Local access to Huge Random Objects

Amartya Shankha Biswas (MIT)
Ronitt Rubinfeld (MIT and TAU)
Anak Yodpinyanee (MIT)
Generating Huge Random Objects

Up front

D → Distribution

R → Sampled Random Object
Partial Sampling

“As needed” (local access queries)
Local Access to 1D Random Walk (on the line)

Query Height(t) returns position of walk at time t

Queries appear in arbitrary order

with probability $\frac{1}{2}$

with probability $\frac{1}{2}$
Random graph: Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Generate “on the fly”
Amortize Sampling over Queries

Standard paradigm

“on-the-fly” sampler

Figure Adapted from [Even-Levi-Medina-Rosen 2017]
Query Requirements

- **Efficiency**: Use *polylogarithmic*
 - Time
 - Space
 - Random Bits

- All responses **consistent** with **single valid sample**

- **Output distribution** ε-close to the **true distribution** (ℓ_1 distance)
Example Queries in Erdos-Renyi Graphs: $G(n, p)$

- **Every edge exists with probability p (independently)**

- **Vertex-Pair(u, v)**: Is edge (u, v) present?
- **All-Neighbors(v)**: Return full neighborhood of v
- **Degree(v) → OPEN**
- **Next-neighbor(v)**: **Lexicographically** next neighbor
- **Random-neighbor(v)**: Return random neighbor of v
A harder setting
[B-Rubinfeld-Yodpinyanee]
Random (Valid) Coloring of a Graph

- **Input Graph:** G
 - Maximum Degree: Δ
 - Number of colors: $q > \Delta$
- **Output:** Random Valid Coloring of G
 - Uniform over all valid colorings
- **Query:** Color of single vertex in sublinear time

- All responses must be consistent
- Overall coloring sampled from uniform distribution
Random Objects with **Huge Description Size**

- Can’t Read Full Description
- Model Parameters (in memory)
- Random bits
- Model Parameters
- Generation Algorithm
- Sublinear Probes per Query
- User
- Random Object (in memory)

- query
- response
Prior work
Local Access Model from [Goldreich-Goldwasser-Nussboim 03]

• Generators for huge random functions, codes, graphs, ...
• Important primitives
 • Sampling from binomial distribution
 • Interval-sum queries on random binary strings
 (see also [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss 02])
• Random graphs with specified property
 • e.g. Planted clique or Hamiltonian cycle
 • Focus on indistinguishable (under small number of queries and poly time)
Sparse $G(n, p)$ graph [Naor-Nussboim 2007]

• Degree at most polylog
• Queries:
 • Vertex-Pair
 • All-Neighbors

• Graphs generated:
 • Rooted tree/forest structure
 • Highly sequential random process
 • Sparse, but unbounded degree

• Queries (no bound on number):
 • Vertex-Pair
 • Next-Neighbor
 (Lexicographically in Adjacency List)
Summary of our Results
Erdos-Renyi $G(n, p)$

- Support all values of p
- Vertex-Pair
- Next-Neighbor
- Random-Neighbor

Application: Random walk in large degree graph!

Other Random Objects

- General graphs with **Independent edge probabilities** (under mild assumptions)
- 1D random walks
- Random Catalan objects
- (Simple) Domino Tilings

Today's Talk

- Unbounded Queries
- Polylog time space and random bits
- Generated objects are truly random (not just indistinguishable)
Random (Valid) Coloring of a Graph

- For $q > 9\Delta$
 - **Unbounded** Queries
 - Query color of specified vertex in **sublinear time**
 - Not polylog
 - **Memoryless**

Local Computation Algorithms [Rubinfeld, Tamir, Vardi, Xie] with **specific output distribution**

Sequential Markov Chain works for $q > 2\Delta$

For $q > 9\Delta$
probe complexity is $n^{6.12\Delta/q}$
$G(n, p)$ graphs
Vertex-pair query: Is there an edge from \(u \) to \(v \)?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generate “on the fly”

toss coins as needed

Undirected Symmetry

Query(3, 5)
Next-Neighbor and Random-Neighbor

• Dense case: $p > \frac{1}{\text{poly}(\log n)}$
 • Flip coins till you see 1
 • Time: $O(1/p)$

