Local access to Huge
Random Objects

Amartya Shankha Biswas (MIT)
Ronitt Rubinfeld (MIT and TAU)
Anak Yodpinyanee (MIT)

Generating Huge Random Objects

Up front DQ—)

> o

Distribution

Sampled Random Object

Partial Sampling

e @D-TD-D

(local access

queries) (_ .. (_@

Local Access to 1D Random Walk (on the
line)
Query Height(t) returns position of walk at time t

with probability 1/2 /

with probability 1/2 \ Response

/\/\//\ \/\/\/‘\\/\\/\\

/NN Vi N

N Nt f i
'S

Query

Queries appear in arbitrary order

N

Random graph: Adjacency Matrix

1

2

O© 0 N O U1 H»H W N -

p—
o

Generate
“on the fly”

Amortize Sampling over Queries

Standard (Random bits > >
paradigm < Parameters >)

< Random bits > >

“on-the-fly”

Algorith
sampler < Parameters >) e

Figure Adapted from
[Even-Levi-Medina-Rosen 2017]

Generation
Algorithm

. auery
Random Object User

>

(in memory)

response

query

Generation |

|

Random Object

(in memory)

User

Queries reveal partial
information

response

‘ Eventually, entire object is sampled

Query Requirements

* Efficiency: Use polylogarithmic :
¢ Time No pre-processing!
* Space
* Random Bits

* All responses consistent with single valid sample

* Output distribution €-close to the true distribution (/ distance)

Example Queries in Erdos-Renyi Graphs: G(n, p)

Every edge exists with
probability p (independently)

* Vertex-Pair(l, v): Is edge (U, v) present?

* All-Neighbors(v): Return full neighborhood of v

* Degree(v) — OPEN

* Next-neighbor(Vv): Lexicographically next neighbor
* Random-neighbor(v): Return random neighbor of v

A harder setting

[B-Rubinfeld-Yodpinyanee]

Random (Valid) Coloring of a Graph

Input Graph: G
« Maximum Degree: A
- Number of colors: q > A

Output: Random Valid Coloring of G

« Uniform over all valid colorings
Query: Color of single vertex in sublinear time

All responses must be consistent
Overall coloring sampled from uniform distribution

Random Objects with Huge Description Size

//\
w
Can’t Read Full Model Parameters
Description (m memory)

ﬁ Sublinear Probes per Query
< Random bits > > query
Generation |™
Algorithm > User
Random Object
(in memory)

Prior work

Local Access Model from [Goldreich-Goldwasser-Nussboim 03]

e Generators for huge random functions, codes, graphs, ...
* Important primitives
* Sampling from binomial distribution
* Interval-sum queries on random binary strings
(see also [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss 02])
« Random graphs with specified property
* e.g. Planted clique or Hamiltonian cycle
* Focus on indistinguishable (under small number of queries and poly time)

Sparse (G(n, p) graph [Naor-Nussboim 2007]

* Degree at most polylog

e Queries:

e Vertex-Pair
* All-Neighbors

Implementations of Barabasi-Albert Preferential
Attachment Graphs [Even-Levi-Medina-Rosen 2017]

* Graphs generated:
* Rooted tree/forest structure
* Highly sequential random process
 Sparse, but unbounded degree

* Queries (no bound on number):

e Vertex-Pair

* Next-Neighbor
(Lexicographically in Adjacency List)

Summary of our Results

Erdos-Renyi G(n, p)

- Support all values of p
.- Vertex-Pair

- Next-Neighbor

- Random-Neighbor

Application:
Random walk in large
degree graph!

Other Random Objects

- General graphs with Independent
edge probabilities (under mild assumptions)

- 1D random walks

- Random Catalan objects

. (Simple) Domino Tilings

Unbounded Queries

Today’s Talk

Polylog time space and random bits

Generated objects are truly random (not just indistinguishable)

Random (Valid) Coloring of a Graph

- Forg>9A

- Unbounded Queries

- Query color of specified vertex in sublinear time
« Not polylog

- Memoryless
Local Computation Algorithms [Rubinfeld, Tamir, Vardi, Xie] /<]
with specific output distribution RV
.."'r:‘\\ /q"\
v ‘// \"/ '\\’ “
Sequential Markov Chain For g > 9A \/ l)
works for q > 2A probe complexity is n6'12A/q

G(n, p) graphs

Vertex-pair query: Is there an edge from U to v?

