Local access to Huge Random Objects

Amartya Shankha Biswas (MIT)

Ronitt Rubinfeld (MIT and TAU)

Anak Yodpinyanee (MIT)

Generating Huge Random Objects

Partial Sampling

"As needed" (local access queries)

Local Access to 1D Random Walk (on the line)

Query Height(t) returns position of walk at time t

Queries appear in arbitrary order

Random graph: Adjacency Matrix

Generate "on the fly"

Amortize Sampling over Queries

Query Requirements

- Efficiency: Use polylogarithmic
 - Time
 - Space
 - Random Bits

No pre-processing!

All responses consistent with single valid sample

• Output distribution ε -close to the true distribution (ℓ_1 distance)

Example Queries in Erdos-Renyi Graphs: G(n, p)

Every edge exists with probability *p* (independently)

- Vertex-Pair(u, v): Is edge (u, v) present?
- All-Neighbors(v): Return full neighborhood of v
- Degree(v) \rightarrow **OPEN**
- Next-neighbor(v): **Lexicographically** next neighbor
- Random-neighbor(v): Return random neighbor of v

A harder setting

[B-Rubinfeld-Yodpinyanee]

Random (Valid) Coloring of a Graph

- Input Graph: G
 - Maximum Degree: ∆
 - Number of colors: $q > \Delta$
- Output: Random Valid Coloring of G
 - Uniform over all <u>valid colorings</u>
- Query: Color of single vertex in sublinear time

- All responses must be consistent
- Overall coloring sampled from uniform distribution

Random Objects with Huge Description Size

Prior work

Local Access Model from [Goldreich-Goldwasser-Nussboim 03]

- Generators for **huge** random functions, codes, graphs, ...
- Important primitives
 - Sampling from binomial distribution
 - Interval-sum queries on random binary strings (see also [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss 02])
- Random graphs with specified property
 - e.g. Planted clique or Hamiltonian cycle
 - Focus on **indistinguishable** (under small number of queries and poly time)

Sparse G(n, p) graph [Naor-Nussboim 2007]

- Degree at most polylog
- Queries:
 - Vertex-Pair
 - All-Neighbors

Implementations of Barabasi-Albert Preferential Attachment Graphs [Even-Levi-Medina-Rosen 2017]

- Graphs generated:
 - Rooted tree/forest structure
 - **Highly sequential** random process
 - Sparse, but unbounded degree
- Queries (no bound on number):
 - Vertex-Pair
 - Next-Neighbor (Lexicographically in Adjacency List)

Summary of our Results

Erdos-Renyi G(n, p)

- Support all values of p
- Vertex-Pair
- Next-Neighbor
- Random-Neighbor

Application:

Random walk in large degree graph!

Other Random Objects

- General graphs with Independent edge probabilities (under mild assumptions)
- 1D random walks
- Random Catalan objects
- (Simple) Domino Tilings

Unbounded Queries

Today's Talk

Polylog time space and random bits

Generated objects are **truly random** (not just indistinguishable)

Random (Valid) Coloring of a Graph

- For $q > 9\Delta$
- Unbounded Queries
- Query color of specified vertex in sublinear time
 - Not polylog
- Memoryless

Local Computation Algorithms [Rubinfeld, Tamir, Vardi, Xie] with specific output distribution

Sequential Markov Chain works for $q > 2\Delta$

For $q > 9\Delta$ probe complexity is $n^{6.12\Delta/q}$

G(n, p) graphs

Vertex-pair query: Is there an edge from u to v?

Generate "on the fly"

toss coins as needed

Next-Neighbor and Random-Neighbor

- Dense case: $p>\frac{1}{poly(\log n)}$
 - Flip coins till you see 1
 - Time: O(1/p)

- Sparse Case: $p < \frac{poly(\log n)}{n}$
 - Use All-Neighbors query from [Naor-Nussboim 07]
- Intermediate is harder: e.g. $p=\frac{1}{\sqrt{n}}$
 - Many neighbors
 - Large gaps between neighbors

Can we do o(1/p)?