• Sparse Case: $p < \frac{\text{poly}(\log n)}{n}$
 • Use All-Neighbors query from [Naor-Nussboim 07]

• Intermediate is harder: e.g. $p = \frac{1}{\sqrt{n}}$
 • Many neighbors
 • Large gaps between neighbors

Can we do $o(1/p)$?
Next-Neighbor and Random-Neighbor

- Dense case: $p > \frac{1}{\text{poly}(\log n)}$
 - Flip coins till you see 1
 - Time: $O(1/p)$

- Sparse Case: $p < \frac{\text{poly}(\log n)}{n}$
 - Use All-Neighbors query from [Naor-Nussboim 07]

- Intermediate is harder: e.g. $p = \frac{1}{\sqrt{n}}$
 - Many neighbors
 - Large gaps between neighbors

Can we do $o(1/p)$?
Skip-sampling for next-neighbor queries: The case of directed graphs

\[P[k \text{ zeros followed by a } 1] = p(1 - p)^k \]

\[\text{CDF} = \sum_{k' = 0}^{k} p(1 - p)^{k'} = 1 - (1 - p)^k \]

Binary search on CDF
Skip-sampling for next-neighbor queries:

Undirected graphs yields correct distribution?

Some are determined by other neighbor

Write down all 0s?
Random-Neighbor queries via Bucketing

- Equipartition each row into contiguous buckets such that:
 - Expected # of neighbors in bucket is $\Theta(1)$
 - w.h.p. $\frac{1}{3}$ of buckets are non-empty
 - w.h.p. no bucket has more than $\log n$ neighbors
- Always determine a bucket completely

- Could have \sqrt{n} buckets, each of size \sqrt{n}
Random Neighbors with rejection sampling

Bucketing:
- expected #neighbors in a bucket = $\Theta(1)$ expected, $\leq O(\log n)$ w.h.p.
- \Rightarrow #neighbors \approx #buckets

$\mathbf{v} : \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 & 1 & \cdots \end{bmatrix}$

Step 1 pick a uniform random bucket
- “fill” this bucket if needed

$\mathbf{v} : \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$

Step 2 pick a uniform random neighbor u

Step 3 return u with probability
- $\frac{\#neighbors \text{ in the bucket}}{O(\log n)}$
- otherwise, try again

$\Pr[\text{return } u] = \frac{1}{\#\text{buckets}} \times \frac{1}{\#\text{neighbors in bucket}} \times \frac{\#\text{neighbors in bucket}}{O(\log n)} \approx \frac{\Omega(1/\log n)}{\#\text{neighbors of } u}$

$\Pr[\text{return any neighbor}] \approx \Omega(1/\log n) \Rightarrow O(\log n)$ iterations suffice
How to fill a bucket?

• Bucket may be **indirectly** filled in certain locations
 • "1" entries reported
 • "0" entries not reported but can be queried

• **Why fast?** . . . # of "1" entries is bounded by $\log n$
Bucketing provides Next-Neighbor queries too!

Just process the next bucket in order
General Graphs with Independent Edge Probabilities

- Need mild assumptions on computing sums/products of probabilities
- **Stochastic Block Model**
 - Community structure
 - Probability of edge depends on communities of endpoints
- **Kleinberg’s Small World Model**
Other Results

- Random walks on the line
- Random Catalan objects
 - Random Dyck paths
 (1D random walk always positive)
 - Well bracketed expressions
 - Random Ordered Trees
- **Height** queries
 - **Depth** queries
 (in brackets and trees)
- **First-Return** queries
 - **Matching-Bracket** queries
 - **Next-Neighbor** in trees
Open Problems: Random Graphs

- Degree queries
- i^{th} neighbor queries
- More complex queries
 - Sample a random triangle/clique
 - Random triangle containing specified vertex/edge
Open Problems: Large Description size

- What about $2\Delta < q < 9\Delta$?
- Random walks on general graphs
- Random satisfying assignment
- Random Linear Extensions of posets
- Random domino tilings (perfect matching)
Thank you!