How random walks led to advances in testing minor-freeness

C. Seshadhri(UC Santa Cruz)

My coauthors

Akash Kumar, Purdue

Andrew Stolman, UCSC

• [Kuratowski 30, Wagner 37] G is not planar, iff it contains a K_5 or $K_{3,3}$ minor

From geometry to topology

Minors

X

- H is minor of G, if H obtained by deletions and edge contractions in G
- Forbidden minor characterization: G is planar iff it does not contain K_5 and $K_{3,3}$ minors
 - G is forest, iff it doesn't have K₃ minor

Robertson-Seymour I - XX

X

- If property P is closed on taking minors, P has finite forbidden minor characterization
- Planarity, outerplanarity, bounded genus embeddable, treewidth < k,...
 - Each P has a finite list F of forbidden minors

- Given non-planar G, find forbidden minor in it
- [Hopcroft-Tarjan 74] O(n) time algorithm to decide planarity

Robertson-Seymour: algorithms

- There is O(n³) algorithm to decide if G contains Hminor
 - Thus, O(n³) for any minor-closed property
- [Kawarabayashi-Kobayashi-Reed12] O(n²) algorithm
- Grand generalization of Hopcroft-Tarjan, worse running time

What if you can't read all of G?

o(n) algorithms for planarity

[Goldreich-Ron 02] The query model

- G is bounded degree, stored as adjacency list
 - n vertices, d degree bound
- You can pick random vertices/seeds
- You can crawl from these seeds
 - BFS, Random walks

Distance to planarity

 G is ε-far from planar if > εnd edges need to be removed to make G planar

• G is ε-far from H-minor freeness if > εnd edges need to be removed to make H-minor free

The testing problem

Certificate of non-planarity

- If G is ε -far from planar, reject w.p. > 2/3
- (Two-sided) If G is planar, accept w.p. > 2/3
- (One-sided) If G is planar, accept w.p. 1
- (One-sided) If G is ε -far from planar, find forbidden minor w.p. > 2/3

[Benjamini-Schramm-Shapira 08]

- Two-sided tester for all minor-closed properties in exp(exp(exp(d/ε)) queries
- [Goldreich-Ron 02, Czumaj-Goldreich-Ron-S-Shapira-Sohler 14]

One-sided \sqrt{n} lower bound

Forbidden minor is poly(log n) sized

Post BSS08

Two-sided

- [Hassidim-Kelner-Nguyen-Onak 09]
 exp(d/ε)
- [Levi-Ron 15] $(d/\epsilon)^{\log(1/\epsilon)}$
- [Yoshida-Ito 11, Edelman-Hassidim-Nguyen-Onak 11]

poly(d/ε) for bounded treewidth classes

One-sided

[Czumaj-Goldreich-Ron-S-Shapira-Sohler 14]

$$\sqrt{n}$$
 for cycle-freeness

• [Fichtenburger-Levi-Vasudev-Wotzel17]

$$n^{2/3}$$
 for $K_{2,r}$ -minor freeness

Post BSS08

Sorry, this is a marketing slide

BSS08

H-minor freeness with $o(\log n)$ queries and one-sided error. In fact, a much stronger $\Omega(\sqrt{n})$ lower bound can be deduced by adapting an argument from [22]. We raise the following conjecture, stating that the $\Omega(\sqrt{n})$ lower bound is tight.

Conjecture 5.2. For every H, being H-minor free can be tested in the bounded degree setting with one-sided error and query complexity $\tilde{O}(\sqrt{n})$.

If the conjecture is true, then the Graph Minor Theorem [34] implies that the same is true for any minor-closed graph property.

Open Problem 9.26 (improving the upper bound of Theorem 9.25): Can any minor-closed property be tested in query (and time) complexity that is polynomial in d/ϵ ? What about the special case of Planarity?

Goldreich17

And now...

Two-sided

[Kumar-S-Stolman 19]

poly(d/ε) for all minorclosed properties One-sided

[Kumar-S-Stolman 18]

 $d\sqrt{n} \cdot n^{o(1)}$ for all minorclosed properties

Based on (new?) toolkit using spectral graph theory for minor-freeness

One-sided tester

Planarity, outerplanarity, series-parallel, bounded genus embeddable, treewidth < k

[Kumar-S-Stolman 18]

Fix minor-closed property P. (By [RS], there is finite list of forbidden minors.)

There is $O^*(d\sqrt{n})$ - time randomized algorithm:

If G is ε-far from P, algorithm produces a forbidden minor in G

- $O^*()$ hides poly $(1/\epsilon).n^{o(1)}$
- Doubly exponential dependence on r, size of largest minor in G

Two-sided tester

[Kumar-S-Stolman 19]

Fix minor-closed property P.

There is $O(d\varepsilon^{-100})$ time two-sided tester for P

– Previously, poly($1/\epsilon$) not known for planarity

Cute corollary

Consider d bounded degree G with at least $(3+\epsilon)n$ edges.