Next-Neighbor and Random-Neighbor

• Dense case:
$$p>rac{1}{poly(\log n)}$$
 • Flip coins till you see ${f 1}$

- Time: O(1/p)

- Sparse Case: $p < \frac{poly(\log n)}{n}$
 - Use All-Neighbors query from [Naor-Nussboim 07]
- Intermediate is harder: e.g. $p=\frac{1}{\sqrt{n}}$
 - Many neighbors
 - Large gaps between neighbors

Can we do o(1/p)?

Skip-sampling for next-neighbor queries: The case of directed graphs

$$\mathbb{P}[k ext{ zeros followed by a } 1] = p(1-p)^k$$

CDF
$$=\sum_{k'=0}^{k} p(1-p)^{k'} = 1 - (1-p)^k$$

Binary search on CDF

Random-Neighbor queries via Bucketing

- Equipartition each row into contiguous buckets such that:
 - Expected # of neighbors in bucket is $\Theta(1)$
 - w.h.p. ⅓ of buckets are non-empty
 - ullet w.h.p. no bucket has more than $oldsymbol{log}$ $oldsymbol{n}$ neighbors
- Always determine a bucket completely
- Could have \sqrt{n} buckets, each of size \sqrt{n}

Random Neighbors with rejection sampling

Bucketing: expected #neighbors in a bucket
$$= \Theta(1) \text{ expected}, \leq \mathcal{O}(\log n) \text{ w.h.p.} \Rightarrow \#\text{neighbors} \approx \#\text{buckets}$$

$$v: \boxed{0} \boxed{1} \boxed{0} \boxed{0} \boxed{1} \boxed{0} \cdots$$

$$\longrightarrow \frac{\text{Step 1}}{\text{"fill" this bucket if needed}} \xrightarrow{\text{pick a uniform random bucket if needed}} \boxed{0} \boxed{0} \boxed{0} \boxed{1} \boxed{1} \boxed{0} \boxed{0}$$

$$\underline{\text{Step 2}} \text{ pick a uniform random neighbor } u$$

$$\underline{\text{preturn or reject}} \boxed{\text{Step 3}} \text{ return } u \text{ with probability } \xrightarrow{\#\text{neighbors in the bucket}} \boxed{\text{otherwise, try again}}$$

$$\mathbb{P}[\text{return } u] = \frac{1}{\#\text{buckets}} \times \frac{1}{\#\text{neighbors in bucket}} \times \frac{\#\text{neighbors in bucket}}{\mathcal{O}(\log n)} \approx \frac{\Omega(1/\log n)}{\#\text{neighbors of } v}$$

 $\mathbb{P}[\text{return any neighbor}] \approx \Omega(1/\log n) \Rightarrow \mathcal{O}(\log n) \text{ iterations suffice}$

How to fill a bucket?

- Bucket may be *indirectly* filled in certain locations
 - "1" entries reported
 - "0" entries not reported but can be queried

• Why fast? . . . # of "1" entries is bounded by log n

Bucketing provides Next-Neighbor queries too!

Just process the next bucket in order

General Graphs with Independent Edge Probabilities

- Need mild assumptions on computing sums/products of probabilities
- Stochastic Block Model
 - Community structure
 - Probability of edge depends on communities of endpoints
- Kleinberg's Small World Model

Other Results

- Random walks on the line
- Random Catalan objects
 - Random Dyck paths (1D random walk always positive)
 - Well bracketed expressions
 - Random Ordered Trees

- Height queries
 - Depth queries
 (in brackets and trees)
- First-Return queries
 - Matching-Bracket queries
 - Next-Neighbor in trees

Open Problems: Random Graphs

- Degree queries
- *i*th neighbor queries
- More complex queries
 - Sample a random triangle/clique
 - Random triangle containing specified vertex/edge

Open Problems: Large Description size

- What about $2\Delta < q < 9\Delta$?
- Random walks on general graphs
- Random satisfying assignment
- Random Linear Extensions of posets
- Random domino tilings (perfect matching)

Thank you!