goldner-Harary_graph.svg
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Minors

• H is minor of G, if H obtained by deletions and 
edge contractions in G

• Forbidden minor characterization: G is planar 
iff it does not contain K5 and K3,3 minors
– G is forest, iff it doesn’t have K3 minor
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Robertson-Seymour I - XX

• If property P is closed on taking minors, P has 
finite forbidden minor characterization

• Planarity, outerplanarity, bounded genus 
embeddable, treewidth < k,…
– Each P has a finite list F of forbidden minors

x

x
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Algorithmic classics

• Given non-planar G, find forbidden minor in it
• [Hopcroft-Tarjan 74] O(n) time algorithm to 

decide planarity
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Robertson-Seymour: algorithms

• There is O(n3) algorithm to decide if G contains H-
minor
– Thus, O(n3) for any minor-closed property

• [Kawarabayashi-Kobayashi-Reed12] O(n2) algorithm
• Grand generalization of Hopcroft-Tarjan, worse 

running time

Disjoint connected
subgraphs

Disjoint 
paths

Is contained?
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What if you can’t read all of G?

o(n) algorithms for planarity
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[Goldreich-Ron 02] The query model

• G is bounded degree, stored as adjacency list
– n vertices, d degree bound

• You can pick random vertices/seeds
• You can crawl from these seeds
– BFS, Random walks

v

v

v

WOLA 2019 9



Distance to planarity

• G is ε-far from planar if > εnd edges need to 
be removed to make G planar

• G is ε-far from H-minor freeness if > εnd edges 
need to be removed to make H-minor free

Still not planar!

Arbitrary set of
εnd edges
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The testing problem

• If G is ε-far from planar, reject w.p. > 2/3
• (Two-sided) If G is planar, accept w.p. > 2/3
• (One-sided) If G is planar, accept w.p. 1
• (One-sided) If G is ε-far from planar, find 

forbidden minor w.p. > 2/3

P

Graphs
“far” from P
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[Benjamini-Schramm-Shapira 08]

• Two-sided tester for all 
minor-closed properties 
in exp(exp(exp(d/ε)) 
queries

• [Goldreich-Ron 02, Czumaj-Goldreich-
Ron-S-Shapira-Sohler 14]  

One-sided ! lower 
bound
– Forbidden minor is 

poly(log n) sized
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Post BSS08

• [Hassidim-Kelner-Nguyen-Onak 09] 
exp(d/ε)

• [Levi-Ron 15] (d/ε)log(1/ε)

• [Yoshida-Ito 11, Edelman-Hassidim-
Nguyen-Onak 11] 

poly(d/ε) for bounded 
treewidth classes

• [Czumaj-Goldreich-Ron-S-Shapira-
Sohler 14]  

! for cycle-freeness
• [Fichtenburger-Levi-Vasudev-Wotzel17]  

!"/$ for K2,r-minor 
freeness
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Sorry, this is a marketing slide
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And now…

[Kumar-S-Stolman 19] 

poly(d/ε) for all minor-
closed properties

[Kumar-S-Stolman 18] 

! " # "$(&) for all minor-
closed properties
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One-sided tester

[Kumar-S-Stolman 18]

Fix minor-closed property P. (By [RS], there is finite 
list of forbidden minors.)

There is !∗($ %)- time randomized algorithm: 

If G is ε-far from P, algorithm produces a 
forbidden minor in G
– O*() hides poly(1/ε).no(1)

– Doubly exponential dependence on r, size of largest 
minor in G

Planarity, outerplanarity, series-parallel,

bounded genus embeddable, treewidth < k
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Two-sided tester

[Kumar-S-Stolman 19]

Fix minor-closed property P. 
There is O "#$%&& time two-sided tester for P
– Previously, poly(1/ε) not known for planarity
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Cute corollary

Consider d bounded degree G with at least 
(3+ε)n edges.

There is O*(dn1/2)-time algorithm that finds K5

or K3,3 minor in G
– Analogous theorem for any minor-closed property
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Less graph minors, more random walks

• No Robertson-Seymour machinery
– No brambles, treewidth, etc.
– In searching for H-minor, H does not play major 

role

• It’s all spectral graph theory
– Finding minors through random walks
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How did it all start?