There is $O^*(dn^{1/2})$ -time algorithm that finds K_5 or $K_{3,3}$ minor in G

Analogous theorem for any minor-closed property

Less graph minors, more random walks

- No Robertson-Seymour machinery
 - No brambles, treewidth, etc.
 - In searching for H-minor, H does not play major role

- It's all spectral graph theory
 - Finding minors through random walks

How did it all start?

Let's try to find K₅ minors

[Goldreich-Ron 99]

- If G is ϵ -far from bipartite, \sqrt{n} algorithm to find odd cycle
 - The inspiration for our result
 - Finding cycles through random walks

The rapid mixing case: G is expander

- G is disjoint collection of expanders
 - $-\ell = \log n$
- Pick random starting vertex s
- Perform 5 ℓ -length rws from s to reach $v_1, v_2, ..., v_5$
 - Perform \sqrt{n} random walks from $v_1...v_5$ to form K_5 minor

Connecting the dots

- Perform $\sqrt{n} \ \ell$ -length random walks from v_i
 - Birthday paradox: guaranteed to have two walks end at the same vertex
- Guaranteed to connect all (v_i, v_j) pairs
 - Union bound

Paths don't imply minors

- Paths unlikely to be (internally) vertex disjoint
- In expander, intersections are "localized"
 - We can contract away intersections to get K₅

Just run this algorithm on any graph?

[GR99] The general case

- Every graph can be decomposed into "expander-like" pieces
 - Remove ɛdn edges, get disjoint pieces with mixing time poly(log n)
- [Trevisan 05, Arora-Barak-Steurer 15] Deep connection with UGC/approx algorithms

The sublinear constraint

- G can be decomposed into G', disjoint collection of "expander-like" pieces
- Yes, but o(n) algorithm cannot know G'
- Algorithm performs random walks on G, and hopes to simulate expander algorithm on G'...?

28

The [GR99] decomposition

- (There is k st) Pick s₁, s₂, ..., s_k uar
- We can remove ε dn edges and get pieces P_1 , P_2 ,... P_k where:
- ℓ -rws from s_i (in G) reach all vertices in P_i with roughly the same probability (> $1/n^{1/2}$)

WOLA 2019

29

The [GR99] decomposition

- ℓ -rws from s_i (in G) reach all vertices in P_i with roughly the same probability
- The expander analysis goes through
 - If G is far from bipartite, then constant fraction (by total size) of P_i are far from bipartite

Problem #1 for minor finding

- ℓ -rws from s_i (in G) reach all vertices in P_i with roughly the same probability
 - Only have guarantee from one vertex in P_i
 - Enough for finding cycle
- K₅ needs walks from 5 "starting" vertices

WOLA 2019

31

Problem #2 for minor finding

- ℓ -rws from s_i (in G) reach all vertices in P_i with roughly the same probability
- These walks leave P_i, and we have no control on intersection
 - No problem for odd-cycle
- How to argue about minors?

Fixed source and destination

- [Czumaj-Goldreich-Ron-S-Shapira-Sohler 14] $\sqrt{n} \text{ tester H-minor freees, when H is cycle}$
- [Fichtenburger-Levi-Vasudev-Wotzel17] $n^{2/3}$ algorithm if H is $K_{2,r}$ or cactus graph
- All about finding multiple paths between the same two vertices

Fundamental problem

- For any decomposition...
- Need to walk ℓ > (log n) steps to reach most vertices in each piece
 - There could be εn cut edges
- So walks will leave piece whp, and we don't know how to control the behavior outside

- $P_2,...P_k$ where:
- ℓ -rws from s_i (in G) reach all vertices in P_i with roughly the same probability (> $1/n^{1/2}$)

The [GR99] decomposition

Revisit the expander case: When can random walks find minors?

Leaking random walks

- $\ell = n^{\delta}$ (think little more than poly(log n)) $\mathbf{p}_{s,\ell} = \text{Prob. vector of } \ell \text{ rw from s}$
- s is "leaky" if:

$$\|\mathbf{p}_{s,\ell}\|_2^2 \le \ell^{-10}$$

 It means: ℓ-rws from s reach at least poly(ℓ) vertices

WOLA 2019

38

The beating heart of one-sided testing

- If there are at least n/ℓ leaky vertices, the random walk algorithm finds K_5 minor whp
 - One doesn't need "expanding" random walks to get algorithm to work
 - For K_r minor-freeness, change polynomial in leaky definition

A decomposition statement

- Suppose there are < n/ℓ leaky vertices
 - Rws from most s are "badly" trapped
- Pick s₁, s₂,...,s_k uar
- We can remove ε dn edges to get pieces P_1 , P_2 ... P_k such that:
- Each $|P_i| = poly(\ell)$ and rws from s_i reach every vertex with P_i with prob > $1/poly(\ell)$

A decomposition statement

- Each $|P_i| = poly(\ell)$ and rws from s_i reach every vertex with P_i with prob > $1/poly(\ell)$
 - poly(ℓ) walks from s_i find superset of P_i
- If G far from planar, many P_is non-planar
 - Find superset of P_i, and run exact algorithm

A decomposition statement

- [Spielman-Teng 04] Lovasz-Simonovitz curve technique for local partitioning
- [Kale-S-Peres 08] Understanding random walks with respect to behavior in subgraphs
 - Sublinear expander reconstruction (local algorithms to the rescue!)

