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Generating Huge Random Objects
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Local Access to 1D Random Walk (on the
line)
Query Height(t) returns position of walk at time t
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Random graph: Adjacency Matrix
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Amortize Sampling over Queries
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Figure Adapted from
[Even-Levi-Medina-Rosen 2017]
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Query Requirements

* Efficiency: Use polylogarithmic :
¢ Time No pre-processing!
* Space
* Random Bits

* All responses consistent with single valid sample

* Output distribution €-close to the true distribution (/ distance)



Example Queries in Erdos-Renyi Graphs: G(n, p)

Every edge exists with
probability p (independently)

* Vertex-Pair(l, v): Is edge (U, v) present?

* All-Neighbors(v): Return full neighborhood of v

* Degree(v) — OPEN

* Next-neighbor(Vv): Lexicographically next neighbor
* Random-neighbor(v): Return random neighbor of v



A harder setting

[B-Rubinfeld-Yodpinyanee]



Random (Valid) Coloring of a Graph

Input Graph: G
« Maximum Degree: A
- Number of colors: q > A

Output: Random Valid Coloring of G

« Uniform over all valid colorings
Query: Color of single vertex in sublinear time

All responses must be consistent
Overall coloring sampled from uniform distribution




Random Objects with Huge Description Size
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Prior work



Local Access Model from [Goldreich-Goldwasser-Nussboim 03]

e Generators for huge random functions, codes, graphs, ...
* Important primitives
* Sampling from binomial distribution
* Interval-sum queries on random binary strings
(see also [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss 02])
« Random graphs with specified property
* e.g. Planted clique or Hamiltonian cycle
* Focus on indistinguishable (under small number of queries and poly time)



Sparse (G(n, p) graph [Naor-Nussboim 2007]

* Degree at most polylog

e Queries:

e Vertex-Pair
* All-Neighbors




Implementations of Barabasi-Albert Preferential
Attachment Graphs [Even-Levi-Medina-Rosen 2017]

* Graphs generated:
* Rooted tree/forest structure
* Highly sequential random process
 Sparse, but unbounded degree

* Queries (no bound on number):

e Vertex-Pair

* Next-Neighbor
(Lexicographically in Adjacency List)




Summary of our Results



Erdos-Renyi G(n, p)

- Support all values of p
.- Vertex-Pair

- Next-Neighbor

- Random-Neighbor

Application:
Random walk in large
degree graph!

Other Random Objects

- General graphs with Independent
edge probabilities (under mild assumptions)

- 1D random walks

- Random Catalan objects

. (Simple) Domino Tilings

Unbounded Queries

Today’s Talk

Polylog time space and random bits

Generated objects are truly random (not just indistinguishable)




Random (Valid) Coloring of a Graph

- Forg>9A

- Unbounded Queries

- Query color of specified vertex in sublinear time
« Not polylog

- Memoryless
Local Computation Algorithms [Rubinfeld, Tamir, Vardi, Xie] /<]
with specific output distribution RV
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Sequential Markov Chain For g > 9A \/ l )
works for q > 2A probe complexity is n6'12A/q




G(n, p) graphs



Vertex-pair query: Is there an edge from U to v?
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Next-Neighbor and Random-Neighbor

1 2121222222272 ]? o
- Dense case: P > o000 ’ ’
- Flip coins till you see 1 ololilololiliTolol1lol o

. Time: O(1/p)

ly(l
. Sparse Case: p < a y(nog ")

- Use All-Neighbors query from [Naor-Nussboim 07]

.- Intermediate is harder: e.g. p =

1
+ Many neighbors vn Can we do o(1/p) ?

- Large gaps between neighbors



Next-Neighbor and Random-Neighbor

1
poly(log n)

. Dense case: P >
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. Time: O(1/p)
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. Sparse Case: p < a y(nog ")

- Use All-Neighbors query from [Naor-Nussboim 07]

.- Intermediate is harder: e.g. p =

1
+ Many neighbors vn Can we do o(1/p) ?

- Large gaps between neighbors



Skip-sampling for next-neighbor queries:
The case of directed graphs

P|k zeros followed by a 1] = p(1 — p)k

k /
CDF = Y p(1 —p)* =1— (1 —p)* |Binary search on CDF

k'=0



Skip-sam Some are
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Random-Neighbor queries via Bucketing

* Equipartition each row into contiguous buckets such that:
* Expected # of neighbors in bucket is @(1)
* w.h.p. ¥ of buckets are non-empty
* w.h.p. no bucket has more than log n neighbors

* Always determine a bucket completely

« Could have \n buckets, each of size n



Random Neighbors with rejection sampling

expected #neighbors in a bucket

Bucketing:
UCseLIngs O(1) expected, < O(logn) w.h.p.

= #neighbors ~ #buckets

ve [Jof | ] of | [of1 o HEDEEECH s

—» Step 1 pick a uniform random bucket
“fill” this bucket if needed

Y

0[0/1]0/1 0[O

Step 2 pick a uniform random neighbor

L » return or reject

#neighbors in the bucket

Step 3 return u with probability

otherwise, try again

O(logn)

1 1 > #neighbors in bucket ., $2(1/logn)

.return U] — #buckets #neighbors in bucket

O(logn) ™ 4tneighbors of v

return any neighbor| /= €2(1/logn) = O(logn) iterations suffice



How to fill a bucket?

* Bucket may be indirectly filled in certain locations

* "1" entries reported
* "0" entries not reported but can be queried

211?21 ?2172]10]°7 07?17
Ignore existingentries | 0 (0|1 |0 |0 |11 0|]1]|0O
Do incact indicoct]y Replace "1" entries with
ONLY keep track [ies indirectly filled "0" entries
v N
of “1” entries
oO|j1|(1]j]0f0|O0]|1 0l1]0

* Why fast? ... # of "1" entries is bounded by log n




Bucketing provides Next-Neighbor queries too!

Just process the next bucket in order



General Graphs with Independent Edge
Probabilities

* Need mild assumptions on computing sums/products of probabilities
e Stochastic Block Model

* Community structure

* Probability of edge depends on communities of endpoints

e Kleinberg’s Small World Model m\o 0—0—O0
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Other Results "~ 7 > 000 0
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* Random walks on the line * Height queries
 Random Catalan objects * Depth queries
- Random Dyck paths (in brackets and trees)
(1D random walk always positive) * First-Return queries
- Well bracketed expressions  Matching-Bracket queries

« Random Ordered Trees * Next-Neighbor in trees

-



Open Problems: Random Graphs

* Degree queries
e i neighbor queries
* More complex queries

* Sample a random triangle/clique
 Random triangle containing specified vertex/edge



Open Problems: Large Description size

What about 2A < q < 9A?

Random walks on general graphs

Random satisfying assignment

Random Linear Extensions of posets
Random domino tilings (perfect matching)




Thank you!