Let’s try to find K5 minors
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[Goldreich-Ron 99]

• If G is ɛ-far from bipartite, ! algorithm to 
find odd cycle
– The inspiration for our result
– Finding cycles through random walks

22



The rapid mixing case: G is expander

• G is disjoint collection of expanders
– ℓ = log n

• Pick random starting vertex s
• Perform 5 ℓ-length rws from s to reach v1, v2,…, v5
– Perform " random walks from v1…v5 to form K5

minor

s

v1

v2
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Connecting the dots

• Perform ! ℓ-length random walks from vi
– Birthday paradox: guaranteed to have two walks 

end at the same vertex
• Guaranteed to connect all (vi, vj) pairs
– Union bound
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Paths don’t imply minors

• Paths unlikely to be (internally) vertex disjoint
• In expander, intersections are “localized”
– We can contract away intersections to get K5

BAD GOOD

25



Just run this algorithm on any 
graph? 
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[GR99] The general case

• Every graph can be decomposed into 
“expander-like” pieces
– Remove εdn edges, get disjoint pieces with mixing 

time poly(log n)

• [Trevisan 05, Arora-Barak-Steurer 15] Deep 
connection with UGC/approx algorithms

s

v1

v2
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The sublinear constraint

• G can be decomposed into G’, disjoint 
collection of “expander-like” pieces

• Yes, but o(n) algorithm cannot know G’
• Algorithm performs random walks on G, and 

hopes to simulate expander algorithm on 
G’…?

s

v1

v2
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The [GR99] decomposition

• (There is k st) Pick s1, s2, …, sk uar
• We can remove εdn edges and get pieces P1, 

P2,…Pk where:
• ℓ-rws from si (in G) reach all vertices in Pi with 

roughly the same probability (> 1/n1/2 )

si
Pi
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The [GR99] decomposition

• ℓ-rws from si (in G) reach all vertices in Pi with 
roughly the same probability

• The expander analysis goes through
– If G is far from bipartite, then constant fraction (by 

total size) of Pi are far from bipartite

si
Pi
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Problem #1 for minor finding

• ℓ-rws from si (in G) reach all vertices in Pi with 
roughly the same probability
– Only have guarantee from one vertex in Pi

– Enough for finding cycle

• K5 needs walks from 5 “starting” vertices

si
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Problem #2 for minor finding

• ℓ-rws from si (in G) reach all vertices in Pi with 
roughly the same probability

• These walks leave Pi, and we have no control 
on intersection
– No problem for odd-cycle

• How to argue about minors?
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Fixed source and destination

• [Czumaj-Goldreich-Ron-S-Shapira-Sohler 14] 

! tester H-minor freees, when H is cycle
• [Fichtenburger-Levi-Vasudev-Wotzel17] n2/3 algorithm if 

H is K2,r or cactus graph
• All about finding multiple paths between the 

same two vertices
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Fundamental problem

• For any decomposition…
• Need to walk ℓ > (log n) steps to reach most 

vertices in each piece
– There could be εn cut edges

• So walks will leave piece whp, and we don’t 
know how to control the behavior outside
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The [GR99] decomposition

• (There is k st) Pick s1, s2, …, sk uar
• We can remove εdn edges and get pieces P1, 

P2,…Pk where:
• ℓ-rws from si (in G) reach all vertices in Pi with 

roughly the same probability (> 1/n1/2 )

si
Pi
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The [GR99] decomposition

• (There is k st) Pick s1, s2, …, sk uar
• We can remove εdn edges and get pieces P1, 

P2,…Pk where:
• ℓ-rws from si (in G) reach all vertices in Pi with 

roughly the same probability (> 1/n1/2 )

si
Pi
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Revisit the expander case:
When can random walks find 

minors?
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Leaking random walks

• ℓ = nδ (think little more than poly(log n))

• s is “leaky” if:

• It means: ℓ-rws from s reach at least poly(ℓ) 
vertices

ps,` = Prob. vector of ℓ rw from s 

At least
ℓ10

kps,`k22  `�10
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The beating heart of one-sided testing

• If there are at least n/ℓ leaky vertices, the 
random walk algorithm finds K5 minor whp
– One doesn’t need “expanding” random walks to 

get algorithm to work
– For Kr minor-freeness, change polynomial in leaky 

definition

At least
ℓ10
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A decomposition statement

• Suppose there are < n/ℓ leaky vertices
– Rws from most s are “badly” trapped

• Pick s1, s2,…,sk uar
• We can remove εdn edges to get pieces P1, P2…Pk

such that:
• Each |Pi| = poly(ℓ) and rws from si reach every 

vertex with Pi with prob > 1/poly(ℓ) 40



A decomposition statement

• Each |Pi| = poly(ℓ) and rws from si reach every 
vertex with Pi with prob > 1/poly(ℓ)
– poly(ℓ) walks from si find superset of Pi

• If G far from planar, many Pis non-planar
– Find superset of Pi, and run exact algorithm
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A decomposition statement