The algorithm (at long last)

If $> n/\ell$ leaky vertices

- Pick random s
- Perform O(1) poly(ℓ)-rws from s to get $v_1, v_2...$
- Perform $n^{1/2}$ poly(ℓ)-rws from each v_i , to get K_r minor

If $< n/\ell$ leaky vertices

- Pick random s
- Perform poly(ℓ) ℓ-rws from s, and let S be set of vertices seen
- Use exact procedure to find H-minor in S

What about two-sided testers?

One-sided ⇒ Two-sided

- If there are at least n/ℓ leaky vertices, the random walk algorithm finds K_5 minor whp
- Cor: A planar graph has at most n/ℓ leaky vertices
 - Only need $poly(\ell)$ rws to test if vertex is leaky!

If $> n/\ell$ leaky vertices

- Pick random s
- Perform O(1) poly(ℓ) rws from s to get $v_1, v_2...$
- Perform $n^{1/2}$ poly(ℓ)-rws from each v_i , to get K_r mine

If $< n/\ell$ leaky vertices

- Pick random s
- Perform poly(ℓ) ℓ-rws from s, and let S be set of vertices seen
- Use exact procedure to find H-minor in S

If $< n/\ell$ leaky vertices

- Pick random s
- Perform poly(ℓ) ℓ -rws from s, and let S be set of vertices seen
- Use exact procedure to find H-minor in S

47

WOLA 2019

Estimate fraction of leaky vertices

- Pick poly(ℓ) random vertices
 s
- Perform poly(ℓ)-rws from each s to check if leaky
- Reject if 1/ℓ fraction are leaky

If pass, $< n/\ell$ leaky vertices \Rightarrow decomposition exists

 Use exact procedure to find H-minor in subgraph visited

Estimate fraction of leaky vertices

If pass, $< n/\ell$ leaky vertices \Rightarrow decomposition exists

- So you get poly(ℓ) tester
 - − And ℓ = n^{δ}
- Argh! I need to set $\ell = \text{poly}(1/\epsilon)$

The length issue

- If there are at least n/ℓ leaky vertices, the random walk algorithm finds K_5 minor whp
- Cor: A planar graph has at most n/ℓ leaky vertices
- Proof needs ℓ > poly(log n)
 - Random walks have to be long enough

A direct proof

- Just prove the corollary directly
- Direct, shorter proof, with constant ℓ
 - Works for any hyperfinite property

Thm: A planar graph has at most n/ℓ leaky vertices

WOLA 2019

51

And so...

Two-sided

 [Kumar-S-Stolman 19]
 poly(1/ε) for all minorclosed properties One-sided

[Kumar-S-Stolman 18]

 $\sqrt{n} \cdot n^{o(1)}$ for all minor-closed properties

Based on (new?) toolkit using spectral graph theory for minor-freeness

What next?

Partition oracles

- Planarity is hyperfinite: remove ε n edges to get connected components of poly(1/ ε) size
- [Hassidim-Kelner-Nguyen-Onak 09, Levi-Ron 15] Query access to such a partition with no preprocessing!
 - But pieces/runtime of $(d/\epsilon)^{\log(1/\epsilon)}$ size
- Can we get partition oracle with runtime poly(d/ϵ)?

The right complexity?

• Currently: there is $d\varepsilon^{-100}$ time two-sided tester for P

• I think the right answer is $d\varepsilon^{-2}$

Not enough to tighten current proof

The degree dependence

Two-sided

 [Kumar-S-Stolman 19]
 poly(d/ε) for all minorclosed properties One-sided

Can we make d the average degree, not the maximum degree?

Wishful thinking #1

- O(n) algorithms for $n^{1/2}$ -sized balanced separators in H-minor free graphs?
- [Lipton-Tarjan79] O(n) for planar graphs
- [Alon-Seymour-Thomas 90] O(n²) algorithm
- [Plotkin-Rao-Smith 94] O(n^{3/2}) algorithm
- [Wulff-Nilsen 11] O(hn^{5/4}) algorithm
- [Kawarabayashi-Reed 10] $n^{1+\epsilon}$ algorithm but tower dependence on |H|

Wishful thinking #2

- Deciding if G contains an H-minor
- [Kawarabayashi-Kobayashi-Reed12] O(n²) algorithm
- o(n²) algorithm using random walks?
- If graph has few leaky vertices, is the problem easier?

Thank you!