1 2 3 4:{ 5'6 7 8 9 10
1 o 1 i 0
3 I S R 0o 1 1 Generate “on the fly”
i3 0 0O 0 O
4 1 1 0 1 .
: toss coins as needed
> o '| Undirected
° ° | Symmetry
1o e o et T Query(3, 5)
8 1 0 1 i i
9 0
10 1 | 0

Next-Neighbor and Random-Neighbor

1 2121222222272]? o
- Dense case: P > o000 ’ ’
- Flip coins till you see 1 ololilololiliTolol1lol o

. Time: O(1/p)

ly(l
. Sparse Case: p < a y(nog ")

- Use All-Neighbors query from [Naor-Nussboim 07]

.- Intermediate is harder: e.g. p =

1
+ Many neighbors vn Can we do o(1/p) ?

- Large gaps between neighbors

Next-Neighbor and Random-Neighbor

1
poly(log n)

. Dense case: P >

« Flip coins till you see 1 oloflolxs|2]?2|2]lo|l?2]0]|?

. Time: O(1/p)

ly(l
. Sparse Case: p < a y(nog ")

- Use All-Neighbors query from [Naor-Nussboim 07]

.- Intermediate is harder: e.g. p =

1
+ Many neighbors vn Can we do o(1/p) ?

- Large gaps between neighbors

Skip-sampling for next-neighbor queries:
The case of directed graphs

P|k zeros followed by a 1] = p(1 — p)k

k /
CDF = Y p(1 —p)* =1— (1 —p)* |Binary search on CDF

k'=0

Skip-sam Some are
P determined by

Undirect other neighbor

cotumn

or querl yields correct

distribution?

rom |01 10|00 |17

rowi O]O0OfO0O|1O0O|1T|O0O|0|O0O|O0O]1T|?(0] 7|1

Write down all (D

Random-Neighbor queries via Bucketing

* Equipartition each row into contiguous buckets such that:
* Expected # of neighbors in bucket is @(1)
* w.h.p. ¥ of buckets are non-empty
* w.h.p. no bucket has more than log n neighbors

* Always determine a bucket completely

« Could have \n buckets, each of size n

Random Neighbors with rejection sampling

expected #neighbors in a bucket

Bucketing:
UCseLIngs O(1) expected, < O(logn) w.h.p.

= #neighbors ~ #buckets

ve [Jof |] of | [of1 o HEDEEECH s

—» Step 1 pick a uniform random bucket
“fill” this bucket if needed

Y

0[0/1]0/1 0[O

Step 2 pick a uniform random neighbor

L » return or reject

#neighbors in the bucket

Step 3 return u with probability

otherwise, try again

O(logn)

1 1 > #neighbors in bucket ., $2(1/logn)

.return U] — #buckets #neighbors in bucket

O(logn) ™ 4tneighbors of v

return any neighbor| /= €2(1/logn) = O(logn) iterations suffice

How to fill a bucket?

* Bucket may be indirectly filled in certain locations

* "1" entries reported
* "0" entries not reported but can be queried

211?21 ?2172]10]°7 07?17
Ignore existingentries | 0 (0|1 |0 |0 |11 0|]1]|0O
Do incact indicoct]y Replace "1" entries with
ONLY keep track [ies indirectly filled "0" entries
v N
of “1” entries
oO|j1|(1]j]0f0|O0]|1 0l1]0

* Why fast? ... # of "1" entries is bounded by log n

Bucketing provides Next-Neighbor queries too!

Just process the next bucket in order

General Graphs with Independent Edge
Probabilities

* Need mild assumptions on computing sums/products of probabilities
e Stochastic Block Model

* Community structure

* Probability of edge depends on communities of endpoints

e Kleinberg’s Small World Model m\o 0—0—O0

O
.
O

0—0—0—O

0—0—0—O
<Q
o)
o)

Other Results "~ 7 > 000 0
Y, OC)

AR LB A TN
~ OOMOWOE))) -
* Random walks on the line * Height queries
 Random Catalan objects * Depth queries
- Random Dyck paths (in brackets and trees)
(1D random walk always positive) * First-Return queries
- Well bracketed expressions Matching-Bracket queries

« Random Ordered Trees * Next-Neighbor in trees

-

Open Problems: Random Graphs

* Degree queries
e i neighbor queries
* More complex queries

* Sample a random triangle/clique
 Random triangle containing specified vertex/edge

Open Problems: Large Description size

What about 2A < q < 9A?

Random walks on general graphs

Random satisfying assignment

Random Linear Extensions of posets
Random domino tilings (perfect matching)

Thank you!