• [Spielman-Teng 04] Lovasz-Simonovitz curve 
technique for local partitioning

• [Kale-S-Peres 08] Understanding random walks with 
respect to behavior in subgraphs
– Sublinear expander reconstruction (local 

algorithms to the rescue!)
42



The algorithm (at long last)

• Pick random s
• Perform O(1) poly(ℓ)-rws

from s to get v1, v2…
• Perform n1/2 poly(ℓ)-rws

from each vi, to get Kr minor

• Pick random s
• Perform poly(ℓ) ℓ-rws from 

s, and let S be set of vertices 
seen

• Use exact procedure to find 
H-minor in S

If > n/ℓ leaky vertices If < n/ℓ leaky vertices 
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What about two-sided testers?
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One-sided ⟹ Two-sided

• If there are at least n/ℓ leaky vertices, the 
random walk algorithm finds K5 minor whp

• Cor: A planar graph has at most n/ℓ leaky 
vertices
– Only need poly(ℓ) rws to test if vertex is leaky!

At least
ℓ10

WOLA 2019 45

kps,`k22  `�10



The two-sided tester

• Pick random s
• Perform O(1) poly(ℓ)-rws

from s to get v1, v2…
• Perform n1/2 poly(ℓ)-rws

from each vi, to get Kr minor

• Pick random s
• Perform poly(ℓ) ℓ-rws from 

s, and let S be set of vertices 
seen

• Use exact procedure to find 
H-minor in S

If > n/ℓ leaky vertices If < n/ℓ leaky vertices 
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The two-sided tester

• Pick random s
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from each vi, to get Kr minor

• Pick random s
• Perform poly(ℓ) ℓ-rws from 

s, and let S be set of vertices 
seen

• Use exact procedure to find 
H-minor in S
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The two-sided tester

• Pick poly(ℓ) random vertices 
s

• Perform poly(ℓ)-rws from 
each s to check if leaky

• Reject if 1/ℓ fraction are 
leaky

• Use exact procedure to find 
H-minor in subgraph visited

Estimate fraction of leaky 
vertices

If pass, < n/ℓ leaky vertices 
⇒ decomposition exists  
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• So you get poly(ℓ) tester
– And ℓ = nδ

• Argh! I need to set ℓ = poly(1/ε)
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Estimate fraction of leaky 
vertices

The two-sided tester
If pass, < n/ℓ leaky vertices 
⇒ decomposition exists  



The length issue

• If there are at least n/ℓ leaky vertices, the 
random walk algorithm finds K5 minor whp

• Cor: A planar graph has at most n/ℓ leaky 
vertices

• Proof needs ℓ > poly(log n)
– Random walks have to be long enough

At least
ℓ10
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A direct proof

• Just prove the corollary directly
• Direct, shorter proof, with constant ℓ
– Works for any hyperfinite property

• Thm: A planar graph has at most n/ℓ leaky 
vertices

At least
ℓ10

WOLA 2019 51

Leaky



And so…

• [Kumar-S-Stolman 19] 
poly(1/ε) for all minor-
closed properties

• [Kumar-S-Stolman 18] 

! " !#(%) for all 
minor-closed properties
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What next?
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Partition oracles

• Planarity is hyperfinite: remove εn edges to 
get connected components of poly(1/ε) size

• [Hassidim-Kelner-Nguyen-Onak 09, Levi-Ron 15] Query access 
to such a partition with no preprocessing!
– But pieces/runtime of (d/ε)log(1/ε) size

• Can we get partition oracle with runtime 
poly(d/ε)? WOLA 2019 54

εn edges
1/ε2



The right complexity?

• Currently: there is !"#$%% time two-sided 
tester for P

• I think the right answer is !"#&
– Not enough to tighten current 

proof
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The degree dependence

• [Kumar-S-Stolman 19] 
poly(d/ε) for all minor-
closed properties

• [Kumar-S-Stolman 18] 

! " # "$(&) for all 
minor-closed properties
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Wishful thinking #1

• O(n) algorithms for n1/2-sized balanced separators in H-
minor free graphs?

• [Lipton-Tarjan79] O(n) for planar graphs
• [Alon-Seymour-Thomas 90] O(n2) algorithm
• [Plotkin-Rao-Smith 94] O(n3/2) algorithm
• [Wulff-Nilsen 11] O(hn5/4) algorithm
• [Kawarabayashi-Reed 10] n1+ε algorithm but tower 

dependence on |H|
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Wishful thinking #2

• Deciding if G contains an H-minor

• [Kawarabayashi-Kobayashi-Reed12] O(n2) algorithm

• o(n2) algorithm using random walks?

• If graph has few leaky vertices, is the problem 
easier?

Disjoint connected
subgraphs

Disjoint 
paths

Is contained?
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Thank you!
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